分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到9条相关结果,系统用时0.011秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    近日,中国地质调查局烟台海岸带地质调查中心(以下简称“烟台中心”)信息化团队在人工智能与海岸带地质数据整合应用领域取得新进展,实现DeepSeek模型本地化部署与知识库深度集成,构建“基础大模型+海岸带多源数据集成模型”双引擎架构,推出智能助手“探海AI”,为海岸带地质调查事业智能化转型注入强劲动能。

     图1  探海AI智能知识服务

    “探海AI”以Dify开源大语言模型(LLM)应用开发平台和Ollama大模型部署与运行平台为支撑,依托DeepSeek大模型的强大能力,深度学习标准规范、政策文件及业务数据,融合权威地质调查成果,实现人机对话场景下的高效信息检索与辅助决策支持。

     图2  探海AI智能分析应用(测试数据)

    此外,“探海AI”与海岸带地质数据管理与应用系统深度融合,基于DeepSeek的多模态能力,通过大模型语义关联与结构化抽取技术,可实时解析复杂空间数据和业务数据,支持GIS地图的语义化查询、空间关系推理及可视化分析,将分散的业务数据转化为智能分析与决策支持,驱动高级应用场景。

    下一步,烟台中心将聚焦海岸带和海洋地质调查、矿产资源调查、自然资源调查等业务方向,在确保数据安全的情况下,持续探索人工智能与行业需求的深度融合,充分发挥科技创新与信息化的“双轮驱动”作用,支撑地质调查现代化业务体系构建,推动地质调查数字化与智能化转型发展。

     

     
    DeepSeek 赋能海岸带大数据应用研究取得新进展

    在数据驱动的背景下,我们已经进入了数字经济时代。据统计,2016年中国数字经济总量已占全国GDP总量的30.6%,数据之于本世纪就像石油之于20世纪,它是发展和改变的动力。如果将数据比作土壤,再加上标准管理、元数据管理、主数据管理等各种营养成分,可以培养滋润出丰富多彩的上层数据应用。地质大数据作为国家空间基础信息重要的部分,为满足不断扩展的应用需求,将数据资源管理模式提升为数据资产管理模式势在必行。

    一、大数据与数据资产管理 

    数据资产管理(DAM)是指规划、控制和提供数据及信息资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据资产的价值。数据资产管理是需要充分融合业务、技术和管理,确保数据资产的增值。

    2013年,英国商务、创新和技能部发布《英国数据能力发展战略规划》,旨在使英国成为大数据分析的世界领跑者,并使公民和消费者、企业界和学术界、公共部门和私营部门均从中获益。该规划中数据能力主要包含三方面:人力资本、基础设施和数据资产。其中,数据资产主要体现在数据本身的丰富性、可用性和开放性等方面。同《美国大数据白皮书》一样,《英国数据能力发展战略规划》中也使用了data assets一词。

    2014年,美国发布了《大数据:抓住机遇,保存价值》,即《美国大数据白皮书》。白皮书指出:“政府机构根据开放程度已将数据资产划分为三个种类:开放性、半开放性、非开放性,并且只能出版发行开放性密级的信息。”

     

    美国联邦地理数据委员会(FGDC)地理空间数据生命周期管理架构

    2015年7月,国务院出台了《关于积极推进“互联网+”行动的指导意见》,鼓励企业利用电子商务平台的大数据资源,提升企业精准营销能力,激发市场消费需求。9月,国务院发布的《促进大数据发展行动纲要》指出,在全球信息化快速发展的大背景下,大数据已成为国家重要的基础性战略资源,正引领新一轮科技创新。数据资源一词出现在纲要正文中。

    党的十九大报告提出要“推动互联网、大数据、人工智能和实体经济深度融合”,进一步突出了大数据作为国家基础性战略性资源的重要地位,掌握丰富的高价值数据资源日益成为抢占未来发展主动权的前提和保障。

    数据资产管理是一种新型的数据管理理念,其改变了“数据只是企业经营活动的副产品”的旧有观念,将数据作为“一种同货币或黄金一样的新型经济资产类别”来进行管理。

    数据资产管理的核心是数据资产化,即将数据作为与实物资产、知识资产、人才资产一样的能为企业不断创造价值的核心资产,构建完善、统一的管控架构对其进行 管理,更好的应对大数据发展对企业运营带来的挑战。

    大数据背景下,数据资产管理呈现出五大新特征:数据对象转为多源数据,形成了“数据湖”的概念;数据处理的底层架构快速向分布式系统迁移;组织过程扩展为业务部门为主角,IT部门执行,并衍生出兼具业务与技术能力的首席数据官即CDO岗位;管理手段趋于自动化和智能化;数据使用群体扩大,不仅包括企业决策人员、运维用户、业务管理人员、数据分析人员等内部用户,还包括数据科学家、数据应用专业企业等外部用户。

    国外的组织和机构在数据管理方面有着丰富的经验。在地学领域,美国2014年发布了国家空间数据基础设施战略计划(2014-2016年)。

    二、国内外数据资产管理与实践现状

    国外的组织和机构在数据管理方面有着丰富的经验,形成了以国际数据管理协会(DAMA)、能力成熟度模型集成(CMMI)为首的几大流派;提出了数据资产管理的理论方法、技术思路以及相关软件系统,在金融、电信、商业领域较早开始数据资产管理的实践应用。在地学领域,美国2014年发布了国家空间数据基础设施战略计划(2014-2016年),截至目前通过4年实施,取得了显著成效。

    我国的金融和电信等行业,较早开展了信息化和大数据工作,积累了一定的数据管理、治理乃至资产运营的经验,对促进国内数据资产管理的发展有着重要意义。中国信息通信研究院2017年、2018年分别发布了《数据资产管理实践白皮书》1.0和2.0,为中国地质调查局开展地质大数据资产管理工作提供基础参考框架与思路。

    截至目前,中国电信、中国移动、建设银行、中国电网企业、中石化等行业大型企业开展了不同程度的大数据资产管理实践,形成了数据资产目录,搭建能力平台,研发数据资产管理工具及系列产品体系。中国建设银行于2013年全面启动数据资产管理,将原有的120多个系统,以及九大业务领域1700多个标准中的14000多张数据表、20多万数据字段,对照模型进行了梳理和规范,建成数据资产的统一管理和权威发布平台,目前已形成了包含4000多个实体、2万个属性的数据体系,基本上覆盖了各种基准数据,在全行系统内建立了统一的数据管控流程,实现了数据单点采集、多方共享,明确了数据不同节点的责任方,用元数据贯穿整个数据周期进行管理,同时也加强了数据安全和隐私的管理等。

    三、美国地理空间数据资产管理方案

    1. 目标

    2010年美国管理和预算办公室(OMB)发布了OMB通告A的A-16号文补充指南。A-16号文(地学信息与相关空间活动的协调)是联邦政府促进地理空间数据协调使用、共享、传播和国家空间数据基础设施(NSDI)建设的基本政策文件。A-16号文明确了美国联邦地理数据委员会(FGDC)在实施地学信息与相关空间活动协调的角色和责任,A-16号文补充指南首次提出联邦政府在国家空间数据基础设施战略计划(NSDI)框架下,为协调联邦地理空间数据资产和投资更有效地支持国家优先事务和政府任务,启动组合管理,纳入国家空间数据资产组合管理体系进行跟踪、维护、扩展和调整数据资产和资源,在国家层面,通过统一的政策与标准、组织体系、管理体和公众参与等措施,消除数据鸿沟。

    为完成A-16号文规定的任务,FGDC于2014年发布了国家空间数据基础设施战略计划(2014-2016)。该战略计划以全美国家级地学数据共享的角度,提出了三大战略目标,具体分解为9项任务、29个项目活动。三大战略目标分别为提升国家地学数据共享服务能力、确保联邦地理空间信息资源的责任明确和有效开发与管理、实现对全美地理空间信息界的领导。编制与实施国家地理空间数据资产管理计划任务,纳入确保联邦地理空间信息资源的责任明确和有效开发与管理的第二战略目标中,对地理空间投资的有效管理可以使得联邦机构及其合作伙伴控制成本、优化服务、减少重复投资、节省纳税人的钱,并推动联邦政府提高效率。OMB的A-16通告补充条款提出了对联邦地理空间投资和对国家地理空间数据资产(NGDA)管理实施组合管理的指导方针。组合管理方法将允许对数据专题和数据集的识别,满足政府和利益相关者的需求。FGDC也将提出政府开放数据政策的框架来将整个生命周期的信息作为资产来管理,以促进数据的互联互通与开放,保证系统和信息的安全。这一战略目标描述了联邦地理空间信息界将采取的用以落实组合管理的措施,以便更有效地规划地理空间数据收集工作,评估数据资产的状态,并尽量减少重复投资。推进国家地理空间数据资产NGDA的组合管理带来的好处如下:

    ——使得使用高级、可信和标准的国家地理空间数据集和服务更加方便,以及联邦行动和提供管理、访问地理空间资源更加透明;

    ——基础数据资产、高级的数据主题和数据集应该被列入NSDI组合管理;

    ——明确联邦在国家数据管理方面的角色和责任,包括数据与元数据的发布、研究OMB A-16通告补充条款中的组合管理、开放数据政策、地理空间平台、Data.gov和其他相关要求;

    ——落实和实施A-16通告中的组合实施计划,包括申报投资和确定投资要求;

    ——制定对A-16通告中数据主题和地理空间信息平台管理过程的监测和报告制度,包括对内容和技术标准的使用与扩散的推广和报告。

    2. 联邦地理空间数据组合资产数据体系

    FGDC提出了联邦地理空间组合资源(Federal Geospatial Portfolio)和联邦地理空间数据组合资产(Federal portfolio of geospatial assets)两个全新的概念。

    联邦地理空间组合资源包括许多类别的多种资产,包括:非A-16号文规定的空间数据组合资产、基础设施、硬件、软件、人员、应用、服务和产品。联邦地理空间数据组合资产是登记在册的、可靠的、可访问的国家级数据集的体系。联邦地理空间数据组合资产包括不同层级的数据体系:

    (1)国家地理空间数据资产组合(NGDA Portfolio)

    国家地理空间数据资产组合是由多个国家级地理空间数据专题数据库(集)构成,每个专题数据库(集)由相关的国家地理空间数据集组成,能够入选国家级地理空间数据集多是数据量大且持续更新的国家级数据库。不是所有的数据集均可作为国家级地理空间数据资产进行管理,对于符合作为数据资产管理的数据集,须由国家级地学空间数据专题组提出建议,由FGDC协调小组同意并由FGDC指导委员会指定方可纳入。

    (2)国家地理空间专题

    一个NGDA专题(与“A-16主题”同义)是一个组织结构,在这个组织结构下多个相关的NGDA数据集在逻辑上作为一个单元进行分组和管理。国家地理空间数据专题确定的原则如下:

    ——原则1,专题是相关国家地理空间数据资产按应用专题的逻辑分组,用于满足普通公众的,容易被发现并且任何人都可以访问;

    ——原则2,专题的数据覆盖范围原则上需覆盖全国,数据的生产与管理能满足跨联邦机构或组织的应用需求;

    ——原则3,专题确立需有明确的立法授权、规定的法令或是核心空间参考数据集;

    ——原则4,专题的确立可促进多个相关数据集在联邦、州、市和地方政府、私营或非营利部门机构之间的凝聚力和协作开发、维护和深化;

    ——原则5,专题应侧重于选取对国家很重要的自然和人造数据资产数据集,例如境界线等。

    (3)国家地理空间数据集

    空间数据集将进行定期清点,如果符合要求则纳入并建议纳入国家地理空间数据资产组合管理(NGDA Portfolio)。NGDA专题领导和专题委员会负责空间数据集的清点。要获得FGDC指导委员会批准作为NGDA空间数据集,必须至少符合以下标准之一:

    ——数据集被多个机构或与州、市和地方政府等机构合作伙伴使用;

    ——应用于实现OMB所规定的总统优先事项;

    ——需要满足多个联邦机构的共享目标;

    ——法定授权明确要求;

    为了确保NGDA数据集的质量和能被机构组织广泛应用的可用性,数据一定是:

    ——可发现,已发布和可获取;

    ——可靠性,由公认的国家管理机构维护;

    ——一致性,统一的代码、标准和相关定义,确保其完整性(包括符合适用的FGDC标准);

    ——现势性和适用性,定期维护并满足当前需求;

    ——资源化,作为企业资产。

    3. 联邦地理空间数据组合资产管理方案

    NGDA管理计划支持建立A-16 NGDA组合资源管理流程(MP)的两个主要阶段——

    (1)准备管理和报告框架

    建立数据资产管理委员会、专题领导协调组、数据集管理团队;明确数据组合资产管理的目标任务,优选核心国家级地理空间数据集目录清单并在GeoPlatform共享平台发布元数据;建立在线的工作协调平台、数据集成熟度评估模板、年度专题报告模板、数据服务应用投资报告模板、组合资产管理报告模板等及相关软件工具;建立对地理空间投资定义与预算报告的代码。预计全面实施A-16 NGDA数据资产组合管理流程可能需要3到5个预算周期。

    (2)执行数据资产组合管理

    共分为评估、规划、报告和预算设置4个阶段实施:

    评估包括对国家地理空间数据集的成熟度评估和国家地理空间专题的成熟度评估;

    规划阶段包括创建国家地理空间战略专题规划、执行和维护数据集管理方、专题委员会等多方协调机制、管理与维护GeoPlatform共享平台中专题内容等;

    报告阶段,分阶段分别提交国家地理空间数据集、主题和组合资产的年度进展与评估报告;

    预算设置阶段,建立地理空间数据资产组合管理的预算安排流程。

    (3)按NGDA数据集生命周期成熟度评估

    FGDC制定了5个成熟度指标评估地理空间数据生命周期中的7个阶段。

    根据用户需求将数据的生命周期划分为定义、清理与评估、获取、访问、维护、使用与评估、归档7个阶段。

    每个阶段使用6个等级来评价,分别是:

    0级:没有任何措施

    数据集未开发或不能满足主要用户的项目或业务需求。没有考虑次要用户、其他的或合作伙伴(利益相关者)的应用需求。数据集目前不是权威数据,或者是权威数据集的一部分。没有采用数据生命周期管理的任何一个阶段进行管理。

    1级:计划或建设初期

    数据集在初始计划中且可部分满足主要用户的项目或业务需求。初步采用数据生命周期对数据进行管理。准备考虑次要用户、其他的或合作伙伴(利益相关者)的应用需求。数据集的开发建设还处于初期阶段。采用生命周期部分或有限阶段进行管理。

    2级:过渡或转型阶段

    数据集满足主要用户的业务需求,并可被次要用户适度使用。至少采用3个阶段的数据生命周期管理。可获得阶段性的资金、合作伙伴以及数据获取等相关的支持。采用生命周期有限的阶段进行管理实践。

    3级:管理或可预测的阶段

    数据集满足主要用户的大量业务需求,并被次要用户广泛使用。至少采用4个阶段的数据生命周期管理。采用恰当且一致性的数据生命周期进行管理实践。数据集在生命周期的不同阶段与业务需求变化紧密结合,整体成熟度随之变化。

    4级:成熟或一致性阶段

    数据集满足主要用户和大多数次要用户的所有业务需求。该数据集是主要用户和次要用户的权威数据资源。对未来的数据应用需求有着明确的规划和实施方案。数据集在生命周期所有阶段进行循环的支撑和审查。数据集完全按照生命周期全过程进行管理。

    5级:优化或公认阶段

    数据集几乎满足所有用户的所有业务需求。该数据集是主要用户和次要用户的权威数据资源。数据集完全按照生命周期全过程进行管理。主要用户和次要用户对数据资料未来的应用需求有着明确的规划和实施方案。

    地质大数据资产管理实施策略

    考虑到不断变化的业务需求,数据集生命周期成熟度评估是反复进行的过程,定期重新评估可反应出数据集成熟度的变化趋势。成熟度水平不会固定在一个等级水平,而是一个持续的变化过程,同时也表征了NGDA数据集如何满足不断变化的业务需求。

    从2015年底完成的177个数据集的初始成熟度评估结果来看,大多数NGDAs已经取得了很高的成熟度,并且满足了为数据集建设时设定的业务需求。此外,大部分NGDA数据集正在积极更新和维护,并且正在进行定期补充、审核和更新。

    数据集的成熟度评估提供了从数据生产到即时在线服务全流程数据内容的透明度和健康状况,并且通过评估可以明确需要生产哪些新的数据或者对哪些现有数据进行维护更新,从而进行有效的投资。

    (4)目前的阶段性成果

    截至目前,FGDC完成联邦地理空间数据组合资产管理计划(2014-2016)的任务,共确定了17个专题类别和176个NGDA数据集构成了国家地理空间数据资产组合(2017年度有1个被删除);FGDC NGDA数据集网页提供完整列表(www.

    fgdc.gov /ngda-reports/NGDA_Datasets.html),这些数据也共享在了GeoPlatform上。

    2017年成立了一个跨机构团队,重新对2015年177个纳入NGDAs数据集成熟度评估结果进行分析。在GeoPlatform.gov共享平台上,提供了NGDA400余个正在进行数据集成熟度评估可视化展示列表与相关统计结果。无论是数据管理方、数据审核方还是用户,可以及时的掌握国家级地理空间数据集的相关进展。

    四、地质大数据资产管理方案建议

    1. 需求与目的

    通过多年的数字化及数据库建设,自然资源部中国地质调查局积累了海量的多门类地学数据,包括水、土地、矿产、能源、森林、湿地、草地、海洋等资源,以及环境与基础地质等十余类专题数据库(数据集)。2017~2018年实施的地质云建设工程,将全局29个直属单位的200余个地质数据库(数据集)在地质云进行互联互通与共享服务。2016~2018年十大工程300多个项目又积累了海量的调查数据,数据涉及的专业多、类型复杂,除了支持地质调查业务流程运转之外,越来越多地应用于提升管理决策效率、实现价值挖掘和科研技术创新。如果不能构建形成核心数据库体系,对核心地质数据库进行有效梳理及精细化管理,建立动态更新及实时共享机制,其价值就得不到很好体现,严重影响数据价值发挥和高效服务。

    大数据综合应用对数据管理和应用提出了更高要求:

    一是需要创建地质大数据核心数据库体系。明确国家级地质大数据核心数据库的内容、更新维护责任、周期、技术流程,建立更新维护机制,保障数据更新维护工作的持续性、有效性、完整性和权威性。

    二是需要创建统一的数据按生命周期进行管理的标准。数据采集、传输、存储、应用、共享、维护更新与归档统一标准,将有效避免数据混乱冲突、一数多源、多样多类等问题。统一标准是解决数据的关联能力,保障信息交互、数据流通、系统访问功能顺畅的必要前提。

    三是明确数据更新周期。明确不同级别数据库中数据的采集、传输、存储、应用、共享、维护更新与归档等全生命周期及流程。

    四是建立统筹数据管理。建立分布式数据中心数据管理协调机制和统一的数据管理渠道,将分散在不同单位、不同业务部门的数据需求、数据质量、数据应用等问题的统筹管理和解决,支撑数据服务对科研与管理动态需求的即时响应。

    五是建立规范的数据治理流程和数据质量监控与评估措施,解决数据质量参差不齐、数据冗余、数据缺值、数据冲突等数据质量问题。

    六是建立有效的数据安全管理机制,对内部数据、敏感信息、隐私信息、保密信息的访问建立有效控制,使其脱敏脱密合规。

    七是建立数据价值或成熟度评估体系。评估数据生产、传输、管理维护、更新等投入的成本,与数据应用产生的社会效益与经济效益,及时剔除冗余数据,支撑相关数据库建设、管理与应用系统研发以及共享应用的相关投资决策。

    2.地质大数据资产管理的定位与内容

    (1)定位与实施策略

    数据资产管理在大数据技术体系中,位于应用和底层平台中间。数据资产管理包括两个重要方面,一是数据资产管理的核心业务职能,二是确保这些业务职能落地实施的保障措施,包括组织架构、制度体系。数据资产管理在大数据应用体系中,处于承上启下的重要地位。对上支持以价值挖掘为导向的数据应用开发,对下依托大数据平台实现数据全生命周期的管理。

    实施地质大数据资产管理,主要包括4个阶段:一是建立地质大数据资产管理的框架。二是开展数据审计,对数据资产进行识别和分级,形成地质大数据资产目录,并对现有的数据管理与共享应用现状进行评估,形成改进报告与投资建议;三是数据资产管理方案的实施,梳理优选形成国家级地质大数据核心数据资产目录,通过标准管理、元数据管理、数据质量管理等措施对数据进行治理,提升数据综合管理的整理能力。四是数据资产运营。数据资产管理是这四个阶段不断优化的循环过程。

    (2)建立地质大数据资产管理的框架

    开展数据资产管理的顶层框架设计,明确数据资产管理的总体目标、业务框架、数据标准和数据视图、数据清洗管理规范、绩效评价体系、整体推进规划以及相关的组织、人才保障机制等。

    (3)数据审计

    梳理不同单位创建和现在拥有的数据,建立数据资产目录;

    梳理目前数据存储、分享、管理和共享应用的方式和途径;

    评估当前数据管理政策以及数据生产、数据管理、共享应用中存在的不足,发现错误的数据使用、数据丢失情况和不可恢复的数据;

    定性/定量明确主要用户及其他用户对数据的需求,包括数据过去对用户需求满意程度的分析;

    提出改进数据管理、共享应用的方法和维护管理的预算投资。

    (4)数据资产管理实施

    参考国内外相关数据资产管理的相关成果,提出地质大数据资产管理实施主要包含7项管理内容和2个保障措施。7项管理内容指的是国家级地质大数据核心数据库体系、数据标准管理(数据模型管理)、元数据管理、数据质量管理、数据安全管理、数据治理与数据价值评估;2个保障措施包括组织架构和制度体系。

    ——国家级地质大数据核心数据库体系

    在全局地质大数据资产目录的基础上,建立地质大数据库的评价指标和标准,按重要程度、价值高低进行分级处理,优选形成国家级地质大数据核心数据库体系,并将国家级核心数据库纳入数据资产进行管理。

    国家级核心数据库是地质调查、国土空间规划、地质环境评价、矿产能源资源保障等领域需求的基础数据,能够被重复、共享应用于广泛的科研工作、跨越各个单位与部门,并能够在各个系统之间共享、高价值的基础数据,覆盖范围广、数据信息全面、数据质量高、是专题领域的权威数据等特点。为满足多级用户变化的需求,国家级核心数据库需要持续稳定地更新,用以支撑相关的科学研究与政府决策。

    ——数据标准管理

    梳理并管理现有不同专题数据的建库标准(技术要求),包括数据的定义、数据模型、数据格式、比例尺、参考及引用的标准及公共代码等。基于数据模型与当前的系统应用模型,建立全局地质数据通用的数据模型库,将数据的生产与应用模型纳入到统一的语义框架下,即明确数据的首要的创建点,且单点创建多方共享,就是避免原来同一个数据多方采集,多头管理等导致的不一致的问题;同时也保证现有与未来应用系统模型的一致性与可维护性。

    通过数据模型管理可以清楚地表达不同单位、不同专题各种应用之间的数据相关性,使不同部门的业务人员、应用开发人员和系统管理人员获得关于地质大数据核心数据的统一完整视图。

    ——元数据管理

    元数据是描述数据的数据。元数据按用途不同分为核心数据库元数据、业务元数据。

    核心数据库元数据:描述核心数据库采集、空间参考、格式、内容、管理与维护责任单位信息等,也包括数据生产、数据转换的描述与质量信息等内容。

    业务元数据:描述数据不同应用系统中业务领域相关概念、关系和规则的数据;包括业务术语、信息分类、指标、统计口径等。

    元数据管理的主要内容包括:建立地质大数据资产管理维护元数据标准;建设元数据管理工具;创建、采集、整合元数据;管理元数据存储库;分发和使用元数据。

    ——数据质量管理

    数据质量管理是指运用相关技术来衡量、提高和确保数据质量的规划、实施与控制等一系列活动。内容主要包括:开发和提升数据质量意识;建立数据质量监控方案及技术要求;清洗和纠正数据质量缺陷;设计并研发数据质量管理工具;监控数据质量管理操作程序和绩效;确定与评估数据质量水平等。

    ——数据安全管理

    数据安全管理是指对数据设定安全等级,保证其被适当地使用。通过数据安全管理,规划、开发和执行安全政策与措施,提供适当的身份以确认、授权、访问与审计等功能。数据安全管理主要内容包括:明确数据安全需求及监管要求;对涉密及业务敏感数据分级分类,定义数据安全强度,划分信息等级;定义数据安全策略;定义数据安全标准,定义数据安全控制及措施;管理数据访问视图与权限;监控用户身份认证和访问行为;部署数据安全防控系统或工具;审计数据安全等。

    ——数据治理

    根据上述5个步骤提出的要求与规则,对现有的国家级地质大数据核心数据库进行清理与整合,建立地质大数据资源池,实现各个关联系统与数据资源池的数据同步,使得不同部门可以跨系统地使用来自权威数据源的一致、高质量的核心专业数据,降低成本和复杂度,从而支撑跨部门、跨系统数据融合应用。

    ——数据价值评估

    数据价值管理是对数据内在价值的度量,可以从数据成本和数据应用价值两方面来开展。数据成本一般包括采集获取和存储的费用(人工费用、IT设备等直接费用和间接费用等)和运维费用(业务操作费、技术操作费等)。数据应用价值主要考虑数据资产的分类、使用频次、使用对象、使用效果和共享流通等因素。根据不同单位不同数据库的集成度水平与应用场景,计算或估算数据在不同应用场景下的收益及单位数据资产的总体价值。

    (5)保障措施

    数据资产管理是体系化非常强的工作,需要充分考虑企业内部IT系统、数据资源以及业务应用的开展现状,同时也要考虑围绕业务开展所设立的人员和组织机构的情况,在此基础上设计一套有针对性的数据资产管理组织架构、管理流程、管理机制和考核评估办法,通过管理的手段明确“责权利”以保障数据资产管理工作有序开展。保障措施包括组织架构和制度体系。

    典型的组织架构主要由数据资产管理委员会、数据资产管理中心和各业务部门构成,还需要明确组织架构中不同角色相应的职责,让工作职责融入到日常的数据资产管理和使用工作中。

    为保障活动实施和组织架构正常运转,需要建立一套覆盖数据引入、使用、开放等整个生产运营过程的数据管理规范,从制度上保障数据资产管理工作有据、可行、可控。

    五、结论与建议

    地质大数据资产是利用数据助力自然资源部中国地质调查局为国家生态文明建设服务的有效利器。地质大数据资产管理的水平某种程度上决定着自然资源的开发利用保护、资产估价和空间规划的发展进程与水平。因此,建议以目前中国地质调查局正在开展的地质云建设为契机,提高数据资产的意识,开展数据资产管理的顶层框架设计,尽快编制并实施地质大数据的资产管理方案,构建国家级地质大数据核心数据库体系,建立全局地质数据通用的数据模型库,创建统一的数据按生命周期进行管理的标准,对现有的国家级地质大数据核心数据库进行治理,建立统一数据模型的地质大数据资源池,使得不同部门可以跨系统地使用来自权威数据源的一致、高质量的地质大数据核心专业数据,从而支撑跨专业、跨部门、跨系统数据分析挖掘与融合应用,才能更好地为资源管理与环境评价提供坚实的数据支撑和服务。

    比较借鉴,烹好中式“数据大餐”

    为进一步落实2013年签订的中德地质技术交流合作备忘录内容,促进中德地质信息技术交流、共享,推进地质云建设与地质大数据信息与服务,近日,地调局发展研究中心在京组织召开了2017年中德地质信息管理与应用技术研讨会。来自德国联邦地学与资源研究院(BGR)的Tanjia Wodtke、Andreas Pasewaldt、Marc Filip Wilechmann参加研讨会。

    本次研讨会为发展研究中心与BGR的第六次技术交流。在技术交流中,发展研究中心谭永杰总工程师向BGR专家介绍了发展研究中心地质信息化工作概况及地质云建设的主要成果,其他代表也围绕地质云建设的整体架构、数据、产品及应用系统以及数据出版等方面作了8项专题技术报告。德方对已发布的地质云1.0版本及其下一步规划表示了赞许与高度认可,并作了空间数据基础设施的需求和应用、语义网、欧盟空间信息基础设施法(INSPIRE)等三个方面的主题汇报。

    中德双方专家就基于地学信息产品服务方式、大数据组织管理与挖掘技术、岩矿图像识别人工智能技术、三维地质模型网络发布与应用等议题进行了深入的讨论交流,就下一步在岩石地层数据服务、岩矿图像识别应用与数据出版等领域的合作计划达成了初步意向。

    来自中国地质调查局发展研究中心、天津地调中心、青岛海洋所、物化探所、油气调查中心、环境监测院、水环中心、水环所、实物资料中心、实验测试中心、探矿工程所等单位的30余名信息化业务人员参加了技术研讨。

    交流会现场

    谭永杰总工程师介绍地质云总体框架

    2017年中德地质信息管理与应用技术研讨会成功举办

    为贯彻党的十八大以来对地质工作的新要求,服务国家重大需求、重大战略,以科技创新引领地质工作,2017年4月15-17日,第三届全国青年地质大会在西安召开。来自全国地质系统的600多名代表齐聚一堂,围绕“青年地质工作者——争做“一带一路”建设的生力军”主题,开展了学术交流。中国科学院院士、西北大学教授张国伟,中国工程院院士、中国矿业大学(北京)教授武强,国际地科联主席、中国地质大学(北京)教授成秋明等8位院士专家、教授学者,分别从地质构造、矿山环境、非线性理论等方面作了大会主题报告,给地质青年带来了一场前沿地质科技头脑风暴。

    按照会议的统一安排,中国地质调查局发展研究中心(国土资源部地质信息技术重点实验室)联合中国地质大学(武汉)资源学院、有色金属华东地质勘查局信息中心共同承办了“地质大数据与信息服务”专题研讨会,来自地调局系统、省级地调院、行业地勘单位、高校、中科院等单位的26位青年地质信息化工作者做了学术报告,吸引了来自全国20余家单位的50余名专家学者参与了交流研讨。

    发展研究中心屈红刚、李丰丹、朱月琴、郑啸等从地质大数据分析挖掘平台总体框架、大数据环境下的面向知识发现的地学信息提取方法研究、地质调查智能空间平台关键技术研究及实践、地质信息协同服务平台建设等方面介绍展示了中心在地质大数据分析挖掘、智能地质调查系统建设、地质信息服务的部分最新研究进展及成果。

    专题研讨分两个板块进行。板块一侧重于相关地质大数据与信息服务的关键技术探索与研究。来自社会高校、研究机构的相关地质青年学者分别从大数据环境下非结构化地质数据挖掘与应用、大数据环境下的地质知识服务、大数据环境下的地学模拟社区应用研究、文本地质数据的语义表达与分类研究、铜矿床领域本体构建方法研究、大数据时代的小数据分析:局部奇异性度量与矿致异常识别、分布式环境下地质时空大数据并行索引机制研究、地质大数据算法自定义环境研究、煤矿智能开采关键技术研究、基于Hadoop 的煤岩体CT 图像处理及并行空间统计等方面,探讨交流了地质大数据相关方面的基础研究、应用研究及最新成果。

    板块二侧重于地质大数据与信息服务的有关工作进展。报告涵盖了依托地质信息技术实现科研科普融合转化、基于超算平台的地质大数据处理与云超算服务支撑、地质调查无人机数据处理云平台、华北地质信息服务节点建设与服务、西南地区地质资料社会化服务探讨、地下水资源数据集成与共享服务体系建设、物化探数据的共享与服务、四川省地质大数据服务平台建设探讨、福州城市地质调查三维信息服务应用、海洋地质数据资源共享技术标准研究进展、实物地质资料共享与服务、基于云技术的水文地质数值模拟平台等方面,从不同层面、不同角度进行了探讨。

    本次会议专题围绕大数据、云计算、物联网、移动通信、对地观测等新一代信息技术应用的关键技术,以地质数据采集汇聚、传输存储、整合管理、分析处理、共享开放,以及大数据基础平台、安全保障体系、服务体系等为重点,以开展大数据的创新应用为主线,展开了深入交流和探讨。与会专家表示,本届专题交流会涵盖了我国地质大数据关键技术研发和大数据应用的主要方面,搭建了该领域的青年交流平台,会议圆满达到了预期效果。

    第三届全国青年地质大会主会场

     

    地质大数据与信息服务专题研讨  

     

    青年代表做报告

    附件:  

      

      

     
     
    第三届全国青年地质大会“地质大数据与信息服务”专...

    为进一步推进地质大数据工程的实施,国土资源部地质信息技术重点实验室(中国地质调查局发展研究中心)于近日邀请南京师范大学张雪英教授作了题为“面向自然语言的地理信息挖掘理论与方法”主题报告。来自地调局机关,地调局发展中心、地质图书馆、航遥中心、中国测绘科学研究院、北京大学、中国地质大学(北京)、中国地质大学(武汉)、吉林大学、北京科技大学等单位的60余人参加了会议。会议由地调局发展中心总工程师、地质信息技术重点实验室主任谭永杰主持。

    张雪英教授针对自然语言中地理信息描述的非结构化、定性和模糊性等特点,围绕“时间、空间、人物、事件、场景”五大要素,详细阐述了面向自然语言的地理信息挖掘的三个关键技术,即标注规范和语料库、地理信息抽取和虚拟地理场景重构。分享了该方法体系在人文历史文化、公安、测绘、新媒体与网络等方面的应用案例。最后从自然语言中地理信息挖掘的可行性、领域知识和自然语言知识的人工理解、规则模型和机器学习的瓶颈、空间和属性的语义解析、挖掘、发现四个方面作了系统思考和总结。与会人员踊跃参与提问与讨论,会场气氛热烈,报告会取得圆满成功。

    谭永杰总工程师对会议作了总结,对张雪英教授的精彩报告表示感谢,认为报告系统地论述了面向自然语言的地理信息挖掘的理论、方法及其应用实践,这对地质大数据的研究、地质信息的挖掘等工作具有重要的启发作用。并指出,近年来地质野外数据采集技术方法取得突破进展,推动了由非结构化的采集到半结构化、结构化采集转换;大量地质数据的信息挖掘研究工作刚刚开始,希望今后进一步加强合作与交流探讨,共同推进非结构化文字信息的专业化挖掘工作。

    据悉,这是国土资源部地质信息技术重点实验室进入建设期以来举办的第27次学术报告会,也是今年举办的第1次,会后实验室主任谭永杰为报告专家颁发了学术报告证书。

    张雪英,教授、博士生导师。信息管理学士、经济管理硕士、计算机应用专业博士(中德联合培养博士)。2006年作为高级专业人才引进到南京师范大学虚拟地理环境教育部重点实验室,现任虚拟地理环境教育部重点实验室副主任、公安部警用地理信息技术重点实验室副主任、地理信息资源挖掘与利用江苏省协同创新中心副主任等职务。南京师范大学“青蓝工程”中青年学科方向带头人,主要从事非结构化地理大数据挖掘、智能空间位置服务、电磁环境、警用地理信息技术等方面的研究。主持国家“863”课题1项、国家自然科学基金2项、国家科技支撑计划专题1项、国家“863”重大课题专题1项、江苏省高校自然科学基金重大项目1项、公安部“科技强警”计划1项、行业GIS应用项目多项,申请软件著作权10项和专利5项,出版学术专著2部,发表学术论文60余篇。研究成果已成功应用于公安、测绘、物流、税务、民政、灾害监测等领域。

    面向自然语言的地理信息挖掘理论与方法学术报告会成...

    为进一步解决地质填图过程中由于地形图和地理要素涉密而致使信息技术应用受限的问题,提高野外地质填图工作效率,提升公益性地质图公开服务水平,12月11日-13日,由中国地质调查局发展研究中心(全国地质资料馆)主办,广东省地质调查院协办的使用公开卫星影像和数字高程数据作为1:50000基础地质调查底图技术论证会在广州召开。国土资源部咨询研究中心肖庆辉研究员、中国科学院地理科学与资源研究所周成虎院士、国土资源部咨询研究中心李裕伟研究员等近30位专家参加了此次技术论证会。会议由地调局发展中心总工程师谭永杰主持。

    高分2米分辨率卫星影像和数字高程数据是周成虎院士领衔的中国科学院地理信息与文化科技产业基地基于国家高分卫星数据等,根据地质调查工作要求研制开发的影像数据产品,并添加了公开版的地名、水系、道路等基本地理信息,该套数据已经覆盖全国,经国家科工局重大工程中心同意可以提供地质调查公开使用。该套数据包括了经过坐标投影的(CGCS2000)数字高程数据(SRTM),2米分辨率多源卫星影像及基本的地名、水系、道路等信息,数据每年更新多次,数据精度能够达到1:25000地形图精度,并已在全国多个行业应用。本次会议以在全国选取有代表性的11幅1:50000地质图和正在开展的1:50000地质填图的广东新丰幅作为主要测试和对比数据,分别进行了室内套合对比研究和野外实测,主要论证该卫星影像和数字高程模型可否满足1:50000地质填图的精度和信息要求等。

    与会专家在会上听取了周成虎院士所作的题为“我国陆地资源卫星发展与高分卫星影像应用”的报告、苏州中科天启遥感科技有限公司关于2米分辨率卫星影像和数字高程数据特点与精度分析的报告、广东地质调查院新丰县幅1:50000区域地质调查项目组关于使用2米分辨率卫星影像和数字高程数据进行基础地质调查的精度评价报告和地调局发展中心项目组关于公开卫星影像与数字高程数据的应用模式及试验情况的说明与演示,大家结合高分卫星在国土行业应用案例和数据产品精度验证实例,进一步了解了中国陆地资源卫星发展状况和公开卫星影像与数字高程数据。专家们审阅了相关文档以及测试与对比数据,并到新丰县幅进行了野外现场考察验证,一致认为2米分辨率卫星影像和数字高程数据具有时相新、无云遮挡、无缝拼接等特点,在野外直接使用2米及以上分辨率卫星影像和数字高程数据进行基础地质调查,具有现势性好、定位准、用途多、可视化和多维化等优点,其空间精度能够达到1:25000地形图要求,可以作为底图代替传统地形图开展基础地质调查工作,能够大大方便地质调查工作者在野外的工作,提高工作效率,更能极大地促进基础调查成果更广泛地为社会提供服务,改善因底图涉密导致地质调查成果社会服务受限的被动局面。

    据悉,地调局发展中心研发的数字地质调查系统,可为使用公开卫星影像和数字高程数据作为1:50000基础地质调查底图开展野外地质调查提供应用技术支撑,其所支持的移动智能终端可支持大数据量遥感数据应用,并集音视频、通讯、定位、产状、信手剖面等数据采集和处理一体化,具有数据采集方便、高效和地质成果展示形式丰富等特点。针对野外地质调查的特点,通过智能空间平台可以提供地质调查智能空间服务、地理地图网络实时服务和地理地图下载离线服务,获取的地理服务信息无需用户配准和投影变换,可以直接作为背景图层应用;在野外数据采集过程中,以“位置坐标到地理位置再到地质位置”为“传感器”的信息源,实现从物理位置感知到语义地质位置感知服务模式。这些特点对于提高野外地质填图工作效率和推进地质调查成果的广泛社会化服务具有重要的意义。 

     

     

     

    使用公开卫星影像和数字高程数据作为1:50000基础地质...

    近日,中国工程科技知识中心地质专业分中心在石家庄召开了地质专业知识服务关键技术及应用研讨会。会议邀请了自然资源部中国地质调查局系统、河北地质大学、协建单位领导专家出席。

    中国工程科技知识中心地质专业分中心由自然资源部中国地质调查局地学文献中心主要承担,旨在构建地质专业领域的知识服务平台,聚合地质行业公开资源数据,建立资源知识关联,为地质工程科技用户提供知识搜索和知识服务应用,为院士团队提供咨询服务。

    会议首先由该项目组汇报了现阶段取得的成果:2018年新开发4项服务应用,为院士团队及咨询课题服务工作取得用户持续好评。全年为郑绵平等5位院士提供湖泊、青藏高原、煤矿井灾害等不同方向250篇文献推送。为《我国地热资源开发利用战略研究》和《中国页岩气规模有效开发战略研究》2项院士咨询课题提供课题参考报告。为院士团队提供了有效的文献信息支撑,年度访问量60万。

    其次就文献智能化处理方面汇报了工作思路及2019年工作重点:继续加强地质领域特色类资源建设工作,完善地质知识搜索,加强知识关联,新开发岩溶资源与地质环境服务应用,为“雄安新区地质大数据中心”建设提供专业数据和技术支持。加强语义识别研究与应用,利用机器学习工具,切实提升文献的智能化,为地质领域科研人员、地方政府提供智力支持。会后,与会专家进行了激烈探讨。专家对项目组取得的成绩表示肯定,并提出指导性意见与建议,为项目组今后工作指明方向。

     
     
     
    地质专业知识服务关键技术及应用交流研讨会议在石家...

    中国地质调查局发展研究中心、国土资源部地质信息技术重点实验室根据“国家地质数据库建设与整合”二级项目工作部署安排,于近日在北京成功举办了的GeoSciML地学数据交换标准等CGI与OGC标准研讨会。会议邀请国际地科联地学信息技术应用与管理委员会(IUGS- CGI)数据标准技术工作组主席Oliver Raymond先生和IUGS副主席Kristine Asch女士做了关于地学数据交换标准、地学术语标准、矿产资源标准和海洋地质编图语义融合等重要技术标准和关键问题专题报告。来自中国地质调查局、六大区、省(区、市)地调院、中国地质大学、国家测绘科学院、青岛海洋地质研究所、油气地质调查中心、实物资料中心、物化探研究所、华东有色地质信息中心等相关单位近50名业务专家参加了此次研讨会议。中国地质调查局科技外事处舒思齐处长出席了会议开幕式,发展研究中心总工谭永杰出席闭幕式。会议由发展研究中心信息室主任、CGI委员会秘书长张明华教授主持。

    Oliver Raymond先生就地学数据交换标准GeosciML、地球资源数据标准EarthResoueceML、地学术语标准Geoscience Terminology等及IUGS-CGI/OGC网络数据服务标准等进行了详细介绍,与会代表提出的标准适用范围、多专业标准互相交叉不一致、标准制定具体细节等问题进行了深入交流和热烈讨论。中国地质调查局发展研究中心刘荣梅博士、王想红博士,青岛海洋地质研究所苏国辉博士等人就中国地学数据库与信息标准建设情况与需求、国家地质数据库通用模型、数据交换标准研建、海域地质调查与数据库建设标准研建等工作进行了汇报,并就中国地学数据交换格式标准制定过程中遇到的问题与国外专家进行了深入交流。Kristine Asch’s女士做了地学信息语义融合在海洋地质领域的应用和地学信息通用标准一致性的优势与问题的报告,通过实例介绍了语义融合的重要性和实用性,展示了面向复杂问题时语义准确融合的困难和相关解决途径。并与参会人员就海洋领域的地学标准相关问题进行了深入探讨。

    通过本次研讨会,各有关单位负责标准研建的人员进一步了解了IUGS-CGI在地学数据交换标准研究、推广应用的历史,深入学习了GeosciML、EarthResoueceML、Geoscience Terminology标准制订的思想,不同层级不同对象简单模式和复杂模式应用、语义制定和使用方式。通过培训开拓了对国家地学数据标准建设思路的理解,为进一步推动了地质大数据平台建设和面向国家和社会的地质调查数据交换标准研制,以及标准的层次化和国际化明晰了思路。研讨会议得到了参会人员的高度认同,取得了良好的效果。

    GeoSciML国际地学数据标准研讨会在京举办
       2015年1月6日,“中国工程科技知识中心地质专业知识服务系统工作研讨会暨启动仪式在中国地质大学国际会议中心举行,标志着地质行业文献信息服务重点向知识服务转型。中国地质调查局党组成员、副局长李金发出席会议。中国工程院办公厅副主任、知识中心项目办主任易建,国土部科技司副司长高平,院士郑绵平、李廷栋等专家学者参加了本次会议。刘延明馆长主持会议。

      李金发认为地质图书馆作为地质专业知识分中心有着较好的资源和技术条件,开展专业知识组织和服务系统建设也符合地调局推动信息资料的共享与服务的发展目标,是地调局的一件大事。李金发对图书馆的业务建设方面提出了要求:一是图书馆承担着保存地学知识体系、服务地质科技发展的艰巨任务,图书馆要进一步梳理行业的总书库、地学文献中心、联络并服务行业单位三个方面的职能,准确定位;二是知识服务是一个新的发展领域,在大数据等信息技术的推动下,图书馆必将迎来新的发展机遇和挑战。要把握好中国工程科技知识中心这个平台,做好地质领域的知识工程、语义技术研究,推动地质专业知识体系构建,形成图书馆的知识能力。三是希望地质图书馆把握机会,在新的形势下,发挥好地质专业知识分中心的作用,积极推动地质领域的知识体系构建,更有效服务国家重大工程决策和地质科技创新。

      中国工程科技知识中心是由中国工程院承办的基础科技信息平台,是财政部批复的重大专项,主要是为国家重大工程科技决策与工程科技创新提供支撑。中心以海量数据汇集和知识加工为主要建设内容,以国内有关高校、科研院所、企业等各类数字资源为基础,充分利用先进的深度搜索、超级链接、跨媒体等技术,整合相关资源及功能,以有效推动工程领域知识资源汇集、加工、关联及服务应用,促进工程领域技术发展。

      中国地质图书馆经过1年多的交流、汇报、评估、论证,于2014年底作为地质专业领域分中心加入并获项目资助,开展地质专业知识组织和服务系统建设,郑绵平院士担任子项目负责人。在大数据、可视化、术语概念演化等共性技术研究的基础上,重点加强地学知识元、术语知识体系、地质领域实体抽取和统一主题标引研究,逐步推动图书馆基础资源集成,元数据异构仓储、实体抽取、统一标引、知识元加工、术语语义知识体系建设等知识深加工,形成知识深度搜索、专家及机构知识能力评价、知识地图、知识挖掘、辅助科研信息服务等核心服务功能,服务工程科技决策与地质科技创新。通过国家工程科技知识中心的资金推动和技术牵引,有助于推动图书馆业务向知识服务转型,并扩大地调局在国家工程科技决策领域的影响力。

      与会领导、专家们在肯定知识中心地质分中心启动的重大意义的同时,也提出了建设性的意见。易建副主任指出中国工程科技知识中心的总目标是为专家院士及相关领域工作者提供详实的、海量的数据平台,希望各分中心利于各种手段开展工程科技数据整合,分享数据成果。高平副司长结合我国“十三五”计划的重大科技任务,提出地质专业知识服务系统研发应面向国家建设和科技创新需要,重视知识信息的跨领域综合与分析,为科技司、创新单位、相关领域的发展提供新思路。郑绵平和李廷栋两位院士都表示要明确该知识库的服务对象,保证后期持续稳定的运行,并提出应加强国际合作交流,继续丰富馆藏资源;通过图书馆的作用来提高基层单位的知识水平,争取做到在地质知识方面起到引领全球的作用。李裕伟研究员和其他专家要求以新思路新方法来提高文献的知识组织水平和服务能力,要迅速发现知识热点,从点到面发展,不断积累数据资源,最终形成为大众所用的知识。
      



    大数据技术推动地质图书馆向知识服务转型