分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到10条相关结果,系统用时0.011秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    新疆天山以北的准噶尔盆地东部延伸着一块广袤戈壁——卡拉麦里,这里以其独特的地理位置、大漠落日、雅丹地貌、荒漠草原构成一幅雄伟的西部画卷。

    这里是我国唯一温带荒漠有蹄类野生动物集中分布区,是全球极度濒危物种——普氏野马的原生地、世界规模最大的野放栖息地和繁育地,也是我国现存蒙古野驴种群数量最大、分布最集中的地区,记录到的鹅喉羚种群占全球种群的1/4。这里还有盘羊、猞猁、赤狐、草原雕等珍稀濒危野生动物约260种,因此,卡拉麦里又有“观兽天堂”的美誉。

    “踏青腿”的“荒漠活化石”——普氏野马

    行驶在卡拉麦里南部戈壁,可以看到一群似马非马、似驴非驴的有蹄类动物。这是普氏野马。它们三五成群,或觅食或奔跑。普氏野马有6000万年进化史,比大熊猫的历史还悠久,是国家一级重点保护野生动物,是世界上原有300多种野马中唯一幸存下来的物种,被称为“荒漠活化石”。

    目前,全世界有2000多匹普氏野马,我国有700多匹,其中新疆有512匹,近70%在卡拉麦里自然保护区。普氏野马体型似家马,但头部所占比例大,咀嚼肌非常发达,没有长长的额毛,鬃毛较短且直立,背部有一条黑色脊线,小腿下部呈黑色,俗称“踏青腿”,这是普氏野马最显著的特征。

    1985年,我国启动“野马回乡”计划,让野马完成野化、回归自然。历经40年人工繁育,种群数量不断增加,放归后的野马仍然延续祖辈的优秀基因,重新绽放着生命的绚烂。

    “双面性格”的“狂奔高手”——蒙古野驴

    在卡拉麦里经常可以看到与普氏野马体型相似的有蹄类动物,比起野马它们头小、耳朵长,好动擅跑,无“踏青腿”,这就是与普氏野马亲缘关系很近的另一种马科动物——蒙古野驴。蒙古野驴是国家一级重点保护野生动物,分布区东起蒙古二连浩特沿中蒙边界狭长地域至新疆北部盆地。卡拉麦里现有全国80%以上的蒙古野驴,数量近4000匹。

    蒙古野驴能够在短时间内达到60公里以上的速度,这种出色的奔跑能力,使它们在面对危险时能迅速逃脱。野驴视觉、听觉和嗅觉非常灵敏,生性胆小却又脾气十足,既是“胆小鬼”又是“大犟种”,具有典型的“双面性格”。卡拉麦里是蒙古野驴的天然“竞速场”,一条条纵横交错的“驴径”,见证了它们在沙漠、戈壁、低丘里恣意狂奔的盛况。

    “荒漠精灵”和“换装高手”——鹅喉羚

    在野马、野驴遍布的准东戈壁,还有一群动物被称为奔跑在荒漠里的“优羚”——鹅喉羚。因发情期雄羊喉部膨大,似公鹅头,故而得名。鹅喉羚尾巴比黄羊长,也称“长尾黄羊”。它们身形矫健、四肢细长、善于疾驰,是荒漠半荒漠地区指示物种,属于国家二级重点保护野生动物。目前,新疆拥有15-20万只鹅喉羚,其中卡拉麦里约有1万余只。

    荒漠是鹅喉羚的“大舞台”。哪里有水就去哪里,往往以小群居的方式适应荒漠环境。它们自带一身保护色,并且会随着季节变化“换装”。一旦发现危险,就会竖起尾巴,亮出白色的臀部,快速逃跑,晃动的白色就是羊群独特的预警信号。

    苍穹之下,鹅喉羚与普氏野马、蒙古野驴等野生动物一起,在卡拉麦里野生植物丰富的乐园里纵情驰骋,共同构筑成我国最典型的温带荒漠生态系统。

    大自然的旷野生灵在这里繁衍生息,亿万年的时光变幻在这里留下精彩纷呈的印记。近年来,卡拉麦里有蹄类野生动物数量实现大幅增长,野生动物重要栖息地和种群数量不断恢复扩大,这得益于一代代保护区管理人员的辛勤付出,也离不开常年奋战在这里的广大地质、林草、气象、动植物等工作者的默默守护与支撑。

    2022年,卡拉麦里国家公园创建申请正式获批,在不久的将来,这里即将成为新疆首个国家公园。如今的卡拉麦里,蓝天、白云、远山、戈壁、草原和万物生灵融为一体,正在书写一幅人与自然和谐共生的美好画卷!

      

     
     
     
    “观兽天堂”——卡拉麦里

    中侏罗世是我国北方主要含煤沉积时期,又是我国古生物化石、特别是植物化石(包括孢粉)十分丰富的时期。近年来,国外中侏罗世油气研究取得了丰硕成果。我国松辽盆地外围油气勘探取得重要进展,为松辽盆地外围侏罗纪盆地新区、新层系油气找寻提供了新思路。最新圈定的大兴安岭中段龙江盆地具有类似的中侏罗世沉积层,深入研究该地层具有重要的能源矿产找寻意义。

    近期,由自然资源部中国地质调查局沈阳地质调查中心张渝金博士领导的研究团队,对龙江盆地中侏罗世含煤地层进行了重新厘定,对该套地层不同分布点开展了系统的植物化石采集分析工作。首次发现龙江盆地中侏罗世植物群大化石由21属34种组成,以蕨类和松柏类为主,苏铁类、茨康类以及银杏类等占一定比例。在蕨类化石研究中首次发现蚌壳蕨科的原位花粉,并建立2个新种。新发现的孢粉化石共计45属73种,主要以裸子植物花粉占主,其次为蕨类植物孢子,建立了中侏罗世Cyclogranisporites- Alisporites孢粉组合。植物化石研究揭示了龙江盆地中侏罗世植物群可能为一个具季节性变化的暖温带-温带气候的植物群,其古气候可能以暖温带为主,并带有一定的暖温带-温带的低矮山地的气候环境。

    此外,首次测得龙江盆地万宝组中段凝灰岩锆石U-Pb的166.2±1.3Ma、165.2±1.7Ma、164.0±1.3Ma和162.1±1.6Ma等年龄值,整体指示中侏罗世。碎屑岩年龄显示4组峰值,最年轻年龄峰值为167.5±2.5Ma。上述年龄值辅证了龙江盆地万宝组时代为中侏罗世。

    该研究成果近期发表在地学期刊《地学前缘》上,部分成果在中国古生物学会2018年古植物大会作了专题汇报,并发表了会议摘要。

    与此同时,张渝金博士领导的研究团队,近期首次在龙江盆地和扎鲁特盆地中侏罗统地层中发现大量木化石,已鉴定出4属8种,其中有3个新种,分别为Protocedroxylon zhangii sp. nov.、 Protocedroxylon zhalantunense sp. nov. 和Sciadopityoxylon neimengguense sp. nov.。木材解剖特征的变化与气候的演化有关,研究发现木化石的生长轮均很明显,早材很发育,而晚材带都比较窄,表明在大兴安岭中段中侏罗世以温暖潮湿、有明显季节性变化的气候为主,而寒冷的冬季较短。该研究成果近期已经发表在国内地学期刊ACTA GEOLOGICA SINICA(English edition)上。

    上述研究得到国家青年自然科学基金(41702032)和中国地质调查局项目(DD20160048-04,12120113053900,1212011085210)的联合资助。

     

     

     

     
     
    大兴安岭中段中侏罗世植物群研究取得新进展

    章程,男,52岁,博士,专业技术三级,岩溶所岩溶动力学与全球环境变化室主任。专业方向:岩溶水文地质

    解决资源环境问题或基础地质问题情况:

    首次发现岩溶区地表水体中存在高含量惰性有机碳,14C等分析岩溶作用形成的碳汇在百年尺度上是稳定的。发现西南岩溶区水生植物光合作用产生的碳钙原位沉降是一种真正意义上的碳汇,产生比温带岩溶区高多倍的碳汇量,固碳潜力更大,指出河流生物地球化学过程是岩溶碳循环的重要组成部分。揭示植被演替或恢复可促进岩溶作用,即石漠化治理可增加岩溶碳汇,从灌丛到次生林地再到原始林地,由岩溶作用产生的碳汇可增加2到8倍,研发碳酸类(弱酸)离子自动化连续监测技术方法,为碳汇量估算精度提高与梳理人为干预实现增汇途径奠定技术方法支撑。 

    实现转化应用和有效服务情况:

    主持完成部行业专项项目“我国典型岩溶动力系统碳汇动态监测与评价”,在碳汇监测与评价方法改进等方面获得突破,研发的水体土壤二氧化碳高分辨率在线捕捉技术在“应对全球气候变化地质调查综合研究”等项目中得到应用,证实了岩溶碳汇的稳定性以及人工增汇的可能。主持完成IGCP598“环境变化与岩溶系统可持续性”项目,推广岩溶碳循环监测新方法,将建设碳汇监测站的技术手段推广到“一带一路”岩溶区,建立泰国热带岩溶碳汇国际监测站、洞穴和土壤碳循环监测点。 

    促进科学理论创新和技术方法进步情况:

    开展岩溶碳汇的稳定性研究,研发了一系列高精度的在线监测仪器设备,包括便携式水中二氧化碳分压测试技术、便携式水陆两用温室气体采集设备、土壤二氧化碳浓度的监测装置及监测方法、洞穴滴水的水文水化学自动监测以及取样装置、洞穴二氧化碳浓度与温湿度连续自动监测技术等。相关监测技术方法已获国家发明专利2项,实用新型专利3项,推动了岩溶碳汇研究技术方法的进步。 

    促进人才成长和团队建设情况:

    开展岩溶碳汇的稳定性研究,研发了一系列高精度的在线监测仪器设备,包括便携式水中二氧化碳分压测试技术、便携式水陆两用温室气体采集设备、土壤二氧化碳浓度的监测装置及监测方法、洞穴滴水的水文水化学自动监测以及取样装置、洞穴二氧化碳浓度与温湿度连续自动监测技术等。相关监测技术方法已获国家发明专利2项,实用新型专利3项,推动了岩溶碳汇研究技术方法的进步。 

    章 程

    2018年1月25日,山东省鲁南地质工程勘察院吴晓华副院长等一行五人到中国地质调查局岩溶地质研究所调研,双方就加强羊庄盆地岩溶关键带监测站建设、岩溶塌陷监测预警研究、生态及污染调查等方面合作开展了座谈。

    羊庄盆地是温带覆盖型岩溶的典型代表,双方认为,在前期调查和监测的基础上,还应加强水质、水量和生态等方面的监测工作,共同推进羊庄盆地岩溶关键带国际监测站建设。双方计划在山东省岩溶塌陷重点区选择典型点,开展多要素调查、监测和预警研究,同时开展地面、井下物探及钻探工作,开展塌陷区地质结构的精细刻画,为山东省重大工程建设保驾护航。

    为落实贯彻中共“十九大”会议精神,双方还将联合开展岩溶生态环境调查研究、矿山污染监测评价等项目合作,逐步推进山东岩溶区生态环境调查研究与生态文明建设。

    岩溶所与山东鲁南院就合作开展岩溶地质工作进行座谈

    916日,中国地质调查局青岛海洋所地质研究所承担的国土资源部公益性科研专项滨海湿地生态系统的固碳能力探测与评价项目在北京顺利通过了终审验收。其研究成果可应用于国家应对气候变化相关政策的制定,指导滨海湿地生态修复和植被合理规划布局等。

    据项目负责人叶思源研究员介绍,该科研专项是由青岛海洋所牵头,北京大学和盘锦市湿地科学研究所协作,共同参与研究温带地区滨海湿地生物、水、土壤各层圈固碳机理、固碳能力评价技术方法、增汇固碳示范区建设等。经过三年的科研攻关,项目组取得了多项显著研究成果。一是首次评估了我国辽河三角洲滨海湿地土壤碳埋藏通量。二是发现了研究区有机质自身的加积速率可与全球海平面上升基本相当。三是解决了碳14示踪技术测定海洋初级生产力的问题。四是利用微宇宙构建技术研究了土壤甲烷产生与氧化能力的微观过程。五是揭示了辽河口湿地表层土壤有机质主要来自高等植物的贡献。六是建设了有关碳循环研究的野外观测基地。七是全面系统地总结了滨海湿地各层圈固碳能力探测技术方法。

    此外,通过该项目的开展,项目编制了2项技术指南;申请国家专利2项、授权国家实用新型专利1项、软件著作权1项;发表论文66篇,其中SCI收录28篇,EI收录4篇;培养博士研究生12人,硕士研究生17人。值得一提的是,CCTV-10《地理 中国》栏目曾对本项目的部分研究成果进行了报道,项目组将科学问题科普化,实现了国家公益性项目服务社会的初衷。

    验收期间,专家组认为该项目全面完成了任务书要求的各项研究任务,达到了考核指标要求,其研究成果可应用于国家应对气候变化相关政策的制定,指导滨海湿地生态修复和植被合理规划布局,具有显著的生态经济效益和推广应用价值。其野外观测站也可成为相关大学学生野外实践基地。

     

     

    滨海湿地生态系统的固碳能力探测与评价项目通过终审...

    近日,中国地质调查局天津地质调查中心“近岸海洋潮汐、波浪、泥沙及大气四场耦合计算软件 V1.0” 获得由国家版权局认证的计算机软件著作权。著作权登记号为:2021SR1707072.

    该软件可对台风型及温带型风暴潮进行数值模拟。天津地调中心利用该软件分析了渤海湾两种不同类型风暴潮的发生原因、过程和特点,对比研究了不同耦合方式下模拟结果之间的差异。该四场耦合计算软件对模拟极端海洋水动力过程的发生、发展与变化规律具有广阔的应用前景。

     

    证书

    天津地调中心“近岸海洋潮汐、波浪、泥沙及大气四场...

    今年5月12日是我国第12个全国防灾减灾日,主题是“提升基层应急能力,筑牢防灾减灾救灾的人民防线”。自然资源部组织举办了以“Get防治技能,向地质灾害和海洋灾害say no”为主题的“5·12全国防灾减灾日·自然资源云讲堂”。自然资源部中国地质调查局地质环境监测院(自然资源部地质灾害防治技术指导中心)教授陈红旗、国家海洋环境预报中心风暴潮专家董剑希、国家海洋环境预报中心海啸专家原野,就地质灾害和海洋灾害的相关知识与防治方法与观众在线交流互动。

    活动现场

    问:地质灾害和海洋灾害有哪些形式?

    陈红旗:在地球运动过程中,岩石圈、生物圈、水圈和大气圈不停地交换物质与能量,产生各种地质作用,引起地表岩土体发生变形移动,当危害到百姓生命和财产安全时,便造成了地质灾害。

    我国人口众多、山区面积大,是世界上地质灾害最发育的国家之一。尤其是南方地区,山区人口密度相对大,灾害风险高。青藏高原、黄土高原、天山南北也有加剧趋势。

    董剑希:海洋灾害主要包括风暴潮、海浪、海冰、海啸等海洋环境灾害,也包括赤潮、绿潮等海洋生态灾害,还包括海岸侵蚀、海水入侵等海洋地质灾害。其中,风暴潮、海浪和海冰灾害主要是由比较常见的天气系统引起的,比如台风、冷空气或者强烈的温带气旋等;海啸通常由海底地震或者滑坡引起。相比风暴潮灾害,海啸灾害发生频率较低,但是影响范围有时非常广,也容易造成毁灭性损失。此外,人类活动常常会导致海水的富营养化,引起赤潮和绿潮等生态灾害。

    问:地质灾害有哪几种?

    陈红旗:地质灾害主要有滑坡、崩塌、泥石流、地面塌陷、地裂缝和地面沉降等6种。其中,滑坡、崩塌、泥石流占90%,突发性强,危害大。

    滑坡是指山坡岩土体顺着某软弱面向前滑动的现象。滑坡的突出特点是分布广、发生频繁、常形成灾害链。

    崩塌是指陡峭山坡岩土体倾倒垮落。崩塌以垂直运动为主,突出特点是陡坡多发,事发偶然、规模不等,猝不及防、速度极快。

    泥石流是指携带大量泥沙或石块的洪流。泥石流的特点是需要水源、流域有长短、历时不同,破坏强烈。

    问:地质灾害到来之前有哪些信号?

    陈红旗:灾害防治两个最难的考题:一是隐患在哪里?二是什么时候发生?

    识别山体隐患有三大标准:一是山高坡陡、土石松动;二是坡脚崖边、沟口谷底;三是切坡堆填、缺乏防护。大量案例表明,人类自身最大的隐患是认识不足、麻痹大意。

    就地质灾害而言,80%以上由降雨引发,汛前排查、汛中巡查和汛后核查十分重要。目前全国大部分地区正值汛期,雨前雨后也要注意风险变化。同时,在冻融季节,黄土高原区可能发生滑坡崩塌,冰雪融水可能引发泥石流。

    具体来说,滑坡的常见前兆包括:地表开裂、错落、鼓胀、树木歪斜、水位异常等。崩塌的常见前兆包括:岩体开裂、掉块、崩落等。泥石流的常见前兆包括:雨情水情异常、流水浑浊或突然断流、沟谷声响等。

    问:风暴潮和海啸有哪些不同?

    董剑希:风暴潮与海啸各有特点。第一,起因不同。风暴潮是风引起的,比如台风、冷空气等;而海啸是海底地震或海底滑坡引起的。第二,表现形式有所不同。海啸像一堵水墙,以排山倒海之势压过来;风暴潮则伴随着风、狂浪,甚至是暴雨席卷而来,风助潮势,潮借风威。

    问:地质灾害与海洋灾害之间有什么联系?

    陈红旗:地球是个大系统,陆海息息相关。比如,气候变暖,水蒸发量增加,带来极端气候变化,生成台风,大海里生成风暴潮,上了岸,暴雨冲刷山体,引发滑坡,堵了河,形成滑坡坝,一旦溃决,形成大洪水,造成灾害链。从青山走向碧海,首先是江河入海口,滨海地区地形较平坦,地下水开采会引起土层压缩,导致地面沉降。10年前,此类问题在长江三角洲比较严重。近年来,国家通过大力推进地下水资源保护工作,情况已经有所缓解。再往里是海岸带,有海崖侵蚀,常见崩塌落石。往深海走,是大陆架斜坡,地震作用可能导致海底滑坡。可以说,防灾减灾,需要陆海统筹。

    原野:其实,海底也会发生很多地质过程,如海底滑坡、海底异重流、沿岸地面沉降,这些都是地质灾害在海底的表现。因地震、火山喷发等引起的海底滑坡的发生频次也很高。实际上,15%~20%的海啸都是由海底滑坡造成的。

    问:我国如何开展风暴潮和海啸的监测预警?

    董剑希:风暴潮观测主要依靠潮位观测网,目前有200多个潮位观测站,都是分钟级的观测数据。此外,卫星遥感、视频摄像头等也可以开展部分观测。预报员依据潮位的变化、天气系统的发展来发布风暴潮警报。

    风暴潮预报的特点之一就是预报时效比较长,在风暴潮发生前的3~5天甚至更长时间,能留出更多的防御时间。还有一个特点是发布渠道广,电视、广播、微博、微信、短视频、新闻客户端等平台都可以发布。

    原野:由于引发海啸灾害的海底地震可能发生在大洋俯冲带的任何区域,因此海啸的监测和预警主要通过“全球三张网”来开展。第一张网是全球地震监测网,第二张网是全球水位监测网,第三张网是全球海啸浮标监测网。

    通过上述观测和预警手段,目前可以在地震发生后6~10分钟制作发布海啸预警信息。我国的海啸预警产品分为海啸警报和海啸信息两大类。前者表明预警区域正在或未来一定时间内将面临海啸威胁。后者分为无影响海啸通报和无海啸通报两种。无影响海啸通报表明确有海啸发生,但是对预警区域影响很小或者无影响;无海啸通报表明并未发生海啸事件或者未观测到海啸波动,其意义在于避免恐慌和谣言。

    问:沿海城市和居民如何防范风暴潮灾害?

    董剑希:无法阻止风暴潮发生,提前做好预防工作就尤为重要。沿海城市防范风暴潮灾害主要可以采取以下几种措施:

    一是加强海岸带生态保护修复。通过修复红树林、盐沼湿地、珊瑚礁、牡蛎礁、海草床等生态系统,充分发挥生态系统防潮御浪、固堤护岸等减灾功能。

    二是开展海堤工程和海堤生态化建设。例如,在堤前重构湿地带、种植红树林,利用生态系统消浪弱流、固堤护岸的作用,一方面保护了堤防,一方面提高了减灾能力。再比如,在不降低海堤防潮标准的情况下,对堤身开展生态化改造。有条件的地区在新建海堤时,堤型可优先采用斜坡式或多级斜坡混合式结构,以促进海陆生态系统的有效连通。

    三是提高风暴潮观测、预报和风险评估能力,为风暴潮灾害风险防范做充分准备。沿海地区政府及相关部门按照职责做好风暴潮灾害应急和抢险工作,及时疏导群众,减少风暴潮期间外出活动,停止海上生产作业活动,加固渔业捕捞设施、养殖设施以及海上生产设施,加强巡查维护,做好防御抢险工作。

    随着全球气候变化,沿海城市面临的挑战也在加剧。一是风暴潮强度在加强;二是沿海聚集了密集的人口和各类产业,面临的各类风险增大。海洋领域法律法规、沿海城市用海规范、观测预警能力提升、防灾减灾宣传教育强化等诸多工作需要进一步完善。

    沿海居民要服从当地政府应急部门的安排,在发生海洋灾害时有序转移或撤离危险地带。沿海城市要加强对游客海边观潮或观浪的管理,防范危险发生。

    问:如何防范海啸灾害?

    原野:防灾减灾还有工作需要加强,比如兴建“端对端”(End to End)的地震海啸监测预警系统,在海水浴场等人流密集区域建设应急避灾点和高音喇叭等应急疏散设施;开展高风险区海啸灾害风险区划,编制应急疏散图,定期开展应急疏散演练,加强公众宣传教育等。

    游客到海岛或者沿海地区旅游时,要牢记以下三点:第一,要关注海边和居住宾馆的海啸疏散路径指示牌和避灾点位置,观察地形,尤其是高地和稳固的建筑物或者平台。第二,要注意听沿岸高音喇叭发出的警报,感觉到地面震动或者海面上出现异常海浪时,要有序开展逃生避险,往高处或者沿着避险路线移动。第三,不能有“逐浪心理”,在收到预警或者看到远处的“水墙”或“浪墙”时不能靠近观看。

    问:遇到地质灾害应怎么应对?

    陈红旗:一旦遭遇灾害,尽快奔向两侧、高处和开阔地避险;到安全地方后,尽快上报(拨打当地电话或119、110);避免二次灾害造成人员伤亡。

    防治地质灾害有三招。一是搬迁。面临已知的危险,能搬尽搬。建议受威胁群众积极响应国家政策,自己出资一部分,政府补助一部分,彻底避开危险隐患。二是工程治理。如果不具备搬迁条件,需要采取综合治理措施,开展排危除险、工程加固、植树造林等。三是规划管控。遵守国土空间规划和用途管制,从源头上控制新增风险。

    防灾减灾 陆海统筹

    捷克团队在小南海地下河做示踪试验。翟秀敏 摄

    天星岩“T”字大厅主洞地下河下游方向,受洞道崩塌块石的淤塞,因而在崩塌体上游一侧堆积大量砾石。更为奇特的是在崩塌体之上,有水平层理保存完整的古砾石层,说明崩塌体年代较久。 扬·斯洛特克 (捷克) 摄

    中外科考队在天星岩主洞和支洞交叉的“T”字大厅合影。扬·斯洛特克 (捷克) 摄

    占据全球天坑总数1/4的陕西汉中天坑群,一经发现便引起国内外的广泛关注。

    中国地质调查局岩溶地质研究所、中国地质环境监测院、陕西省地质调查院联合开展天坑和洞穴普查,发现典型的天坑和漏斗54个,其中口径大于500米的超级天坑2个、大型天坑7个、常规天坑45个,其他地质遗迹473处。中国科学院院士袁道先一行对汉中进行实地考察后认为,这是在北纬32°~33°范围首次发现的、我国岩溶台原面上发育数量最多的天坑群,这一发现将我国湿润热带—亚热带岩溶地貌区界线显著北移,对中国南北方乃至全球古地理环境及气候变化的对比分析具有重要科学价值。

    为了更好地保护和利用汉中天坑群地质遗迹资源,通过岩溶水文地貌系统的深入调查进一步揭示汉中天坑群的演化机理,中国地质调查局于2018年下达了《陕中南岩溶区水文地质环境地质调查》项目,由岩溶所承担,并作为“全球岩溶动力系统资源环境效应”国际大科学计划的组成部分。4月28日~5月9日,岩溶所通过自然资源部第四次邀请捷克科学院地质所和捷克洞穴协会的专家,协助开展了汉中南郑洞穴调查;同时,与陕西省地质调查院、中国地质环境监测院共同组织精兵强将,开展了区域地质、水文地质、地下水示踪、洞穴年龄、第四纪古环境等方面的调查与研究。

     

    中捷联合科学考察新发现

    张远海 翟秀敏 陈伟海

     

    这是中国—捷克第四次对汉中天坑群进行联合科学考察。

    捷克团队11人共分3组,分别利用地下潜水、橡皮艇漂流、洞穴单绳技术对小南海观音洞地下河系统、天星岩洞穴系统、伯牛坑洞穴系统进行了洞穴探测。中方团队29人,承担了大佛洞洞穴系统、西沟洞洞穴系统的补充探测工作,并就小南海台原地区的洞穴沉积物进行了系统的采样。

    此次科考新发现洞道15.3千米,其中天星岩新发现洞道6224米,包括2处溶洞大厅;伯牛坑新发现洞道407米;小南海观音洞新发现洞道1036米,它是大佛洞主要的地下河排泄系统;吊洞新发现洞道584米;新发现大佛洞支洞5547米,探测西沟洞1442米。大佛洞地下河系统新发现洞道超过1000米,并与多个洞穴大厅相连,说明大佛洞洞穴系统发育期次之多,规模之大超于早期认知。

    科考团队采集了重砂样品5件,其中洞内3件、地表样2件,为揭示洞内砾石来源和地下水运移途径提供了科学依据;采集岩石标本8件和草测地质剖面4条,以揭示南郑台原地区的天坑、洞穴发育的构造、岩性的控制作用,分析天坑洞穴的成因规律;采集宇生核素石英样品8件,以测定洞内石英的埋藏年龄和洞口石英沉积物的曝露年龄,推理洞穴发育时间和崩塌时间;采集洞穴石笋4根,分析了南郑地区末次冰期DO18事件的区域特殊性,是北半球驱动的特殊响应。

    科考团队在伯牛坑投放荧光素钠示踪剂,并于大佛洞地下河出口、观音洞、白水洞、龙王庙洞进行了样品的接收,实验结果将揭示南郑台原地区洞穴系统的排泄途径和地下分水岭情况,为揭示岩溶洞穴、天坑发育提供又一有力证据。

    此次科考在陕西最大溶洞大厅发现,地下分水岭成因揭示和天坑演化地貌背景研究等3个方面取得新成果。

    ——发现陕西最大的溶洞大厅。

    2016年5月,第一次中国—捷克联合天坑科考队在汉中市南郑区小南海岩溶台原面西北侧干河沟村发现了天星岩。当时,对天星岩2个消水洞和天星岩漏斗的探测结果是,洞穴长度157米,认为这是一个季节性的消水洞。今年5月1日,科考队再次对消水洞进行勘查,发现150米深处的地下河峡谷,沿地下峡谷1.7千米后,在丁字洞道交叉处发现主洞道,主洞道高大宽敞,沿主洞道行进3.5千米后,发现了长300余米、宽100米的溶洞大厅,而且主洞道仍在延伸。科考团队根据区域地质情况推测,这可能是陕西最大的洞穴大厅。

    岩溶所副所长蒋忠诚指出,一般在岩溶发育条件非常好的热带及亚热带低纬度地区才有洞穴大厅。此次发现的长300米长、宽100米的洞穴大厅,相当于十几个足球场的大小,这在亚热带和温带交界地区是少见的。这说明,这里的岩溶发育程度、岩溶动力条件非常好。

    ——揭示分水岭成因。

    在天星岩探测过程中,科考队发现,洞穴走向完成了一个360度的大拐弯,最后向西北侧的白水洞排泄;而在同纬度的小南海岩溶台原面东北侧却是小南海地下河出口。二者间地下分水岭在哪里?岩溶所教授级高级工程师吕勇在经过仔细踏勘后认为,导致天星岩地下河和小南海地下河分水岭的原因是宽缓褶皱的背斜部位,更重要的是石灰岩众多硅质条带夹层的隔水作用。这个认识也解释了天星岩洞道东侧硅质条带上发育的众多瀑布的机理。

    ——天坑演化地貌背景研究新认识。

    过去在进行天坑演化历史的研究中,关注更多的是洞穴沉积物埋藏年龄研究,寻找洞穴古河流堆积物中的石英颗粒。而此次对大佛洞对岸罗汉洞的古地下河沉积物中石英颗粒的研究,转变为对石英暴露年龄的研究,这样一来,就从单纯洞穴演化历史的研究转变为对整个区域环境演化的研究。

    今后,岩溶所将在中国地质调查局的指导下,以及陕西省地质调查院的支持和配合下,继续加大投入开展《陕中南岩溶区水文地质环境地质调查》项目,用科学数据证实汉中天坑群的科学价值,进而提升岩溶地貌学、岩溶水文地质学的社会应用价值。

     

    汉中洞穴探险记

    张远海

     

    4月底,汉中的雨季尚未完全到来,虽然小南海岩溶台原面龙头山上还残留皑皑白雪,但气候业已回暖,鲜花盛开,正是洞穴调查探险的好季节。我们与来自捷克科学院地质所和捷克洞穴协会的探险家们一起,再次赶赴汉中,开展天坑群联合可科学考察。

    洞里淘砂

    龙洞,位于小南海台原面中东部,是个出水洞穴。5月5日,我们于午后从小南海镇出发前往龙洞。

    车停于洞口下方,我们带上安全帽和头灯,攀援而上。洞口凉风徐徐而来,洞底溪流叮当而出。在入洞50米许,中国地质调查局岩溶所的区域地质调查专家吕勇找到一处回水区,正好是沙砾堆积之处。按照吕勇的指导,我在下游堆一小坝,蓄水淘砂。

    淘砂是为了进行重砂分析,寻找它的地表源头。重砂是相对密度较大、物理和化学性质比较稳定的矿物,因其相对密度较大、呈砂状,故名重砂。根据重砂的矿物组合,进行物源识别,从而判定物源方向和物源区的大致位置。

    吕勇熟练地利用淘砂盆的角度首先将黏土淘洗出去,然后将大颗粒的砾石扔掉,很多遍之后,黑色的粉末状物质浮现出来。这就是重砂。后来我们又在溪流上游、洞穴深处又淘了两处重砂样,差不多1千克,装入塑料袋中,编上号,大功告成。

    接着,我们赶往大佛洞淘砂。大佛洞在1970年代是兵工厂所在地,如今被开发为旅游洞穴。因为做过工厂,洞中沉积物大部分已荡然无存。因此,寻找样品只能在洞穴深处和洞道高处。

    下午的时间所剩不多,我们分为两组分头行动。在距离大佛洞洞口200米东南侧上方、60~70米高处为古佛洞上层洞,2016年在探险过程中发现洞道一侧有古地下河水文边槽,边槽内有古地下河的沙砾堆积。从下层洞到上层的道路为30~40厘米宽的步道,甚是险峻。好在,2016年留下的绳索还在。我抓住绳索,绕右手腕一圈,一步一绕,匍匐上行。步道顶端为乱石堆,越过乱石堆,才至边槽平台。很快采满了一大袋样品,然后背负下洞。

    比起上坡,因为负重,脚底反而更稳,加上绳索护身,倒也不觉艰难。

    山中寻宝

    淘砂只能确定洞内的堆积物从何处来,无法确定沙砾堆积什么时候进入洞穴。要确定沙砾进入洞穴的时间,还要寻找更好的“宝贝”——沙砾堆积物中的石英。

    5月6日清晨,我们从小南海镇出发,到罗汉洞寻找石英。

    与我一同展开寻宝之旅的是陕西省地质调查院教授级高级工程师张俊良。出发之前,老乡告诉我们寻着养蜂人的小道可以方便地找到洞口。

    到达山边,果然看到了一条小道,但并不是养蜂人的羊肠小道。往山上望去,坡度60度以上不仅有浮土,更危险的是碎石,甚至大块石。一旦滚落山下,可能危及谷底的寺庙和香客。

    我们小心翼翼地尽量寻着基岩裸露的谷坡上行。上到一半,幸运地在毛竹林中找到了养蜂人的“之”字形小道。从小道穿过竹林,终于可以一窥洞口的风貌,却发现此洞口好像不是与大佛洞相对应的洞口。带着疑问,张俊良给同伴打电话,同时挥舞手中的强光手电,让同伴看看我们所站的位置是否是大佛洞正对的洞口。果不其然,同伴告知,大佛洞正对的洞口在我们所在洞口的右侧。从我们所在的位置向右望去,完全是悬崖峭壁。借助藤蔓的保护,我们决定翻越峭壁。

    抓住藤蔓,我们不敢上望,也不敢往下看,每移动一下,都思考数分钟,生怕意外发生。但越是小心,越出问题。有时藤蔓挂住背包的带子,有时缠住背包里露出的鎯头手柄,令人进退不得。只好一只手抓住藤蔓,腾出另一只手解开藤蔓,再继续前行。

    越过陡崖,终于到达另一个山坳,洞口就在陡坡上方50米左右的位置。比起峭壁,陡坡因为有许多松动的块石而更难攀援。我跪在陡坡上,寻找着可依附之物,或树根,或兰草,或藤蔓,好不容易上升了20多米,人已气喘吁吁。又前行了20余米,宽大的洞口已近在咫尺。

    仔细环视洞口,洞口呈岩屋状,宽50米左右,洞高15~20米,大洞口西侧还有一个小洞,洞口宽3米,洞高2米,洞深5米多,洞壁四周全是石英沙砾沉积,而且沙砾沉积表现明显的韵律层理,粗砂——较大的卵石和砂——细砂——黏土,如此循环反复。

    张俊良和我,一边讨论砂砾石形成的地质背景,一边测定砂砾石沉积剖面。我从上至下、从左到右依次取样;张俊良则采集10厘米以上的花岗岩砾石样和砂卵石样,回去左切片样,这样做物源分析更有效果。我采集了大约40多斤的样品,背负下山。

    坑底寻洞

    天星岩,是小南海台原面西北侧的一个天坑,于2016年中国—捷克联合科考探险时发现。

    天星岩天坑坑口直径和深度都接近百米,上部是天坑洞口,底部为一条季节性的消水洞。消水洞平时为干洞,下雨的时候,水会充盈溪沟,满灌洞口。

    在消水洞西北方向大约2公里是地下河出口——白水洞;而在消水洞东北方向约3公里也是地下河出口——小南海观音洞。那么,消水洞的水究竟流向何处?为了确定地下水的流向,探险队决定再次对天星岩地下洞穴进行探测。

    前三天,主要是安装单绳系统。探测从第四天开始进行。

    最开始探测数据显示,洞道往东南延伸,于是大家判断洞道往伯牛坑方向延伸,可能与伯牛坑相连。次日,探测数据显示洞道又转向东北方向,于是大家又推断,洞道往西沟洞方向延伸,可能与西沟洞相通。再探测的数据又显示东南向延伸,大家的推断又回到伯牛坑。每天科考回来,无论多晚,我们都要将数据输入电脑,看看洞道的延伸方向。直到第7日探测,探险队发现了一条宽30米、高50米以上的大洞穴,才明白以前探测的不过是天星岩洞穴系统的一个小支洞。

    我是最后一天参加科考的,随行的除了捷克的扬·斯洛特克三人团队外,还有汉中洞穴科考爱好者李辉和余欣。

    我们从路边下到季节性河道,然后顺河道走向天坑,首先是个30米的陡坎,然后横向30米,进入第二个40米陡坎,之后一小段横移,下第三个30米陡坎到地下河床。这三个陡坎,正好验证了天星岩天坑的演化历史阶段,从内往外随着河水侵蚀下切,裂点不断后退形成陡坎。

    到达地下河床后,洞底并非水平,也是一段一段的小陡坎和跌水、水潭。为了探测安全和方便,探险队安装了多种类型的绳索系统,从辅助的绳结式或扁带式攀登,到独木桥式跨越,锚点贴壁横移、悬空横移,甚至绳索桥,绳索桥和保护绳配套的横移,应有尽有。

    3个半小时后,我们终于抵达主洞和支洞交叉的“T”大厅。借助强光手电的光,我们初步估计大厅底的面积有1万平方米左右。我仔细观察洞道形态,主洞完全不同于支洞清晰的溶蚀沟槽、窝穴、流痕等丰富的微形态,主洞洞壁则式清晰可见、深浅相间的微倾斜岩层;与支洞洞底丰富的卵石堆积不同,主洞洞底大部分为黏土堆积和崩塌块石,局部可见河床卵石;与支洞峡谷状洞道不同,主洞洞道为大型廊道状,厅堂状洞道;与支洞倾斜洞底和众多跌水不同,主洞洞底则总体起伏不大,但洞道一侧总是伴随大量的崩塌体和黏土堆积形成的高坡;与支洞地下河占据整个洞底并伴随众多水潭不同,主洞地下河仅在洞道一侧流淌,或左或右,流量为支洞地下河的5倍左右。

    我们在洞道高处寻找古地下河沉积物堆积,看看是否能发现石英颗粒。很遗憾,大部分堆积体为黏土,即使发现卵石,其成分大部分为灰岩,个别为砂岩和硅质岩(燧石),没有发现石英颗粒。

    我们前行了一段距离,在采集两个重砂样后,算一算返回时间,决定先行撤离。经过连续4个半小时的艰难攀行,才看到洞口透进来微弱的光。

    (作者单位:中国地质调查局岩溶地质研究所)

    延伸阅读

    中捷科学家汉中探险

    ■ 2016年5月19日~5月31日

    中国地质调查局岩溶地质研究所通过国土资源部,邀请以捷克科学院地质研究所副所长迈克·菲利皮博士为领队的捷克科学院岩溶洞穴科学考察队,在陕西汉中南郑县开展了第一次岩溶洞穴科考合作,证实在陕西省汉中市南郑县小南海镇台原上存在天坑,并对其地下河进行了初步勘查。这是首次在我国热带—亚热带岩溶区最北界发现的天坑地质奇观。

    随后,岩溶所与中国地质环境监测院、陕西省地质调查院开展密切合作,将天坑理论系统引入地质调查工作,在整个米仓山岩溶台原面展开天坑岩溶地质遗迹调查,更多天坑不断被发现。

    ■ 2016年10月20日~11月1日

    岩溶所组织第二次中国—捷克岩溶洞穴科学考察,对宁强县地洞河地下河系统进入探测,探测长度12千米,为我国北亚热带及其以北最长洞穴。这次科考初步确定地洞河天坑发育的水文地质背景和发育特征方面的独特性;与此同时,组织国内洞穴科考爱好者对镇巴县圈子崖、天玄坑及其附近溶洞进行探测,并对天坑形态进行了系统探测。

    ■ 2017年4月30日~5月12日

    岩溶所组织第三次中国—捷克岩溶洞穴科学考察,对镇巴县风洞系统进行初步探测。

    根据以上调查成果,并通过对全球天坑进行对比分析,科考团队确定汉中小南海天坑群和我国西南大石围天坑群为各具特色的两种演化模式,即大石围外源水穿越型岩溶天坑演化模式和小南海内源水窗式岩溶天坑演化模式,同时将天坑类型确定为溶蚀性崩塌天坑和侵蚀性崩塌天坑两种类型。

    同时,岩溶所与陕西地质调查院开展合作,确定汉中天坑群的国际地位:汉中天坑群成群出现,数量众多,迄今发现4个天坑群54个天坑,集中分布于陕西汉中4个台原面,占据全球天坑总数的近1/4,举足轻重;汉中天坑群是内源水窗式岩溶天坑演化模式的典型范例。汉中天坑群是全球发育在岩溶台原上的最大天坑群,也是我国北亚热带最大的天坑群。

    再探汉中天坑群

     

    2015年中国西南岩溶石漠化分布图

      

    贵州巨木地下河出口筑坝拦蓄地下水

      

    中国西南地区岩溶景观

     

    致力于促进全球岩溶资源可持续利用和环境可持续发展的“全球岩溶动力系统资源环境效应”国际大科学计划,前不久在广西桂林正式启动。

    该计划由国土资源部中国地质调查局提出实施,旨在建立全球岩溶环境监测网络,攻克岩溶关键带科学难题,各国共绘全球岩溶一张图,为人类利用岩溶资源、保护岩溶生态提供科学方案和公共信息服务。

    国土资源部部长姜大明在贺信中称,这是一项雄心勃勃的大科学计划,更是一幅岩溶地质科学造福人类的宏伟蓝图。联合国教科文组织总干事伊琳娜·博科娃则通过贺信表示,国际大科学计划中提出的研究领域,对克服我们人类共同面临的难题来说是非常重要的,非常期待能听到关于项目实施取得进展并获得成功的好消息。

     

    1 中国为“全球岩溶”国际大科学计划实施奠定坚实基础

     

    阅读提示:中国取得了一系列具有全球视野的岩溶研究成果,并为国际大科学计划的实施提供了理论基础、科学思路、人才队伍、技术条件以及国际合作经验。

    目前,世界上的岩溶区分布面积约为2200万平方千米,约占世界陆地总面积的15%。我国的岩溶面积约为344万平方千米,约占国土面积的1/3。其中,我国西南裸露岩溶面积达54万平方千米,涉及贵州、广西、湖北、湖南、云南、四川、重庆和广东等8省(区、市),是我国碳酸盐岩层分布最为集中的地区,也是世界三大岩溶集中连片区中面积最大、岩溶作用发育最强烈的典型地区。

    岩溶地区山水奇特,水资源和油气资源丰富,为人类生产生活提供了得天独厚的物质资源和精神享受。但是,岩溶地区面临的干旱、石漠化、水污染、水土漏失等环境问题,也已成为当今制约经济社会可持续发展的全球性问题。

    近年来引发关注的是,岩溶作用在应对气候变化中可发挥重要作用。已有研究发现,全球的岩溶作用能够吸收与全球森林植被比例相当的大气二氧化碳,而且岩溶洞穴石笋可以年际分辨率记录气候环境变化,与黄土、冰芯、湖泊沉积及树轮等古气候环境记录比较,具有记录时间跨度大、年代记录准、分辨率高等优势。

    为有效解决岩溶地区的资源环境问题,促进全球岩溶资源的可持续利用和环境的可持续发展,科学应对全球气候变化,中国地质调查局倡导设立了“全球岩溶动力系统资源环境效应”国际大科学计划(以下简称“全球岩溶”国际大科学计划),依托联合国教科文组织国际岩溶研究中心和中国地质调查局岩溶地质研究所,以地球系统科学和岩溶动力学理论为指导,利用10~12年时间,建立全球岩溶生态环境监测网络,研究和查明全球不同岩溶动力系统类型的碳—水—钙循环规律和资源环境效应,突破岩溶关键带资源环境科学问题的瓶颈,创新岩溶资源勘探开发和岩溶环境治理与保护科学技术体系,创建全球岩溶资源环境信息平台,各国共绘全球岩溶一张图。

    据该计划负责人、联合国教科文组织国际岩溶研究中心常务副主任曹建华介绍,目前,国际岩溶研究中心及其依托单位中国地质调查局岩溶地质研究所,已经为计划的实施奠定了坚实基础。

    以中国科学院院士袁道先为首的科研团队建立了以碳—水—钙循环为核心、以岩石圈、水圈、大气圈、生物圈四大圈层为主体结构的地球系统科学观下的岩溶动力学理论,为计划的实施奠定了理论基础。在国际地球科学计划(IGCP)中国国家全委会支持下,我国科学家牵头连续主持实施了5个岩溶领域国际地质对比计划,储备了40个国家200多名优秀的专业技术人才,为计划实施提供了科学思路和人才队伍。国际岩溶研究中心7年的高效运行,已与15个国家和国际科研机构签订了合作备忘录,推动了8个国家间岩溶领域的深入合作研究,成功联合国际著名岩溶学者举办了7次国际培训班,为计划的组织实施提供了国际经验和基础。国际岩溶研究中心在中国、美国、泰国、斯洛文尼亚等岩溶国家建立了岩溶生态环境监测站,并与东亚东南亚地学计划协调委员会(CCOP)国家、东南亚国家合作开展了岩溶地质和跨界含水层编图,建立了全球岩溶科技创新平台和编图技术方法,为计划实施提供了技术条件。

    更为重要的是,我国在岩溶作用与碳循环、洞穴石笋古环境重建、岩溶生态系统与石漠化治理、岩溶地质公园和世界自然遗产申报与保护,岩溶地下河和表层岩溶水探测与开发、碳酸盐岩油气储存区古岩溶刻画等方面取得了一系列具有全球视野的岩溶研究成果,奠定了我国岩溶研究的国际领先地位,使中国地质调查局牵头组织实施“全球岩溶”国际大科学计划顺理成章。

     

    2 建立全球岩溶生态环境监测网,因地制宜修复和保护岩溶生态

     

    阅读提示:只有揭示全球不同类型岩溶动力系统的演化、形成过程、结构功能和运行机制,因地制宜运用各国经验,才能科学、合理地修复和保护岩溶地区生态,并实现其可持续发展。

    我国岩溶动力学理论的发展历史,可以追溯到20多年前对岩溶地球化学的研究。

    国土资源部岩溶动力学重点实验室的研究团队,在中国科学院院士袁道先的带领下自1990年以来连续实施的国际岩溶对比计划项目,在岩溶形成演化、碳循环、岩溶生态和水资源等领域,为国际岩溶学术界提供了共同解决岩溶地区资源环境问题的平台,将地球系统科学思想引入现代岩溶学,建立了岩溶动力学理论,有力推动了国际岩溶学科的发展。

    曹建华介绍说,在岩溶地区,岩石圈、水圈、大气圈、生物圈界面上的碳—水—钙和其他元素之间的物质、能量传输与转换,构成了岩溶动力系统。由于岩溶动力系统同时受到地质、水文、大气和生物过程的影响,因此岩溶动力系统有各种不同的类型。在上世纪90年代,我国岩溶地质学家开展了一系列研究,提出了将“岩溶形态组合”(即在相同环境下形成的宏观的微观的、地表的地下的、溶蚀的和沉积的岩溶形态的配套组合)作为全球岩溶对比的基础,推动了全球岩溶对比的顺利进行,并揭示出在世界上具有不同地质环境背景的岩溶区,其岩溶系统与人类活动的相互作用是极不相同的。因此,只有对全球不同类型的岩溶动力系统进行对比,揭示其不同的演化、形成过程,及结构功能和运行机制,因地制宜地运用各国经验,才能更加科学、合理地修复和保护岩溶地区的生态,并实现其可持续发展。

    为进一步开展国际合作与对比研究,“全球岩溶”国际大科学计划将针对全球岩溶主要类型,重点在中国西南与中南半岛热带亚热带岩溶区、北美亚热带温带岩溶区(美国)、 加勒比海地区和印尼热带新生代孔隙碳酸盐岩岩溶区、中东干旱岩溶区(伊朗、土耳其)、地中海型气候岩溶区(斯洛文尼亚、塞尔维亚等)、冈瓦纳大陆岩溶区(巴西、澳大利亚)设置岩溶环境监测站,逐步实现典型地区连续高分辨率监测,建成覆盖全球的岩溶环境监测网络。

    为保证全球数据统一及不同比例尺数据的交互使用,还将建设分布式全球岩溶数据平台。

     

    3 创新资源勘探开发和环境治理技术体系,应对岩溶区生态环境面临的挑战

     

    阅读提示:瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等进行技术创新。

    “让我们共同协商,推进国际大科学计划的完善和实施,为应对岩溶地区脆弱的生态环境面临的诸多挑战,为全球岩溶地区的资源合理利用、经济社会发展贡献岩溶地质科学家的智慧与才华。”在“全球岩溶”国际大科学计划启动仪式上,中国地质调查局岩溶地质研究所所长刘同良代表中国岩溶地质科学家,向全球从事岩溶科学研究的同行们发出倡议。

    推动岩溶科技创新,切实改善岩溶地区居民生活质量,是全世界岩溶国家和广大岩溶科技工作者的一致目标。为此,“全球岩溶”国际大科学计划瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等领域,发挥国际岩溶研究中心国际平台作用,充分利用各岩溶国家的技术及资源优势,创新科学技术体系,应对岩溶区脆弱生态环境面临的挑战。

    已有的研究数据表明,随着植被的恢复、岩溶作用强度的增加,近10年中国西南岩溶区石漠化综合治理工程增加了2500万吨的岩溶碳汇量。中国地质调查局岩溶地质研究所创新流域尺度岩溶碳循环研究方法,研发的陆地植被、土壤改良、引入外源水和沉水植物等人工干预固碳增汇技术,引领了国际岩溶地质碳汇研究新方向。此外,利用微区取样技术,通过同位素微量测试,准确获得了石笋记录的年际尺度历史气候变化信息,恢复重建了高精度的古气候和古环境变化历史,为预测未来气候变化趋势提供了科学依据。为科学应对气候变化,“全球岩溶”国际大科学计划将着重开展岩溶环境二氧化碳增汇效应研究,在查明流域水文地质、环境地质条件基础上,对比研究植被变化、土壤改良、土地整理等人工干预措施对流域碳通量的影响,进而创建人工干预增加岩溶碳汇技术体系。

    岩溶区地下水的开发利用,为世界约25%的人口提供了饮用水源。但岩溶地区孔、隙、缝、管、洞并存,岩溶地下水流运动规律复杂,时空分布极不均匀,使得岩溶地下水的开采难度大大增加。对此,“全球岩溶”国际大科学计划将选择典型岩溶水系统,开展不同类型岩溶地下水开发利用技术与方法研究,形成岩溶水开发利用模式和高效利用技术集成。针对典型岩溶地区岩溶干旱、内涝、石漠化、水污染、水土漏失等问题,建立岩溶地区水土耦合调控信息平台,形成岩溶地区水土耦合调控技术体系。

    岩溶石漠化是岩溶生态系统在特定条件下运行的产物,其分布具有区域性。针对全球不同岩溶环境类型区,“全球岩溶”国际大科学计划将研发适宜各种类型的石漠化综合防治和岩溶生态修复模式及技术体系,阐明生态环境对水资源的调蓄功能,研发生态与工程联合调蓄岩溶水资源的技术,并开展试验示范。在岩溶含水层水质详细调查的基础上,选择已经发生污染的地下河(泉)系统或子系统为典型案例区,开展岩溶地下水环境修复技术及工程研究。

    旱涝、石漠化、水污染、水土漏失、岩溶塌陷等在全球岩溶区普遍发生,更令人担忧的是,这些环境问题和岩溶地质灾害形成演变过程十分复杂,而且具有隐蔽性,难以防治和预测,严重威胁着岩溶区水安全、生态安全、乃至当地居民的生命安全。对此,“全球岩溶”国际大科学计划将瞄准建立岩溶塌陷调查、风险评价和监测预警方法,重点研究大型岩溶塌陷风险评价、监测预警、早期识别与防控技术。

     

    4 在六大领域引领国际研究方向,建立“岩溶地球”大数据平台

     

    阅读提示:直击全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等重大岩溶科学问题。

    据曹建华介绍,“全球岩溶”国际大科学计划主要依托联合国教科文组织国际岩溶研究中心和岩溶动力系统与全球变化国际联合研究中心,破解重大岩溶科学问题,在全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等领域,引领国际研究方向,建立“岩溶地球”大数据平台。

    在岩溶作用与碳循环调查研究方面,将重点研究碳在岩溶动力系统中的迁移过程与土地利用、水生植物光合作用的关系,水库或湖泊等水体中的碳汇效应;调查研究不同水体的生物地球化学变化规律,利用水化学与碳同位素技术厘定碳的来源、不同碳形态之间的转换与通量估算,分析不同水体碳汇与生物地球化学效应,研究碳酸盐岩沉积/溶蚀、脱气与水生植物光合作用之间的相互关系,进而为科学应对全球气候变化提供依据和支撑。

    为提高岩溶水的开发利用效率和效果,“全球岩溶”国际大科学计划将选择全球典型岩溶水系统,开展岩溶地下河管道和含水介质探测,岩溶地下水循环的水动力对比试验,以及降水、地表水、土壤水、表层岩溶水与地下河水“五水”转化机制和过程研究,揭示不同类型岩溶水循环模式,建立不同岩溶水系统水资源评价模型,进行水质、水量定量评价,阐明岩溶关键带对水资源的调蓄功能和地下水资源动态变化规律。同时,开展生态环境对岩溶水资源的影响调查研究,岩溶含水层水质和污染调查研究,进行岩溶含水层防污性能评价,建立岩溶地下水水质监测网,尤其是加强对地下河和岩溶大泉的监测,并对已被污染的地下河和岩溶大泉进行修复示范。

    中国在西南岩溶地区开展的石漠化综合治理地质调查工作,建立10处石漠化综合治理示范区,形成了4种可复制、可推广的石漠化综合治理模式:岩溶峰丛洼地区土地整理与生态产业协调模式,解决了石漠化区无地可用的问题;岩溶高原区地表水地下水联合调度模式,解决了石漠化区无水可用的问题;岩溶地质景观区土地流转与生态旅游模式,促进了石漠化生态修复景观产业化;岩溶断陷盆地区流域尺度综合治理模式,力促县域生态产业可持续发展。目前,中国岩溶石漠化研究与治理示范,已在新西兰、坦桑尼亚等6个国家推广应用。

    全球有具有岩溶特征的世界遗产47处、世界地质公园46处。但迄今为止,国际上一直没有反映全球岩溶资源与环境的系统数据与专题图件,缺乏普及全球岩溶知识的信息数据平台。为科学评价和保护岩溶地质景观,“全球岩溶”国际大科学计划将开展全球岩溶地质景观调查评价,划分涵盖全球岩溶地质景观类型,进行全球尺度岩溶地质景观区划,提出岩溶地质景观设立世界遗产、世界地质公园、国家公园、地质保护区、旅游开发景区等方面的开发利用与保护规划建议。在此基础上,编制全球性岩溶景观与洞穴资源分布图集开发利用保护图件,建立全球岩溶地质景观信息系统,面向全球提供检索、咨询与开发规划等应用服务。

    为摸清全球岩溶塌陷发生规律,“全球岩溶”国际大科学计划将从23个岩溶塌陷国家的岩溶塌陷发育现状、地质背景、水文工程地质特征分析入手,结合岩溶塌陷动力条件监测,深入研究岩溶塌陷形成演化的地质环境模式,建立全球岩溶塌陷发育的动力模型,重点研究极端气候特别是极端暴雨影响下岩溶塌陷形成演化机理,提出国际岩溶塌陷发育态势与对策。

    岩溶区的油气资源具有很大的勘探开发潜力。世界碳酸盐岩大型油气田有321个,其油气资源量占全球油气资源总量的50%,产量占到60%以上。为认识油气储存与岩溶介质内在关系。“全球岩溶”国际大科学计划将以“将今论古”的方法,在对现代岩溶发育特征、规律认识的基础上,开展古岩溶、深部岩溶发育的科学研究,探索古岩溶在区域差异、垂向上分带、时代分期发育特征,揭示古岩溶发育对油气储存岩溶介质的控制作用,建立岩溶油气储层地质模型。

     

    5 实现全球岩溶信息社会共享服务,支撑岩溶区资源与环境可持续发展

     

    阅读提示:全球岩溶国家密切合作,建立实时更新的全球岩溶网络信息平台,促进岩溶学技术进步。

    “全球岩溶”国际大科学计划的实施,不但需要有科学的理论基础、先进的技术支撑,还需要全球岩溶国家的共同参与和密切合作。目前,国际岩溶中心已经收到了来自15个国家的23名资深专家学者签署的支持函。

    通过“全球岩溶”国际大科学计划的实施,国际岩溶研究中心将编制全球岩溶地质、岩溶地貌、岩溶水文地质和岩溶环境地质图,编制“一带一路”岩溶地区和重点岩溶区专题图件,查明全球岩溶动力系统的碳—水—钙循环规律,科学评价全球岩溶资源和岩溶环境,编制典型岩溶类型区资源开发与环境综合整治区划;研发具有国际先进水平的岩溶动力条件快速捕捉、岩溶资源勘探利用和环境治理关键技术方法;在岩溶地下水、石漠化、岩溶塌陷、应对全球气候变化、岩溶地质景观等领域形成4~5项国际领先水平大成果。

    同时,通过计划的实施,进一步建实建强国际岩溶研究中心,建立完善全球岩溶环境监测网点,建立定时更新的全球岩溶网络信息平台;在我国,建设岩溶动力学国家重点实验室,建强岩溶动力系统与全球变化国家级国际联合研究中心,建实国际一流岩溶地质调查研究机构,建强岩溶环境监测野外台站和研究基地。

    通过国际大科学计划的实施,全球岩溶科技成果不仅可促进岩溶学的跨越式发展、技术进步和多种形式的国际合作,实现全球岩溶信息社会共享服务,而且可提升我国的国际地位和话语权,培养我国的国际领军人才,并为“一带一路”战略决策和实施提供科学依据及资源环境保障。

    让岩溶地质科学造福人类

    为纪念中波两国海洋地学的持续推进,并感谢广州海洋局郑志昌教授在其中的贡献,近日,波兰什切青大学安杰伊·维特科夫斯基(Andrzej Witkowski)教授将在中国近海新发现的一类海洋硅藻命名为郑氏舟形藻(拉丁文名为Navicula Zhengii Witkowski & Li Ch),其相关成果已发表在国际知名期刊《海岸带研究》(Journal of Coastal Research)。

    中国地调局广州海洋局与波兰什切青大学的海洋地学合作起始于2010年。在执行中德两国珠江口、北部湾海洋地学合作项目的基础上,2010年,时任广州海洋局环境与工程地质所所长的郑志昌教授积极邀请波兰什切青大学安杰伊•维特科夫斯基教授到访,并主动出谋划策,积极沟通联系,推动双方合作,结下了深厚的友谊。其后,于2011年中国地质调查局与波兰什切青大学签订了合作备忘录及项目合作协议,双方利用广州海洋局已有调查资料开展合作研究、互访交流、联合培养博士研究生,共同召集了第34届地质大会其中一个专题的讨论。

    安杰伊·维特科夫斯基教授是国际硅藻学界的著名专家,并担任了中波合作项目“中国北部湾及邻域晚更新世沉积环境与气候演化”(2011-2015)的波方负责人。在开展海洋地学合作过程中,波方在中国近海样品中发现了海洋硅藻新种,为纪念中波国际合作的成功推进,双方决定赋予这一海洋硅藻新种一个中国特色的名称——郑氏舟形藻,以此赞赏郑志昌教授在科研上的收获,以及推动广州海洋局与波兰什切青大学的科学合作。相关成果《综合基因分析评价中国黄渤海潮间带硅藻多样性及对特殊属种的评论》近日发表在国际知名期刊《海岸带研究》2016年第74卷166-195页 (Journal of Coastal Research, 2016, 74: 166-195)。 

    硅藻是世界上广泛分布的微体植物,在全球碳、硅循环及调节地球圈层作用发挥着重要的作用。在地质学上,硅藻化石是一类重要的研究对象,具有分布广、对环境变化敏感、演化迅速、容易保存、不溶于酸等独特的特征,常用于地层对比、古气候分析、古环境研究,近现代水体和沉积环境评价等领域。新发现的郑氏舟形藻为近海底栖硅藻,最佳生态环境为温带潮间带地区,具有生态环境指示意义。

    国际硅藻学界以中国人命名硅藻新种的先例不多。据悉,上个世纪八、九十年代英国专家曾为我国著名硅藻学家李家英研究员命名了四环藻属新种。

      

    郑氏舟形藻扫描电镜照片

     

    中波德三方专家2011年在地质考察过程中合影

    (左一,Jan Harff教授;左二,Andrzej Witkowski教授;左三,郑志昌教授)

    国际学者以广州海洋局郑志昌教授姓氏命名新发现的海...