分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到4条相关结果,系统用时0.018秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    近日,中国地质调查局矿产资源研究所郭春丽研究员,通过对同时代、同空间、同源区的千里山花岗岩体和花岗斑岩岩墙群的SIMS锆石U-Pb定年、LA-MC-ICP-MS锆石Hf和SIMS锆石O同位素分析,发现早侏罗世154.3~151.6 Ma期间形成的岩体和岩墙具有非常一致的锆石εHf(t)值和δ18O值范围(−11.1~−5.1和+8.3‰~+10.4‰),但是两者的锆石εHf(t)和δ18O值的频数分布特征具有显著的差异。花岗斑岩岩墙群的εHf(t)和δ18O均具有双峰式的分布形式(两个峰值分别为−9.5和−5.7、+9.5‰和+8.9‰),千里山岩体具有宽泛且连续的εHf(t)分布形式和正态的δ18O分布形式(峰值为+9.1‰)(图1)。造成这种现象的原因,是不均匀的地壳源区物质在部分熔融过程中产生了两个批次具有不同Hf–O同位素特征的长英质岩浆,其中一部分岩浆沿着深大断裂带快速上升形成了岩墙群,而另一部分汇聚于上地壳的岩浆储库中经历了混合作用形成了花岗岩体(图2)。在Hf和O同位素扩散速率一致的情况下,岩墙中的岩浆来不及发生充分的混合作用,因此其锆石记录的同位素特征能有效地反映两批次岩浆的原始特征。该研究表明相对同源的岩体来说,岩墙是追溯原始岩浆同位素特征的更加有效岩石学探针。

    随着数据的积累,越来越多的研究发现绝大多数单一花岗岩体普遍呈现出变化大于5 εHf单位的同位素值,这一普遍现象引起了岩石学家的广泛兴趣,并引发了热烈的讨论。已有五种成因模式包括:①幔源和壳源岩浆的混合;②围岩混染;③单一源区不平衡熔融;④继承锆石Hf扩散;⑤物理和化学性质差异大的壳源岩浆混合。本研究对于宽泛且连续的锆石Hf同位素值形成的原因也进行了讨论并提出一种新的成因模式,即物理和化学性质相似的壳源岩浆在岩浆房内发生充分的混合,就可以导致单一花岗岩体中出现宽泛且连续的锆石Hf同位素值。

    花岗岩是地球大陆地壳的重要组成部分,是地球区别于太阳系内其他行星的重要标志。这一研究成果为揭示花岗岩的物质来源提供了新的有力佐证,将广泛应用于花岗岩的成因机制研究。该项目受到国家重点研发计划课题(2016YFC0600208)和国家自然科学基金面上项目(41773028)的资助。

     

    图1. (a) 花岗斑岩岩墙的锆石δ18O-εHf(t)相关图. (b) 千里山花岗岩体的锆石δ18O-εHf(t)相关图. (c) 花岗斑岩岩墙的锆石εHf(t)频率分布图. (d) 千里山花岗岩体的锆石εHf(t)频率分布图. (e) 花岗斑岩岩墙的锆石δ18O频率分布图. (f) 千里山花岗岩体的锆石δ18O频率分布图. (c–f)中的插图是年龄加权平均图.

     

    图2. 花岗斑岩岩墙和千里山花岗岩体由花岗斑岩岩墙补给形成的概念模式图. 两个性质不同的下地壳端元源区分别用黄色和红色表示;两个下地壳端元源区发生部分熔融形成岩浆中结晶的锆石分别用黑色和白色表示;两端元岩浆混合而成的岩浆房用桔黄色表示,其中高分异岩浆用粉红色表示. 具有黑色和白色环带的锆石是岩浆房中两个端元岩浆发生混合的结果。

    Chunli Guo, Simon Wilde, Robert Henderson, Qiuli Li, Bing Yin. 2020. Cogenetic dykes the key to identifying diverse magma batches in the assembly of granitic plutons. Journal of Petrology. DOI: 10.1093/petrology/egaa105.

    论文连接:https://academic.oup.com/petrology/advance-article-abstract/doi/10.1093/petrology/egaa105/6030954

    资源所专家提出花岗岩体中普遍具有变化较大Hf同位素...

    藏南超钾质岩是理解造山带地幔性质及演化的窗口,一直是青藏高原研究的重要热点。藏南超钾质岩具有极为富集的地球化学特征,但其富集的原因存在争议。多数学者认为其富集特征继承自富集地幔源区,而一部分则认为壳源富集组分的加入是超钾质岩富集特征形成的重要原因。导致上述争议的主要原因是,以往的研究多基于全岩地球化学数据开展,而全岩通常代表岩石中不同矿物机械混合的产物,具体富集过程难以捉摸清楚。相比之下,岩浆中一些结晶温压范围较大的矿物,例如单斜辉石,往往在其结晶过程中记录着岩浆组分的细微变化,为恢复超钾质岩浆起源与演化提供了难得的机遇。为此,中国地质调查局地质研究所杨志明研究组在精细厘定藏南超钾质岩中单斜辉石斑晶结晶历史的基础之上,结合矿物原位微区分析结果,试图恢复其超钾质岩浆的地壳演化过程,揭示富集原因和源区交代特征。

    图1. 单斜辉石斑晶组分图解

    结果显示,藏南超钾质岩经历了结晶分异、岩浆混合和同化混染一系列复杂的地壳过程。结晶分异导致正常结晶的单斜辉石斑晶(type-I)具有与其地幔源区相同的组分特征,其Mg#和Ni含量从核部(Core)到边部(Rim)逐渐降低,而不相容元素(REE,Sr,Zr等)含量逐渐升高。一些单斜辉石斑晶(type-II,-III)的不平衡结构(例如反环带、熔蚀结构)指示岩浆混合,而混合导致的type-II,-III中高Mg#、Ni环带相比正常环带(87Sr/86Sr:0.70929-0.72553)具有相对较低的不相容元素含量和87Sr/86Sr比值(0.70659-0.71977;图1A、B中type-II的Rim和type-III的Core)。同化混染作用的主要证据是地壳捕虏体的广泛产出,考虑到这些捕虏体相比寄主超钾质岩(0.708-0.710)具有低得多的全岩87Sr/86Sr比值(0.711-0.722),地壳组分的加入会引起相对亏损而非富集。显然,以上结晶分异、岩浆混合和同化混染作用都不能导致超钾质岩的富集特征。同化混染和岩浆混合作用引起超钾质岩浆的亏损同样体现在type-I斑晶由核部向边部逐渐降低的87Sr/86Sr比值上(图1A、B),这也与基于EC-E′RAχFC模型的模拟结果一致。因此,推断藏南超钾质岩的富集特征继承自源区。此外,单斜辉石斑晶的低Ti/Eu比值(<1500)和高(La/Yb)N数值(>8)指示超钾质岩源区遭受过碳酸盐交代为主的交代作用(图1D)。

    上述藏南超钾质岩的富集特征形成机制的厘定,为理解青藏高原新生代岩石圈演化及高钾埃达克质岩石的形成提供了重要约束。本研究得到国家自然科学基金委项目(项目号91955207, 41825005)资助,研究成果近期在线发表在著名岩石学期刊《Journal of Petrology》上(Li, W. K., Yang, Z. M., Chiaradia, M., Zhou, L. M., and Hou, Z. Q., 2021. Enrichment nature of ultrapotassic rocks in southern Tibet inherited from their mantle source, Journal of Petrology, doi:10.1093/petrology/egab060),博士生李炜恺为第一作者,杨志明研究员为通讯作者。

    原文链接:https://doi.org/10.1093/petrology/egab060

     
     
    藏南超钾质岩研究新进展——富集特征继承自地幔源区

    《中国地质调查成果快讯》近日刊发了“雄安新区综合地质调查”工程下设“雄安新区资源环境承载能力综合监测和透明雄安数字平台建设”项目近年来取得的一系列重要地质调查成果。

    据介绍,该项目由自然资源部中国地质调查局地质环境监测院承担。主要目标任务是通过开展雄安新区及外围区域生态水文地质调查和资源环境承载能力综合监测,建设国际一流的天地一体、上下统筹、共享共建的地质环境综合监测网,查明含水层空间分布特征、水质水量状况和地下水-地表水相互转换关系,科学评价地下水资源、湿地生态功能与区域资源环境承载能力,为城市供水安全、规划建设和生态环境保护提供支撑服务。其中,地下水质量调查评价作为项目重要工作之一,已搭建形成了区域地下水水质监测网,同时开展了地下水质量评价及水文地球化学研究等相关工作。

    一是基本掌握雄安新区主要含水层地下水质量状况。项目组采集并测试350组区域地下水水质监测井样品,依据《地下水质量标准(GB/T 14848-2017)》开展地下水质量评价。结果显示,雄安新区地下水质量主要受自然地质背景和地球化学作用控制而较为稳定,不同年份地下水化学各组分含量无显著时空变化。浅层地下水总体质量较好,深层地下水质量优良,富锶地下水分布较广,绝大多数深层地下水和2/3以上的浅层地下水符合饮用水质量要求,白洋淀周边浅层地下水质量受白洋淀及入淀河流等地表水影响较大。

    二是初步查明雄安新区及周边地区地下水化学特征。研究区地下水均接近中性到弱碱性,主要阳离子为Na+,主要阴离子为HCO3-;沿地下水径流方向,水化学类型没有明显的变化;随着深度增加,地下水化学类型发生显著变化,由浅层的混合型水变为深层HCO3·SO4-Na型。地下水的氢氧同位素特征表明其为受蒸发作用下的大气降水,深层地下水的补给高程更高或者温度更低。

    三是立体识别蒸发浓缩、岩石风化水解、阳离子交换和氧化还原等水文地球化学过程。相比深层地下水,浅层地下水蒸发作用更为强烈;两者都有硅酸岩的风化水解作用的影响,主要来源矿物为碱土硅酸盐和正长石,浅层地下水还受到碳酸岩的风化作用的影响,主要来源矿物为方解石、斜长石和云母,深层地下水还受到蒸发盐(盐岩)的水解作用的影响;浅层和深层地下水均有阳离子交换作用的发生,且深层阳离子交换作用更强;浅层含水层处于氧化环境,深层含水层处于还原环境,有脱硫酸作用的发生。

    四是探索研究白洋淀地质-水环境成因与演化过程。雄安新区及周边地区地下水和含水层孔隙水的水化学特征相似,可以用含水层孔隙水代替地下水进行水化学分析,孔隙水可以更加精确地定位到对应深度的含水层,排除抽水时不同深度地下水混合的影响。从弱透水层沉积物孔隙水反映出的气候变化来看,表现出新近系上新世的暖湿气候、第四纪冰期间冰期相互转化的干冷气候,以及再次变暖的全新世气候;气候发生剧烈变化的时期,沉积物尤其是黏土矿物的水解过程影响着其孔隙水中Fe、K、Al等元素的迁移、聚集和分散。

    地下水样品现场指标测试及同位素样品采集

     

    雄安新区水文地质调查与地下水监测成果显著

    内蒙古狼山-渣尔泰地区分布着东升庙、炭窑口、甲升盘和获各琦等一系列多金属硫化物矿床,是世界上著名的元古宙多金属硫化物成矿带。这些硫化物矿床长期以来被认为都属于华北克拉通北缘元古宙裂谷环境下的热液喷流-沉积(SEDEX)成矿系统,传统被划分为南矿带(以炭窑口、东升庙、甲升盘等矿床为代表)和北矿带(以获各琦矿床为代表)。自然资源部中国地质调查局地质研究所朱祥坤研究员课题组通过多年研究,发现这些矿床并非都是形成于元古宙裂谷环境下的SEDEX成矿系统:北矿带的获各琦矿床的形成与中三叠的构造-岩浆热事件有关,是典型的热液矿床;南矿带的三个典型矿床主体都属于元古宙SEDEX成矿系统,其中狼山地区的炭窑口和东升庙形成于同一个次级盆地, 渣尔泰地区甲升盘矿床形成于相似的构造背景,但混入了更多壳源物质。

    铅(Pb)同位素地球化学为该研究的主要手段。长期以来Pb同位素广泛地被应用于追溯成矿物质来源,是矿床学研究中一项重要的示踪技术手段。考虑到各类硫化物U/Pb和Th/Pb比值一般较低,它们的Pb同位素研究对于解决不同硫化物矿床及其不同类型矿化的成因关系具有重要的应用价值。作为矿床主体,层控/层状矿体中的块状矿石是本次调查的主要研究对象。其中位于南带的层状硫化物矿床(炭窑口、东升庙和甲升盘)总体上相对富集非放射性成因铅(206Pb/204Pb=14.9~16.5), 主体属于元古宙同生或近同生成矿系统(SEDEX矿化)的产物。而位于北带的获各琦矿床未见古老矿石铅(206Pb/204Pb<17.00)的报道,明显更富集放射性成因铅(206Pb/204Pb=17.0~18.0),与前人报道的中三叠世角闪辉长岩(~240 Ma)的普通Pb及阿拉善地区显生宙珠拉扎嘎金矿的矿石Pb同位素组成类似。这些特征指示狼山北带硫化物矿床与南带典型矿床属于不同的成矿系统,即不属于元古宙裂谷环境下的SEDEX成矿系统。

    另外,炭窑口-东升庙矿床的脉状矿石Pb同位素组成与块状矿石有明显重合,同时脉状矿石放射性铅部分又与围岩中的成岩黄铁矿的Pb同位素组成一致,表明脉状矿石是后期区域变质作用过程元古宙矿石铅和围岩中的演化铅混合的产物。同时因与矿区周边海西期钾长石的普通Pb同位素组成差别较大,也排除了岩浆叠加成因。前人报道的甲升盘矿床的脉状矿石与块状矿石Pb同位素差别较大,其中脉状矿石铅与海西期花岗岩普通Pb同位素组成一致,指示脉状矿石属后期岩浆热液叠加成因。

    该研究以Pb同位素为主要研究手段重塑了对狼山-渣尔泰成矿带区域成矿作用的基本认识,对于厘清这一世界典型元古宙铅锌成矿带不同矿床的成因关系提供了依据, 同时也对该地区区域勘察找矿具有指导意义。

    上述研究由地质所朱祥坤研究员主持展开,受国家自然科学基金项目(41803025、41873027)、地质调查项目(DD20190002)及中国博士后科学基金(2018M641433)等联合资助。相关研究成果发表在期刊《Precambrian Research》和《Journal of Asian Earth Sciences》。

    狼山-渣尔泰成矿带典型硫化物矿床铅同位素组成特征及不同亚带(南狼山、北狼山及渣尔泰)之间的铅同位素组成差异

    地质所相关研究重塑对狼山-渣尔泰硫化物成矿带区域成...