分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到9条相关结果,系统用时0.009秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    2024年10月16日,在2024(第二十六届)中国国际矿业大会“一带一路”地学合作与矿业投资论坛上,自然资源部中国地质调查局国际矿业研究中心发布了《全球矿业发展报告2024》。报告综合分析了新周期下全球矿业发展态势,是我国研究机构持续服务全球矿业可持续发展的系列研究成果之一。

    报告显示,新周期下全球经济艰难前行,地缘政治和金融政策渗入全球制造业格局演变,产业链供应链风险上升。全球固体矿产勘查投入约127.6亿美元,同比下降1.8%。全球矿业项目融资下降但并购金额增加。

    供需方面,全球能源资源新增储量、产量、消费量持续调整。其中,化石能源整体供需双升。大宗矿产供需分化明显,钢铁供需双降,供应过剩程度增加;铜供给增速高于需求增速,供需缺口大幅缩小;铝供给增速高于需求增速,供过于求。战略性新兴矿产产量快速增长,锂、钴、镍均供过于求,贸易量下降明显。贵金属黄金需求冲高后回落,白银供增需降,铂金供需双降。

    市场价格方面,国际矿产品价格总体震荡下行。能源矿产品均价下降,大宗固体矿产价格震荡加剧,电池级碳酸锂年内价格跌幅超八成。矿业公司股价震荡下行。主要油气公司股价下滑,净利润下降明显;主要固体矿产公司股价先抑后扬,净利润下降超二成,但总体仍保持高位;战略性新兴矿产公司股价大幅下降,利润同比下降超六成。黄金业务公司净利润和市值持续上涨。全球50强矿业公司总市值相对稳定但结构变化大。全球锂电产业链整体需求放缓,全球氢能项目规模持续扩大,但实际部署不及预期。ESG标准嵌入头部企业架构并融入未来发展战略。

    报告指出,2023年全球主要国家和地区持续更新战略性矿产政策,通过达成关键矿产政府间战略合作或贸易协议、出台发展关键矿产及供应链的法律法规及政策、推进矿业项目与基础设施协同等方式,促进矿产产业链本土化和矿业可持续发展。新一轮科技革命和产业变革深入发展,矿业开发技术装备成为国际矿业合作博弈中关键变量。AI找矿探索变革矿产勘查范式,矿业发展新质生产力未来可期。全球勘查开发、资源回收利用等技术装备加速发展,呈高效化、智能化、高精度、低碳化等态势。低品位难选矿技术向绿色化、自动化方向发展。大型化、多力场、自动化与多学科交叉是低品位矿产资源选矿设备研发重点。

    报告预计,新质生产力赋予矿业高质量发展新动能。卫星遥感、大数据、物联网等先进技术将持续催生AI找矿、智能矿山等新产业,数据资产定价将引领全球矿业新基建,促进矿产资源综合利用水平提升和城市矿产利用。在人类命运共同体理念指引下,矿产原产地产业链延伸不可逆转,制造业大国和基建大国凸显竞争优势,将为全球矿业合作持续贡献产业力量。各国应加强关键矿产领域协作,共同维护产业链供应链稳定畅通,引导推动矿业节约集约和绿色发展,为世界经济增长贡献力量。

    The industrial and supply chain of the mining industry adjusts, the global mining development begins a new cycle

    The International Mining Research Center of China Geological Survey, Ministry of Natural Resources has released the “Global Mining Development Report 2024” at “Belt and Road” Geoscience Cooperation and Mining Investment Forum of the 26th China Mining Conference and Exhibition on October 16th, 2024. The report comprehensively analyzed the global mining development trend under the new cycle, which is one of the contributions to sustainable development of global mining from Chinese research institutions.

    According to the report, the global economy faced growth challenges since 2023. Geopolitical and financial policies have influenced the evolution of the global manufacturing landscape, leading to increased risks in industry and supply chains. The global exploration investment for major solid minerals amounted to USD12.76 billion, down 1.8% year-on-year. The mining financing has reduced, but Mergers and acquisitions amount has increased.

    The production, consumption, and trade of Global energy and resources have continued to grow, with adjustments in supply and demand structures. The overall supply and demand for global fossil fuels have both risen. The supply and demand for bulk solid minerals are clearly differentiated: The supply and demand for steel have both fallen, leading to increased oversupply; copper supply grows faster than demand, causing a significant expansion of the supply-demand gap; aluminum supply also outpaces demand, resulting in oversupply. The production of strategic emerging minerals is rapidly increasing, with lithium, cobalt, and nickel all facing oversupply, leading to a noticeable decline in trade volumes. Precious metals gold demand once peaked and then fell back; silver has seen an increase in supply and a decrease in demand; platinum has experienced a decrease in both supply and demand.

    In 2023, international mineral product prices generally experienced a downward trend. The energy mineral product prices decline overall. The bulk solid minerals showed increased price volatility. Battery-grade lithium carbonate prices dropped by over 80% during the year. The stock prices of mining companies also had a volatile decline. Major oil and gas companies saw their stock prices decrease, with a significant drop in net profits. Stocks prices for major solid mineral companies initially fell but later recovered, with net profits declining by more than 20%, although overall profits remained high. Strategic emerging mineral companies experienced sharp declines in stock prices, with net profits dropping by more than 60% year-over-year. Gold companies saw continued increases in net profits and market value. The total market value of world’s top 50mining companies has remained relatively stable, yet structural changes have been significant. The global lithium battery industrial chain saw a slowdown in overall demand. Global hydrogen energy projects continued expanding in scale, but actual deployment fell short of expectations.

    The report noted that countries continuously updated strategic mineral policies. They implemented various incentive and intervention measures, including forming strategic intergovernmental cooperation or trade agreements on critical minerals, enacting laws and policies to develop critical mineral resources and supply chains, and promoting the coordination of mining projects with infrastructure development. As the new round of technological and industrial revolutions continues advancing, mining technology and equipment have become critical variables in international mining cooperation and competition. Artificial intelligence (AI) is driving a paradigm shift in mineral exploration, offering promising prospects for new quality productive forces in the mining industry. The rapid development of technical equipment for global exploration, R&D, resource recycling and utilization, and other aspects is leading to more efficient, intelligent, high-precision, and low-carbon solutions. Low-grade and hard-to-process ore beneficiation technologies are evolving toward greener and more automated processes, with the development of large-scale, multi-field, automated, and interdisciplinary beneficiation equipment being a key focus for low-grade mineral resources.

    Looking to the future, new quality productive forces are driving high-quality development in mining. Advanced technologies such as satellite remote sensing, big data, and the Internet of Things will continue fostering new industries like AI-driver mineral exploration and intelligent mining. The valuation of data assets is expected to lead the way in new global mining infrastructure, enhancing the comprehensive utilization of mineral resources and urban mining, which will provide new momentum for the industry’s development. Guided by the concept of building a community with a shared future for mankind, we will see a inevitable extension of industrial chains in mineral-producing regions, with manufacturing and infrastructure powerhouses highlighting competitive advantages. These countries will continue contributing to global mining cooperation. Countries should strengthen collaboration in critical mineral sectors to jointly maintain stable and smooth industrial and supply chains, and to guide and promote resource-saving, intensive, and green development in mining, thereby contributing to global economic growth.

     

     
    《全球矿业发展报告2024》显示 全球矿业产业链格局调...

     

     

     

    欧洲的火山和沉积盆地中蕴藏着丰富的地热资源,熔岩驱动的高热烩地热资源主要分布在冰岛、意大利、希腊和土耳其,多用于发电;可供直接利用的中、高温地热资源多分布于盆地地区,如法国、德国、波兰、意大利、匈牙利、罗马尼亚等国家;而随着地源热泵技术的开发和应用,浅层地热资源随处可用,尤其在奥地利、瑞士、德国和瑞典等多个国家得到广泛推广应用。

    目前,欧洲将地热利用方式划分为地热发电、直接利用和地源热泵三类,这三类地热利用市场均占据重要地位。欧盟委员会联合研究中心(JRC)报告显示,全球地热装机总容量2015年大约为82GW(吉瓦),地源热泵利用比例最高,达到61%,其中欧洲占据着最大的地源热泵市场。从具体国家来看,地热能装机总容量最高的前15个国家的总装机容量达到全球的85%,这其中有10个国家分布在欧洲。

    从整个欧洲来看,地热发电、直接利用和地源热泵三种地热利用方式都得到较好的应用和发展,而且都已具备相关的成熟技术。目前的研究和攻关焦点在于进一步降低成本,使地热利用更具市场竞争力。

    1 高温地热发电占主导,中低温地热发电势头正旺

    在欧洲,地热发电已经成为一种环境友好,且可持续的能源供应方式,这也使欧洲的地热发电市场在全球占有一席之地。截至2014年底,全球地热发电厂装机容量达12GW,其中欧洲地热发电装机容量约为2060MW(兆瓦),占全球总量的17%左右。

    近10年来,全球地热发电量也在持续增长,年均增长率在3%左右,2014年全球地热发电量达到74TWh(太瓦时)。其中,欧洲88座地热发电厂总发电量为12TWh,占全球地热发电量的16.2%,10年间6.3%的年均增长率更是高于全球水平。目前,欧洲地热发电主要分布在意大利、冰岛和土耳其三个国家,占比分别为44%、43%和10%。其中,近几年地热发电量的增加主要集中于土耳其和冰岛,而意大利地热发电量相对稳定。由于2014年试运转和维修的原因,欧洲地热发电厂的产能利用率在76%左右,与过去几年的水平相当。

    发电技术方面,主要有干蒸汽发电、闪蒸发电和有机朗肯循环发电等,其中干蒸汽发电和闪蒸发电技术主导欧洲市场,占比分别为40%和42%。比如,意大利以干蒸汽发电技术占据主导;冰岛地热资源为高温湿蒸汽资源,几乎都采用闪蒸发电技术。但最近10年,利用中低温地热能的有机朗肯循环(简称ORC)发电技术发展较快。由于土耳其拥有丰富的中低温地热资源,ORC发电技术成为主流。

    2014年欧洲地热发电容量较2013年新增170MW,并全部来自于土耳其。从发电方式来看,新增容量全部集中在ORC方面,这主要是由于中温地热发电的增加,但传统发电装置仍占据主导地位。为了更加高效地利用地热资源,冰岛、法国、德国和土耳其已启动了围绕地热发电的地热综合利用项目,以地热发电为主,采用“热电联供”或“冷热电联供”模式,在解决电力的同时为周边地区的居民提供供热或制冷需求,这将显著提高当地地热资源利用效率。

    2 地热直接利用技术已成熟,新技术出现较少

    地热的直接利用主要包括:区域供暖、洗浴和游泳加热、温室加热、水产养殖池加热、工业用热、农业干燥和融雪等方式。目前,欧洲地热直接利用最为活跃的部门仍然是集中供暖,欧洲地热能委员会(EGEC)统计显示,2014年欧洲地热供暖产热量新增大约80GWh(吉瓦时),总计达到4260GWh,占到地热直接利用的40%。2015年欧洲地热直接利用装机总容量估计为4701.7MW,主要利用国为冰岛、土耳其、法国和匈牙利等。目前欧洲共有257个地热集中供暖厂,主要分布在法国、冰岛和匈牙利等国家,2014年和2015年共新增23个。

    地热直接利用技术已经成熟,最近,除了在建筑供暖的集成利用方面有一些新的进展外,地热能直接利用领域并没有多少新专利。目前,供热系统是推动地热直接利用最有力的部门,由于地热流体往往不适合直接被分配到区域供热网络中,因此地热直接利用的发展取决于其他行业热交换器先进技术的发展。而在地热资源开发方面,一个新的概念“三重系统”被提出来,主要是通过钻探一个新的生产井,同时把前两个钻井转换成回灌井,以此来延长设计项目的寿命。这个概念已经在法国付诸应用,它可以使地热能源延长30年的使用寿命。目前,越来越多的供热系统开始采用此三重系统。

    3 地源热泵技术方兴未艾,环保型技术成为关注点

    地源热泵技术在欧洲获得广泛推广应用,2013年“欧洲地热大会”(EGC)将地源热泵作为地热利用的一个独立分类进行统计。据JRC2015年报告,全球地源热泵总装机容量约为50GW,其中欧洲装机容量达到19GW,全球占比最高,达到38%左右,其次为美洲和亚洲。

    EGEC数据显示,目前瑞典、德国、法国、瑞士和挪威成为欧洲地源热泵领域的领头羊,5个国家地源热泵装机容量之和占欧洲的69%。欧洲的地源热泵市场已经从过去由许多小型本地公司组成的市场发展成为主要由供暖和空调制造商组成的大规模的市场。目前,欧洲热泵及地源热泵市场被几个主要生产商所控制,这些大的制造商主要来自于地源热泵发展较为迅速的德国和瑞典。

    当前,地源热泵技术研发的主要目标在于提高地源热泵系统的效率和减少运作成本,主要进展包括:降低维修和养护成本,改进控制系统,使用更有效的液体工质,提高辅助设备(如泵和风扇)的工作效率。目前,地源热泵的COP值(用于评价热泵的能源转换率)通常在3~4左右,通过优化设计提高热泵的COP值是目前技术发展的主要关注点。同时,开发环保型的,并且具有更好的热特性的新型防冻液也是地源热泵技术发展的关注点。通过降低钻孔热阻指标(RB)以提高浅层地热系统的“赫尔斯特伦效率”也被寄予厚望。可以预期这些技术进步都将有助于提高地源热泵系统的效率。

    4 针对不同利用方式推出系列支持政策

    欧洲地热资源利用的发展离不开欧盟在区域层面推出的一系列支持政策和联合行动计划。欧盟通过其“研究和创新框架计划”和其他鼓励机制来支持地热资源的开发,并且通过建立相应的法律和政策框架来促进地热资源的有序健康发展。从1998年欧洲地热能源委员会成立、2000年欧洲热泵协会成立,到2010年EERA地热联合计划启动、2012年地热ERA-NET计划启动,欧洲地热能开发利用的平台和联合计划不断完善;从2004年欧洲经济和社会委员会起草决议以促进地热开发,到2012年《地热科技的战略研究重点》发布,明确欧洲地热开发利用的方向和目标,欧洲对地热能开发的支持政策不断细化。

    针对地热能开发和利用,欧盟内部存在着一系列形式多样的政策支持制度。这些支持政策在不同成员国间有所不同,同时因三种不同地热利用方式(发电、直接利用和地源热泵)的发展现状而有所差异。

    欧盟地热发电补贴形式多样,但进展较慢。地热发电项目通常具有前期投入大、开发时间长的特点,至少需要3年时间,平均开发时间大约为5至7年。鉴于此,欧盟在2009年立法要求在传统电力系统运行条件允许的情况下,要优先安排可再生能源发电。欧盟对地热发电的政策支持方式主要有:风险保险基金、上网电价补贴政策(FIT)、可再生能源溢价机制(FIP)、可交易证书、投标和软贷款等。虽然FIT和FIP这些基于市场的机制通常适用于多种新能源技术,但在地热发电项目的应用并不理想,因此欧盟对地热发电提供类似政策支持的国家并不多,目前实行FIT政策的有奥地利、法国、德国等9个国家,实行FIP的则仅有意大利、荷兰等4个国家。

    目前,欧洲地热能的直接利用和地源热泵技术已经较为成熟,补贴正在逐渐减少。政府财政支持的方式主要有投资补助、减税、碳排放税减免、保险和低息贷款等,目前欧盟多数国家仅保留投资补助这一项支持政策,只有少数几个国家仍实行多种财政支持政策,比如法国在投资补助、减税、碳排放税减免和保险等方面都有支持。EGEC认为,从成本的角度看,地热取暖技术(增强型地热系统除外)与化石燃料采暖技术相比变得更有竞争力,这使得政府对地热直接利用和地源热泵技术的补贴逐步降低。但同时,地热开发前期投入大依然阻碍着地热相关技术的发展,因此需要引进一些创新性的融资工具,例如能源服务公司(ESCO)或对地源热泵消耗的电力给予折扣。

    地热“点燃”绿色未来

    11月23日,自然资源部中国地质调查局青岛海洋地质研究所研制的海洋地质调查全过程数据入库辅助系统通过野外现场测试,系统运行稳定,使用便捷,该系统的成功测试标志着海洋地质调查全流程信息化建设迈出了坚实的一步。 

    该系统在梳理海洋地质调查涉及的地形地貌、地球物理、海洋底质、海底钱钻等业务流程的基础上,形成了详细的海洋地质调查工作流,并基于.NET Framework平台,使用Xamarin技术提供多平台的界面接口,用户可通过PC、Pad、手机等不同终端进行访问。系统主要包括数据采集录入、质量检查控制、查询检索、统计分析等功能。

    该系统依托“青岛市多要素城市地质调查”项目的工程钻孔数据进行了现场测试,数据采集录入等操作方便,数据传输稳定流畅,探索了信息化在海洋地质调查业务工作中的技术支撑作用,为全面建立海洋地质调查全流程信息化体系提供技术储备。

     

     
    青岛海洋所海洋地质调查全流程c建设稳步推进

    “十五”规划目标

        ——基本建成土地和矿产资源以及相关地学的基础数据库,建成国家油气资源数据库,基本完成重要地质资料的数字化,使国土资源数字化信息初步满足国土资源管理和调查评价的需要;基本形成国土资源信息社会化服务体系。  
        ——政务管理信息系统建设基本满足地政、矿政管理工作的需求,初步实现国土资源政务管理工作流程的信息化;现代信息技术得到较为广泛的应用,实现地质调查评价主流程的信息化。  
        ——初步形成国家、省、地(市)、县四级国土资源信息网络;基本完成国土资源信息化标准建设。数据交换技术取得实质性进展。

    工作部署

        总体部署 
        1999年数字国土工程投入资金4,600万元,2000年投入资金9,000万元。2001年以来,年度项目设置经科学论证,注重实用,严格执行国家财政预算管理,组织有效,进展顺利,取得了一批重要成果并投入到实际应用。“十五”期间开展项目329个,投入资金45,150万元,其中,2001年9,430万元;2002年8,860万元;2003年8,860万元;2004年8,900万元;2005年9,100万元。 

        一、    基础数据库建设 
        开展了221个项目。其中,地政基础数据库包括:1:50万土地利用数据库、1:1万比例尺土地利用数据库、土地利用规划数据库、土地利用遥感监测数据库、土地资源高分辨率影像数据库等;矿政基础数据库包括:矿产资源规划数据库、全国油气资源数据库、全国矿产资源储量数据库、矿产资源储量空间数据库、国土资源国家级数据库运行系统等;基础地学数据库包括基础地质数据库和地质综合成果数据库两大类,涉及区域地质图空间数据库、区域水环地质空间数据库、区域海洋地质数据库、基础地质数据库、航空物探遥感数据库、全国专题图数据库、成果资料数据库、图文地质资料数据库、全国地质资料目录数据库等。进行了全国岩石、钻孔、物性、实物地质资料目录等专业基础数据库建设试点工作,初步部署了全国地质数据与资料中心建设工作。 

        二、    调查评价相关信息技术的研究开发与应用 
        开展了25个项目。主要包括:国土资源调查评价信息化建设总体方案编制、GPS技术在土地利用变更调查工作中的应用示范、地质调查数据采集系统和地质调查数据处理与综合分析系统建设工作。工作内容包括国土资源调查评价信息化建设总体方案编制、GPS在土地变更调查中的试点示范、计算机辅助区域地质调查系统和野外地质调查应用软件及适用技术推广培训、西北地区地下水资源评价系统、矿产资源快速评价信息系统、地学工具软件包、国土资源调查适用信息技术评价与应用研究、地质体三维模拟技术、地下水资源调查综合分析、矿产资源调查数据处理与综合分析系统建设等工作。

        三、    政务管理信息系统建设 
        开展了26个项目。主要包括:国土资源部政务管理信息系统总体设计、国土资源部电子政务基础平台研制、国土资源管理信息系统试点示范、国土资源大调查项目管理信息系统、贵州省国土资源基础数据库建设试点示范、国土资源执法监察管理信息系统、国土资源综合统计分析系统、国土资源部土地利用管理信息系统、土地利用规划管理信息系统、土地开发整理管理信息系统、城镇地籍管理信息系统规范化建设、国土资源部地政管理信息系统集成与维护、矿产资源规划管理信息系统试点示范、中国矿产资源可供性系统试建设、全国矿产资源储量评审认定管理系统、矿产资源补偿费征收管理系统、矿政管理系统数据库共享集成、国土资源部矿政管理信息系统集成与维护、国土资源遥感运行系统、国家地质工作办公信息系统、国家地质调查项目管理信息系统、在线和离线数据服务系统开发、实物地质资料管理信息系统等。

        四、    信息服务系统建设 
        开展了14个项目。主要包括:国土资源信息服务系统、全国国土资源数据交换中心建设、国土资源信息集成与分析系统、国土资源科技成果服务系统建设、国土资源信息分析应用系统建设、全球战略性矿产资源数据库建设、国土资源国外信息采集与分析系统、地质资料查询服务系统、国土资源信息系统运行和维护等;在地质调查信息化成果集成与社会化服务领域,部署了国家地质工作信息化战略研究、地质调查信息化产品社会需求分析、地质调查信息化成果集成转化与社会化服务等5个工作项目。具体内容包括相关数据库软件的开发与推广;国外信息技术的调研与交流;国家地质工作信息化战略研究;地质调查信息化产品的社会需求调研;开展地质调查信息化成果的社会服务;开展地质调查信息化成果社会化服务方案的研究等。

        五、    基础网络与信息化标准建设 
        部署开展了42个项目。主要包括:全国国土资源主干网系统、国土资源国家级数据中心网、国土资源远程会商及应急指挥系统、国土资源网络信息安全保密系统建设、国家地质调查骨干网络体系建设、地质调查基础网络系统建设、国土资源信息化标准体系建设、地质调查信息化标准建设等工作。

    工作进展及主要成果

        一、    基础数据库建设 
        “十五”期间,在基础数据库建设方面,开展了221个项目。到目前为止,新开和续作项目绝大部分都在顺利进行。通过这些基础数据库的建设,初步形成了地政、矿政两大基础数据库管理体系和基础地学数据库管理体系。 
        在土地资源数据库建设方面,已经完成数据库5个,3个正在开展。完成了国家级、省级和50万以上人口城市的土地利用规划数据库,34个市(县)级试点工作正在开展;完成了全国土地利用遥感监测数据库,包括50万人口以上的城市,1999-2002年各时段遥感影像数据;完成了建设项目用地数据库、全国开发区用地数据库、基准地价数据库等;1:1万主比例尺全国土地利用现状数据库正在开展,已完成近700个市(县)的建库工作,编制完成《县(市)级土地利用数据库标准》(试行稿)、《县(市)级土地利用数据库建设技术规范》(试用稿)和《1:1万建库管理办法》,形成了一套完整、标准、规范的1:1万主比例尺土地利用数据库建设技术路线和管理制度,为项目在全国范围的顺利实施和保证成果质量奠定了基础;高分辨率影像数据库设计全部完成,完成项目工作区高分辨率影像数据整合处理,覆盖面积1.7万平方千米,完成了3,600平方千米的部分数据处理工作,正在抓紧建库;地籍数据库试点建设正在进行。 
        在矿产资源基础数据库建设方面,已经完成数据库5个。完成了国家级和省级矿产资源规划数据库,完成21个试点市(县)矿产资源规划管理系统建库,正开展第二批20个市(县)试点建设;完成了矿产资源储量数据库对全国149种固体矿产(除铀矿外)储量的年度统计汇总;完成了全国7000个大中型及部分小型矿产资源储量空间数据库建设和全国油气资源数据库建设;完成了包括战略性矿产资源动态信息、各国矿业投资环境、各国战略性矿产资源和管理、各国矿业经济政策等内容的全球战略性矿产资源数据库建设。 
        在基础地学数据库建设方面,已经完成数据库24个,正在开展6个。完成了1:500万地质图空间数据库、1:250万地质图空间数据库、1:20万区域水文地质调查地质图空间数据库1:20万区域地质图的空间数据库、1:500万矿产地质图空间数据库、1:600万水文地质图空间数据库、中国岩石地层数据库、全国1:20万自然重砂数据库、全国同位素地质测年数据库、全国矿产地数据库、区域重力数据库(包括1:100万、1:50万和1:20万)、电勘查数据库、全国1:100万航磁数据库、我国四个海域的海洋地质数据库、水系沉积物区域地球化学数据库、全国专题图空间数据库、全国地质工作程度数据库、中国资源卫星资料数据库;完成全国地质资料目录数据库、试点区实物地质资料目录数据库、地质调查成果资料中文目录数据库、地调成果资料英文目录检索数据库、地调项目档案目录数据库、地学图书期刊类文献标题和摘要数据库。图文地质资料数据库建设正在开展,完成了8000份重要地质资料的数字化。地质调查资料与信息数据库、全国钻孔地质数据库、全国岩石数据库、1:5万区域地质调查空间数据库、1:5万重点城市及经济开发区水工环地质综合空间数据库等进展顺利。完成各类基础地质与专业地质图件8000余幅,资料整理与数字化1.8万种,数据综合与更新维护6500多幅;各类数据库数据量总计达4.5TB;编绘各类项目与领域用图1500余张。

        二、    调查评价相关信息技术的研究开发与应用 
        “十五”期间,在国土资源调查评价相关信息技术的研究开发与应用方面,开展了25个项目。完成了基于GPS的土地利用变更方法的总体框架以及主要的技术路线和涉及关键技术研究、GPS野外动态数据采集方法及精度分析、GPS土地利用数据转换模块、基于GPS与GIS的土地利用变更信息系统的开发并建立了试点地区武汉市土地利用数据库、株洲市天元区土地利用数据库。通过GPS在土地变更调查中的试点示范,极大地提高了土地变更调查的工作效率和工作精度。在地学领域,将GIS、GPS与区域地质调查流程结合,开发出了新一代计算机辅助区域地质调查系统,实现了野外地质调查图、文、像的数字化信息采集,并已经推广应用。 
        在地质调查评价方面,完成了计算机辅助区域地质调查系统和野外地质调查应用软件及适用技术推广培训、西北地区地下水资源评价系统、矿产资源快速评价信息系统;研制完成数字填图系统及数字矿产资源调查系统。在试点和推广应用的基础上,形成了一套较为系统的数字区域地质调查理论、技术方法,并编制完成了系列工作指南和技术要求,构建了相应的技术推广培训和技术支持体系。通过在区域地质调查工作中全面推广应用,实现了区调工作主流程信息化。基本完成地下水资源、地质灾害及环境地质调查野外数据采集子系统的开发,开展了试点应用研究。在试点应用的基础上,自2004年开始,数字填图系统和固体矿产资源野外数据采集系统全面推广应用。地学工具软件包工作项目开发和集成了水工环专业地质科学基础计算程序包、地质科学基础计算多元统计程序包、岩石化学数值计算及图示系统程序集和矿产资源GIS评价系统。开发的水工环专业地质科学基础计算程序包、岩石化学数值计算及图示系统程序集已提供上网服务。矿产资源GIS评价系统为矿产资源调查评价与预测工作奠定了基础。国土资源调查适用信息技术评价与应用研究工作项目研究完成了嵌入式系统、XML及.NET开发技术全面评估、数据交换技术、非结构化数据处理与应用研究报告,开发空间数据库浏览系统软件,并提供服务。 
        这些成果为国土资源调查评价体系框架的建立奠定了技术基础。

        三、    政务管理信息系统建设 
        在“强化应用,讲求实效”的建设原则指导下,一批涉及国土资源规划、审批、综合事务等方面的主要业务信息系统已经建成并在国土资源部相关司局投入使用,促进了国土资源管理工作的高效、透明。2001年以来,在国土资源政务管理信息系统建设方面开展了26个项目,涉及19个系统建设,完成了7个业务应用系统开发。 
        在地政管理信息化方面,建设了土地利用规划、建设用地审批等管理信息系统。国家级土地利用规划管理信息系统实现了对国家级规划、全国省级和50万以上人口重点城市规划的管理、规划辅助审查以及决策分析。国家级建设用地审批管理信息系统在国土资源部机关9个司局使用,实现了从窗口接件、审查、会审到签发整个审批过程的网上运行。部分省市,特别是经济发达省市的重点城市,相继建立并运行了建设用地审批管理信息系统、国土资源执法监察管理信息系统、土地利用规划数据库系统、城镇地籍管理信息系统等。 
        国土资源部地政管理信息系统集成与维护,针对地政信息化建设的现状和存在的问题,明确了项目总体方案,提出了主要工作内容,分解出21个业务模型及相关基础数据库和业务数据库,重点分析了不同业务之间、不同数据之间的逻辑关系,理清了项目工作的范围和界限;通过集成已有系统,基本形成建设用地审批主线的雏形,形成了申报、审查、备案、公示、监督的主线;初步实现已有基础数据库的集成应用,开展了对现有地政系统的维护工作。 
        在矿政管理信息化方面,建立了矿产资源规划、矿业权管理等信息系统。国家级矿产资源规划管理信息系统(图6-1)实现了对全国、31个省(区、市)规划的综合管理、规划辅助审查、统计分析,并在省级规划中推广应用,正在开展市(县)级的试点示范工作。全国范围内的矿业权管理信息系统(包括探矿权、采矿权、油气勘查开采)已经建立,实现了国家、省、市、县四级系统间远程数据查询和网上数据共享。矿产资源储量空间数据库管理信息系统正在推广应用。矿产资源储量登记统计系统开发完成。国家地质工作办公信息系统、国家地质调查项目管理信息系统、实物地质资料管理信息系统、在线和离线数据服务系统、地质调查成果管理信息系统、地质成果资料电子文档验收与汇交管理系统、地质调查资料管理信息系统建设也正在开展。 
        国土资源部矿政管理系统集成与维护,已完成基于电子政务基础平台的矿业权审批业务应用系统的搭建,通过对现行矿业权管理信息系统的业务功能的分析和分解,开始构建矿业权审批业务管理信息系统的集成。同时,开展了矿产资源登记统计信息系统建设,完成数据库转换迁移软件的开发与推广应用;下发了固体矿产资源统计、固体矿产资源储量登记、油气储量登记统计3个数据管理系统;完成了全国范围的培训工作和技术支持;完成了对现行的矿政管理业务系统的维护。 

     
    图6-1  矿产资源规划管理信息系统 

        国土资源部电子政务基础平台研制,目前已形成国土资源部电子政务建设统一的技术框架和运行环境(图6-2),通过国土资源部电子政务基础平台建设,形成了国土资源电子政务管理信息系统建设统一的标准规范,满足政务公开、网上申报和信息查询等社会公众的需求,从而推动国土资源部电子政务建设发展;充分体现了基于平台搭建业务应用的思路,明显缩短了业务应用建设的周期,减少了信息系统重复建设,实现了国土资源信息数据的互联互通,充分证明了基础平台搭建业务系统的效益。 
        国土资源遥感运行系统,利用现有技术成果和数据积累,根据项目制(修)订的土地资源遥感监测业务运行系统技术规程和规范(包括土地利用动态遥感监测规程、基于遥感信息的土地利用分类体系、国家级省级土地利用遥感监测数据库标准),对采用高分辨率遥感监测获得的土地利用现状变化数据及其外业调查结果数据,进行批量数据处理与入库管理和维护,为土地资源业务管理提供现势性强、可靠性高的基础数据。项目自2003年开展以来,到目前为止已经基本完成了土地资源遥感监测业务运行系统技术规程和规范的修订任务,以及遥感数据处理与土地利用信息提取的关键技术研究、海量遥感监测数据管理与建库软件系统开发工作,已经基本完成了运行系统两个子系统主要模块的开发,并在进行进一步的修改和完善。 

     
    图6-2  国土资源部电子政务基础平台 

        国土资源综合统计信息系统,目前已经基本完成规划任务,包括编制完成了《国土资源综合统计报表制度》、《国土资源综合统计指标体系》以及年报、半年报和快报等的编制,开发完善了国土资源综合统计系统软件,建立了部、省、市、县4级综合统计信息系统,初步建立了《国土资源综合统计报表评比制度》,形成每年进行一次“全国统计数据会审”和召开一次“全国综合统计工作会议”制度,为国务院、各级政府制定有关资源管理政策、办法以及有关研究提供了基础决策信息。 
        全国国土资源电子政务试点示范建设,按照程序已经确定示范地区,编写完成试点示范地区编制试点工作方案,编写了国土资源电子政务试点示范项目设计书,开展了试点示范地区电子政务建设需求分析,完成江苏、山西、昆明的试点示范方案的审查。 
        在地质调查领域,建立了办公自动化系统,实现了统一的信息共享环境、机关内的公文运转、文档一体化管理,提供办公信息发布平台;完成了5000余个国家地质调查项目基本信息建库,开发了项目管理信息系统并投入运行;初步建立了实物地质资料数据库并初步完成了单机和网络条件下的管理系统开发;完成了地质调查成果管理信息系统建设并开始提供服务;基本完成了成果地质资料电子文档汇交管理标准,完成了成果地质资料电子文档浏览系统、电子文档验收和汇交管理系统;建立了地质调查资料管理信息系统;初步建立了中国地质调查局互联网信息发布平台;初步构建了信息采编、审批、发布等机制。

        四、    信息服务系统建设 
        国土资源部门户网站正式开通,相继建成并运行了国土资源新闻网、虚拟办事大厅和交易大厅、行政审批结果公告、矿业权评估机构公示、视频点播系统、土地估价机构和人员信息公示系统,构建了国土资源信息强大的应用服务体系和统一权威的发布窗口(图6-3)。矿产资源规划元数据也已在国土资源部外网提供查询服务。 
        地质调查信息服务体系框架建立并得到完善,开展了地质调查成果的社会化服务和成果的集成转化。1:20万、1:50万数字地质图等几个空间数据库的2756个元数据在中国地质调查局网站上发布;全国地质资料目录数据库在国土资源部外网、中国地质调查局内外网上公布,为社会提供查询服务;全国1:50万、1:20万数字地质图空间数据库、全国区域重力数据库对外提供服务;开展了1:50万、1:20万区域地质图解密处理试验研究;编制了古北口(1:5万)和北京市(1:25万)旅游地质图;开展了地质调查信息化成果的网络化服务试验工作。 
        国土资源国家级数据库运行系统,围绕项目立项确定的各项任务,对已建和在建的国土资源数据库进行广泛调研,并根据数据分析和技术调研,确定合理的软硬件平台,进行系统集成,初步形成集数据接收、数据处理、数据提取与使用等功能于一体的数据库运行系统的存储、管理和应用的体系框架;接收了国土资源一些基础的数据库系统,并进行必要的应用开发,提供使用与数据共享;对系统进行维护,随着数据资源、用户需求的增加和技术的发展,对系统软硬件进行及时升级更新,保证数据接收、数据处理、数据提取与使用等功能的正常发挥。 
        国土资源信息集成与分析系统,基础数据集成、指标体系研究、系统软件开发等各项工作稳步推进,取得了一些重要的阶段性的成果和进展。 

     
    图6-3  国土资源部门户网站

        五、    基础网络与信息化标准建设 
        国土资源主干网建设正在进行,实现了国土资源部机关与在京单位的联接,依托主干网国土资源视频会议系统建设,与全国各省级单位的网络互联也正在建设中。 
        国土资源网络信息安全保密系统建设,已经完成了国土资源网络信息安全保密系统的总体建设方案设计;完成了包括网络防病毒系统和防火墙系统在内的部分子系统的建设,实施了PKI/CA系统、电子邮件网关过滤系统和IDS系统的招标和设计。 
        建立了中国地质调查局局机关、发展中心、6个地区地调中心共8个单位的局域网和国际互联网,完成了27个单位的广域网(城域网)的建设,已初步形成以地理分布为原型、以工作职能为基础的三级网络管理系统,包括局域网建设、国际互联网建设、广域网建设、基础网络的运维和用户的技术支持、基础网络应用支撑平台建设。此外,为基于空间信息栅格的地质数据共享与服务体系的研究建立了信息基础实验室和模拟试验环境。到“十五”末期,初步建成国家地质调查工作骨干网络技术服务体系,形成结构、分布合理、运行安全可靠的三级计算机网络系统,为国家地质调查工作及成果的社会化服务提供网络载体服务。 
        信息化标准规范的制定和推广应用进一步加强,目前已经完成65项信息化标准,一批重要标准和急需标准已经完成,《国土资源信息化标准化指南》和《国土资源信息核心元数据标准》等一批重要信息化标准已由国土资源部颁布实施,20多个标准正在试行;中国地质调查局公布实施的行业内部标准有6项,正在试用的标准17项。其中总体标准和行业通用标准10多项,土地信息标准20多项,地质和矿产信息标准40多项,涉及数据库建设、信息系统建设、网络建设等标准,已基本形成了一套较为完整、科学和实用的国土资源信息采集、处理、存储和开发利用的国土资源信息化标准体系框架,在国土资源信息化建设进程中发挥了重要的技术支撑作用,使信息共享成为可能,为今后信息系统的全面开展奠定了基础。

    主要成效

        国家级国土资源数据中心初具规模,初步形成了支撑国土资源管理的地政、矿政两大基础数据库管理体系和地学基础数据库体系。完成土地基础数据库5个,包括国家级、省级和50万以上人口城市的土地利用规划、1999-2002年50万人口以上城市的全国土地利用遥感监测、建设项目用地等数据库。全国土地利用现状数据库建设进展顺利,已完成近700个市县的建库工作。完成矿产资源与地质环境基础数据库5个,包括国家级和省级矿产资源规划、矿产资源储量、矿业权、全国7000个大中型及部分小型矿产资源储量空间数据库。完成基础地学数据库24个,包括中小比例尺区域地质图(全国1:20万、全国1:250万、全国1:500万)、区域水文地质图系列、全国地质工作程度、矿产地、区域重力、地球化学、全国地质资料目录等数据库。图文地质资料数据库建设进展顺利,完成了8000种重要图文地质资料的数字化。基础数据库的建立和信息资源的开发利用,为各级国土资源政务管理信息系统运行提供了有力的数据支撑。

        基本完成了GPS在土地变更调查中的关键技术研究和系统开发,完成了新一代计算机辅助区域地质调查系统的开发,并得到推广和应用,提高了国土资源调查评价的工作效率和工作精度,初步实现了数据采集、处理的信息化。 
        完成了7个业务应用系统建设,包括土地利用规划、建设用地审批、矿产资源规划、矿业权管理(包括探矿权、采矿权、油气勘查开采)、矿产资源储量登记统计、国土资源执法监察管理、国土资源综合统计等主要业务应用系统建设;完成国土资源部电子政务基础平台开发省级国土资源电子政务试点建设,并取得成功。部分国土资源主体业务初步实现了网上报批,为规范业务审批和业务管理奠定了基础。 
        国土资源部门户网站已正式开通,相继建成并运行了新闻网、虚拟办事大厅和交易大厅、行政审批结果公告、矿业权评估机构公示、视频点播系统、土地估价机构和人员信息公示系统,基本构建了应用服务体系和发布窗口。 
        国土资源主干网与视频会议系统初步建成。完成了部机关与37个节点单位的连接。中国地质调查局建立了与6个大区地调中心连接的两级网络体系。完成了65项信息化标准的制定,《国土资源信息化标准化指南》和《国土资源信息核心元数据标准》等一批标准已颁布实施,初步形成一套较为完整的国土资源信息采集、处理和应用的信息化标准体系框架。 
        总体来看,数字国土工程基本达到了预期目标,为全面推进国土资源信息化建设奠定了重要基础。

    数字国土工程

    (一)关键地质问题综合调查工程

     

    工程牵头单位:中国地质科学院地质研究所

    工程首席专家:王涛,研究员,花岗岩及构造研究方向

     

    通讯地址:北京市西城区百万庄大街26号中国地质科学院地质研究所。邮编:100037;E-mail:taowang@cags.net.cn

     

    工程目标:通过地层、构造、岩浆、变质和矿床五大学科深入解剖研究、专题地质填图,瞄准重大事件,联合攻关, 实现以下目标:①建强地层、构造、岩浆、变质和矿床学科,以大科学视野,编图建库,总结提高,形成全国层面学科集成成果,建立和发展五大学科业务中心,解决一批大调查中的一些学科问题;②围绕关键地质问题,开展专题地质调查和填图试点,探索新的综合性和专题性填图方式、方法,为构建我国现代填图方法体系提供范例和技术支撑;③解剖若干重要成矿带,探索和应用新方法,查明制约找矿的关键因素,圈定若干成矿远景区带,力争做出创新成果;④以构造事件为主线,以(超)大陆聚散思路, 集成多种学科成果, 初步构建关键时段中国大陆聚散和巨型成矿带发育演变框架,提高成矿规律总体认识,为地调工作宏观部署提供依据;⑤培养卓越人才1~3名、杰出人才5~10 名、优秀人才10~15 名。

     

    工程任务::在沉积岩、岩浆岩、变质岩、构造和矿床方面,初步解决一些关键地质问题,探索和提出专题填图的思路、方式和方法。完善部分重要区域地层系统的划分与建立,厘定华北克拉通中部古元古代的地层层序, 初步查明胶-辽-吉带和孔兹岩带古元古代的物质组成、构造背景及岩浆事件序列;查明秦岭早古生代多期构造热事件的性质和关系,建立秦岭-大别造山带变质变形等构造热事件序列格架;查明北方造山带东段花岗岩的物源及地壳生长结构;查明重大地质事件与大规模成矿耦合关系;提出若干矿集区尺度的找矿模型。编图建库,集成总结,初步形成一些学科集成成果框架。初步建立完善中亚造山带东段花岗岩的同位素年龄数据库;初步编制全国花岗岩时空分布草图;初步总结中国西部蛇绿岩特征。

     

    工作部署:2016-2018年安排关键地区区域地层标准建立与关键生物群演化和沉积岩试点填图、华北克拉通及周缘关键地质问题调查与变质岩试点填图、造山带关键构造调查与试点填图、造山带关键构造调查与试点填图、重要矿种关键问题调查与矿产地质专题填图试点、内蒙东南部地区三维地质调查应用示范、古生物标准化石数据库建设。


    (二)深部地质调查工程

     

    工程牵头单位:中国地质科学院地球深部探测中心

    工程首席专家:吕庆田,研究员,地壳深部结构与探测方向

     

    通讯地址:北京西城区百万庄大街26号中国地质科学院。邮编:100037;E-mail: lqt@cags.ac.cn

     

    工程目标:以我国“第一油桶”的松辽盆地、“金属粮仓”的华南钦杭成矿带和“丝绸之路经济带”起点的西北盆山结合带为重点研究区,通过点、线、面多方法深部地球物理调查、地质填图和科学钻探等手段,揭示重要资源、能源基地的地壳精细结构,查明构造边界、块体属性、演化过程,深化认识华南陆内造山、西北增生造山和松辽巨型沉积盆地形成演化的深部背景与动力学过程;建立典型矿集区、含油气盆地3D地质模型,获取深部成矿、成藏和地质信息,评价深部资源、能源潜力;建立陆相沉积地层“金柱子”,抢占白垩纪温室气候和环境变化研究国际制高点,引领国际深部地质前沿;推动地质调查向深部进军,实现传统地质调查方式的根本改变;培养一批一流人才,建设一支一流的深部探测团队,为建设世界一流地调局做出贡献。

     

    工程任务:

    1.松辽盆地深层能源、古环境调查。通过部署深地震反射剖面、超深钻探和3D地质-地球物理建模等方法,评价盆地非常规油气、地热和深层油气资源;研究白垩纪古气候、古环境快速变化及对生物的影响;建立松辽盆地中深部完整连续的沉积地层“金柱子”;探测松辽盆地深部精细结构,为研究盆地形成机制和探索深层油气提供基础资料。完成我国首例6400m井深大陆科学钻探工程,获取2865~6400m井段连续取心3535m。完善超深孔钻探技术及高性能配套机具,验证“地壳一号”钻机装备和深孔钻探施工技术的可靠性和适应性。

     

    2.华南东部岩石圈结构及典型成矿带深部地质调查。华南东部岩石圈结构宽频地震及MT调查,揭示深部地质过程、重大块体边界和断裂分布;钦杭成矿带地壳结构“廊带式”综合地质-地球物理调查,阐明成矿带地壳精细结构和块体垂向边界;典型矿集区3D结构综合调查,查明主要地质体、控矿、控藏层位三维空间分布;评价区域资源、能源潜力;雪峰山科钻选址与深部能源综合调查,建立雪峰山地层格架、变质-变形过程,新元古代和寒武纪烃源岩系分布, 评价页岩油气资源潜力,实施2000-2500m科学钻探先导孔。

     

    3.祁连-天山及周缘盆山结合带深部地质调查。塔北缘-天山-准格尔地质廊带深部地质-地球物理调查,精细了解“两盆一山”的耦合关系、重大地质边界的地壳/上地幔结构、构造变形与成矿成藏的地质背景;柴北缘-祁连山-河西走廊廊带深部地质-地球物理调查,揭示北祁连造山带、前陆冲断带、河西走廊盆地群的地壳结构与盆山耦合关系,逆冲推覆与走滑作用如何影响和控制盆地展布的机制,从深层结构评价北祁连成矿区带构造背景与河西走廊盆地群油气资源远景。

     

    工作部署:2016-2018年安排钦杭结合带及邻区深部地质调查、祁连-天山及周缘盆山结合带深部地质调查、松辽盆地深部油气基础地质调查、松辽盆地资源与环境深部钻探工程。

    工作部署

    (一)国家基础地质数据更新与集成工程

     

    工程牵头单位:中国地质科学院地质研究所

    工程首席专家:李廷栋,院士/研究员,区域地质研究方向

     

    通讯地址:北京市西城区百万庄大街26号中国地质科学院;邮编:100037;E-mail: xiaozhongding@sina.com

     

    工程目标:以推动建立分层次有序的全国基础地质数据更新与集成机制为主线,以系统地球科学和现代地学理论为指导,总结近几十年来,特别是国土资源大调查和矿产资源调查评价专项实施以来所获得的新资料、新成果,开展区域地质与矿产地质综合集成和中国及邻区海陆大地构造与区域成矿地质背景深化研究,更新编制系列小比例尺基础地质和成矿图件,构建中国海陆地质构造基本框架,解决一批制约我国能源、资源找矿突破和重大地质灾害防治研究的重大关键地质问题,建立成果集成与系列基础地质图件更新机制,取得一批有重大影响的成果。培养杰出人才2~4名、优秀人才4~6名。建实建强全国地质编图研究中心。

     

    工程任务:以推动建立分层次有序的全国基础地质数据更新与集成机制为主线,分类型、分层次部署不同地区的基础地质数据更新与集成工作。一是更新编制国家系列小比例尺基础地质和成矿图件,探索建立成果集成与系列基础地质图件更新机制。二是分层次部署基础地质和矿产地质综合集成。以近几十年来,特别是国土资源大调查和矿产资源调查评价专项实施以来所获得的新资料、新成果为基础,以地球系统科学和现代先进地球科学理论为指导,按省、地质构造单元或成矿区带(矿种)、全国三个层次进行部署。三是开展中国及邻区海陆大地构造格架、成矿构造格局及其资源、环境控制等重大地质问题的综合研究。

     

    工作部署:2016-2018年安排中国及邻区海陆大地构造研究和相关图件编制、全国海陆成矿图件编制更新、全国地质构造区划与区域地质调查综合集成、中国矿产地质与成矿规律综合集成和服务、全国系列基础地质综合编图。


    (二)地质大数据与信息服务工程

     

    工程牵头单位:中国地质调查局发展研究中心

    工程首席专家:谭永杰,教授级高工,主要从事地理信息系统及地质大数据研究

     

    通讯地址:北京市西城区阜外大街45号中国地质调查局发展研究中心。邮编:100037;E-mail: tan-yj@263.net

     

    工程目标:紧密围绕地质调查工作定位,统筹、规划与引领地调局全局信息化与信息服务工作,在地质调查工作的各个领域和工作环节,实现地质大数据的互联互通、融合利用和协同服务,全面提升地质数据快速采集与传输能力、高效管理与分析处理能力和方便快捷的共享服务能力,显著提高地质信息服务质量和水平,推动引领地质调查现代化。

     

    工程任务:(1)依托地质调查九大计划、五十个工程,以大数据理念和技术,构建专业齐全、分布合理的国家地质数据库体系;(2)完善地质工作成果资料服务体系,建立较完善的地质调查成果认定、发布与服务体系,建立地质信息服务产品体系,推动地质资料信息的集群服务;(3)精心打造覆盖全领域的地质大数据支撑平台,提升地质调查数据采集、处理与信息服务能力;(4)推进数字地质调查体系开发、集成和全面应用,全面提升地质调查现代化水平;(5)建设完善地质调查辅助决策综合支撑系统,提高地质调查管理规范化和精细化水平;(6)培养杰出人才1-2名,优秀人才2-3名。(7)推动国土资源部地质信息技术重点实验室等部科技创新平台,中国地质调查局信息化研究中心、中国地质调查局地学文献中心、中国地质调查局实物地质资料信息技术研究中心等局业务中心平台,国土资源部国土资源科普基地(实物中心)、国土资源部秦皇岛海平面及地形变观测研究工作站等野外观测基地/科普基地平台的建设。

     

    工作部署:2016-2018年安排全国地质资料汇聚与数据整理、全国实物地质资料汇聚整理与服务、地学文献数据采集整合与服务、国家地质数据库建设与整合、全国地质钻孔数据库建设、地质信息产品体系研发与社会化服务、地学情报综合研究与产品研发、智能地质调查系统开发与推广、地质调查业务管理与辅助决策系统建设、全国矿产资源勘查与开发利用监测监管信息化建设、地质大数据支撑服务平台建设、全国地质调查项目组织实施费。

    工作部署

    各有关单位:


        为贯彻落实全国找矿突破战略行动计划,充分发挥地质科技引领支撑作用,大力推进矿产综合利用新技术在矿山企业的应用,有效提高矿产资源利用效率,中国地质调查局科技外事部与中国矿业联合会矿业经济专业委员会定于2011年9月中下旬在重庆市召开“全国矿产资源综合利用新技术培训研讨会”。


        会议拟邀请国内知名选冶专家、教授开设专题讲座,分析、总结我国矿产资源节约与综合利用新技术、新工艺、新药剂研发现状与发展趋势,并通过典型案例分析,解译矿产资源综合利用新技术对提高矿山企业资源利用率和经济效益的重要意义。


        同时邀请部、局相关领导就贯彻落实全国找矿突破战略行动计划的相关课题发表演讲。


        会 议 主 题:矿产资源综合利用新技术

        会议主办单位:中国地质调查局科技外事部  中国矿业联合会矿业经济专业委员会

        会议承办单位:中国地质科学院矿产综合利用研究所  中国地质学会矿产综合利用专业委员会

        欢迎全国各地矿山企业、地质勘查单位、相关院校、科研单位领导、技术人员踊跃参加。

        现将本次会议的内容及有关事项通知如下:
        一、会议主要内容
        (一)培训内容
        1.黑色金属矿产资源选冶新技术
        2.有色金属矿产资源选冶新技术
        3.西部重要共伴生矿产资源综合利用技术
        4.矿产资源综合利用的工艺矿物研究方法
        5.多金属共生矿产资源选冶联合新工艺技术
        6.工艺矿物学研究对提高矿山资源利用效率的研究--以攀钢选钛厂扩能技改为例
        (二)典型矿山考查
        重庆市典型矿山及地质遗迹考查

        二、会议日程、地点及费用
        1.会务费1000元/人(参加矿山考查者费用另计)
           食宿由会议统一安排(住宿费自理)
        2.会议日程、会议地点等具体事宜将在第二号通知给出

        三、会议注册日期
        参会人员请于2011年8月15日前填写参会回执表传真或E-mail给组委会(见附件)。

        四、联系方式
        1.中国地质调查局科技外事部
        联系人:张学君
        电  话:010-58584688   
        2.中国矿业联合会矿业经济专业委员会
        联系人:史京玺
        地址:北京市东城区和平里九区甲4号安信大厦B楼
        邮编:100013
        电话:010-66557660   13901398799
        E-mail: shijingxi@sohu.com
        传真:010-66557660
        3.中国地质科学院矿产综合利用研究所
        中国地质学会矿产综合利用专业委员会
        地  址:四川省成都市二环路南三段5号
        邮政编码:610041
        联系人:栾亚兰
        电  话:028-85592195    13708021897
        E-mail:luanyalan@263.net
        联系人:刘厚明
        电  话:028-85592217    13541078665
        E-mai:l_homing@sina.com
        传  真:028-85594582

                                                                             二〇一一年六月二十四日

     

     

    全国矿产资源综合利用新技术培训研讨会通知(第一号...

    由自然资源部中国地质调查局青岛海洋地质研究所自主研发,并拥有独立知识产权的“海洋科考船舶监控与管理系统V1.0”和“海洋地质数据库信息服务系统V1.0”获得国家版权局计算机软件著作权登记证书,登记号分别为2022SR0046309、2022SR0170601。

    其中,海洋科考船舶监控与管理系统基于B/S架构设计开发,以北斗卫星、AIS、船载定位设备等定位数据为数据源,采用大数据、人工智能、移动互联等信息技术,提供船舶的实时监控与管理、航次信息查询浏览、工作进度自动统计、工作报表和航迹数据自动导出、船舶状态的自动提醒与预警等功能。

    海洋地质数据库信息服务系统基于.NET框架开发的B/S架构应用服务系统,面向科研人员提供便捷的数据资源服务,系统主要功能包含五个模块,分别为:数据查询检索模块、实物工作量统计模块、柱状图自动成图模块、数据下载审批模块和系统用户管理模块。其中,数据查询检索提供对空间数据、测试分析数据、成果图件、成果报告及元数据的查询检索及等值线绘制等辅助功能。

    目前,海洋科考船舶监控与管理系统提供海洋地质调查船舶的监控与管理,为船舶管理部门提供信息支撑。海洋地质数据库信息服务系统部署在青岛海洋所涉密网络环境中,为科研人员提供方便、快捷的数据查询、浏览、申请等服务,大大提升了海洋地质数据服务能力。

     

     

     
    青岛海洋所获得两项计算机软件著作权

    近期,自然资源部中国地质调查局广州海洋地质调查局提交的“重力数据光滑反演软件”、“重力数据聚焦反演软件”、“浅地层剖面测量SEGY数据预处理软件”、“海洋单频脉冲震源信号波形处理软件”、“深拖连续记录数据分解软件”、“磁带管理系统”、“海洋地质综合业务应用平台”等7项软件产品,顺利获得国家计算机软件著作权。

    重力数据光滑反演和重力数据聚焦反演软件(2020SR0572255、2020SR0572279)。针对常规重力反演软件不能准确有效反演密度变化缓慢和具有陡峭边界地质体的问题,上述两种重力反演软件在传统光滑反演和聚焦反演算法的基础上,引入了不等式约束条件来约束计算结果的取值范围,并利用非线性共轭梯度算法对目标函数进行求解,能够快速、较准确获取不同地下异常体的密度分布特征,应用效果良好。

    浅地层剖面测量SEGY数据预处理软件(2020SR0086229)。在浅剖地震数据处理工作中,常规商业地震处理软件存在某些功能的缺失、有些运算无法进行、部分数据的信息无法获取等不足,一定程度上影响了数据处理质量和效率。该软件实现了浅剖数据的读写、分段采集测线的连接、浅剖换能器位置的校正、道头坐标系统转换、坐标的剔除或替换、批量输出炮点航迹图等功能,有效弥补了常规商业软件的不足,有力加强了浅剖数据质检查漏工作并提高了处理效率,应用效果良好。

    海洋单频脉冲震源信号波形处理软件(2020SR0917765)。在海洋浅地层剖面采集过程中,短时单频脉冲震源得到的地震记录主频相对较高,频带相对较窄,往往会伴随着严重的空间假频现象,极大的影响了后续横向空间处理工作。该软件利用希尔伯特变换实现了对单频脉冲震源信号的波形处理,有效消除空间假频现象,提高数据分辨率,在我局浅剖资料处理中已得到广泛的应用,具有很强的实际应用价值。

    深拖连续记录数据分解软件(2020SR0666771)。深拖多道地震是将震源和拖缆均布设在海底以上100米左右的深度上进行地震采集,在有效减少了菲涅尔带的同时,利用连续采集记录方式,大大提高数据横向分辨率。该软件针对深拖连续记录的地震数据,利用放炮时间截取实现深拖连续记录数据的分解,为后续的数据处理工作奠定了基础。

    磁带管理系统(2020SR0046260)。该软件在微软ASP.NET平台上,基于微软SQL Server数据库,使用多种编程语言开发,实现海洋地质磁带的常规业务办理、磁带数据维护、基础数据维护、以及磁带数据的查询与统计等功能,可通过浏览器方便使用,实现了对广州海洋局磁带库中保存的原始磁带、成果磁带及其生命周期进行查询、检索和管理,有力提升了该局的数据管理能力,为后续的数据挖掘和研究工作提供支撑。

    海洋地质综合业务应用平台(2020SR0043809)。该软件在红帽Linux系统下开发,采用Mysql数据库,Tomcat7.0作为WEB服务器,使用JAVA编程语言开发,主要有用户中心、资源中心、应用中心、运维中心、运营中心、计费中心等功能,可通过浏览器方便使用,实现了对广州海洋局的海洋地质各业务应用系统及硬件资源的统一管理,为软硬件资源的优化配置提供有力支撑。

     

     

     

     

     

     

     

     

    广州海洋局新获7项软件著作权