分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到9条相关结果,系统用时0.009秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:
    土壤是人类的衣食之源和生存之本,是最基本的生产要素。土壤的健康质量直接影响动植物和人类健康。为了更好地保护我们的生存之本,今天我们就来认识了解土壤环境问题中较突出的重金属污染。

    土壤重金属污染指的是什么 

    重金属通常是指密度大于5克/立方厘米的所有金属元素,包括汞、镉、砷、铅、铬、镍、铜、锌、钒、锰、锑等,其中前5种元素因其毒性大被称为“五毒元素”。

    顾名思义,土壤重金属污染就是重金属或其化合物通过各种途径进入土壤造成的污染。土壤遭受重金属污染的典型事例最早可追溯到19世纪发生在日本足尾铜矿山的公害事件,由于铜矿山废水排入农田,使土壤中铜含量高达200毫克/千克,不仅造成水稻严重减产,而且使矿山周围农田变为不毛之地。进入20世纪五六十年代,相继发生了举世瞩目的“八大公害事件”,其中发生在日本的“痛痛病”和“水俣病”公害事件就是土壤受到重金属镉和汞污染的两个典型。

    土壤重金属污染的危害 

    重金属可以污染水体、大气、土壤、作物等,但重金属不会像有机污染物那样被降解,因此通过食物链被生物体吸收后,会在体内积累,对人类健康造成巨大的威胁。有毒有害的重金属元素,例如砷、镉、铬、汞和铅,会对人体造成严重的危害,可能导致高血压、语言障碍、疲劳、睡眠障碍、提高攻击性倾向、注意力不集中、易怒、过敏反应、自身免疫疾病、血管闭塞以及记忆力下降等疾病和症状。重金属元素还会对人体细胞酶产生毒害作用。

    土壤重金属污染来源 

    土壤中重金属的来源可分为地质过程内源和人为活动外源两部分。地质过程内源又可分为继承型和次生富集型两类。继承型是指母岩中镉、汞、铅等有害重金属含量本底高,在后期的风化成土过程中,这些有害重金属继续保留在土壤中。资料显示,我国土壤大面积的重金属高异常主要是由成土母岩引起的,这些成土母岩多是富含铜、铅、锌、砷、镉等有害元素的硫化物矿床、黑色岩系、煤系地层等地质体,以及含锰、铬、镍的基性岩等。

    次生富集型是指成土母质中重金属元素含量并不高,但是在母岩风化成土过程中,化学性质活跃的元素,如钾、钠、钙、镁等易进入水体流失。而化学性质不活跃的元素,如汞、铅、砷等有害元素在原地的风化残留物中反而富集了。

    人为活动外源主要是指大量重金属通过人为活动进入到土壤环境中,其中主要是现代化工业,例如电镀、电池、化肥、矿业、造纸、杀虫剂、制革、塑料制品、冶金、采矿、化石燃料等制造、使用、活动过程中产生的含重金属的废水、废渣和废气。

    土壤中重金属的活性 

    土壤中重金属的含量和存在形态,很大程度上决定了其对环境、人体的风险高低。目前,土壤重金属的形态分级可分为离子态(水溶态)、可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态。不同形态的重金属,其毒性、迁移性和生物有效性均有不同差异。

    一般来说,离子态的重金属移动性强,易被植物吸收,多存在于土壤溶液中或土壤黏粒表面,有着较高的生物有效性;而某些重金属离子会与土壤中的盐类(如磷酸盐、碳酸盐、硫化物、铁锰氧化物等)、有机质形成沉淀物、复合物或螯合物,移动性有所降低,生物有效性也随之下降;最为稳定的则是残渣态,一般存在于硅酸盐、原生和次生矿物等晶格中。

    影响土壤重金属形态分布的因素有很多,归纳起来可分为两大类:一类是土壤内因,即土壤理化性质,如pH值、土壤有机质、土壤质地、胶体含量、离子含量、Eh值、营养元素等;另一类是人类活动,如输入到城市土壤中的重金属的数量、种类的影响。

    土壤重金属污染修复的方法 

    根据修复方式以及处理后土壤位置是否改变,土壤重金属污染治理方法分为原位治理和异位治理。异位治理环境风险低,见效快,成本高,环境扰动大,如客土法、换土法、土壤淋洗法等。原位治理中主要包括物理修复、化学修复、生物修复以及农业生态修复。

    物理修复主要包括电动修复、电热修复等。电动修复主要通过电流的作用,土壤中重金属离子和无机离子以电渗透和电迁移方式向电极运输,然后进行集中收集处理。

    化学修复就是向土壤中投入改良剂,通过对重金属的吸附、氧化还原等作用,降低重金属的生物有效性,常用的土壤改良剂有石灰、沸石、碳酸钙、磷酸盐、有机质等。

    生物修复利用生物削减、净化土壤中重金属或降低重金属毒性。1983年美国科学家Chaney提出了利用超富集植物清除土壤中重金属污染的思想,即利用植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理后可将该重金属移出土壤,达到污染治理与生态修复的目的。

    农业生态修复主要包括两个方面:一是农艺修复措施,包括改变耕作制度,调整作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等措施,来降低土壤重金属污染;二是生态修复,通过调节诸如土壤水分、土壤养分、土壤pH值和土壤氧化还原状况及气温、湿度等生态因子,实现对污染物所处环境介质的调控。

    钨尾矿资源,待挖掘的宝藏 

    □郝小非

    钨矿是重要的矿产资源,已发现钨矿物和含钨矿物20余种,最具有开采价值的是白钨矿和黑钨矿,主要分布于江西和湖南。钨矿品位一般在0.1%~0.5%,对钨矿选别后,91%以上的固体废弃物被作为尾矿丢弃。我国每年约有1000多万吨钨尾矿被排放到尾矿库中,未被有效开发利用,不仅占用大量土地,还存在安全隐患。但尾矿不是没有任何利用价值的废物,在技术经济条件达到的情况下也是待挖掘的宝藏。

    随着人们对尾矿资源综合利用认识的提高,人们也越来越注意到尾矿也是一种资源,可以被开发利用。钨尾矿中一般含铜、钼、铋等重要金属矿物及石英、萤石、绿柱石和石榴子石等非金属矿物,随着选矿技术的提高,我们不但可以再次回收利用钨,也可以回收铜、钼、铋、铷、锂和钾等有价元素,还可以回收萤石、石英、石榴子石等非金属矿物。另外,我们还可以利用钨尾矿制备地聚物、微晶玻璃、陶瓷原料、免烧砖、透水砖等环保建筑材料。

    总之,只要我们结合钨尾矿资源特点,因地制宜地寻求钨尾矿资源化利用途径,一定可使钨尾矿变废为宝,实现经济效益、生态效益、社会效益的有效统一。

    “锆”诉 

    □雷晴宇

    对普通大众来说,单纯提到化学元素锆,可能相对比较陌生,但它却与我们的生活密切相关。比如,我们最常用到的卫生洁具、瓷砖等陶瓷产品,就是因为其中含有一定量的锆才让它的外表变得那么艳丽和富于光泽,也让它具有了极强的抗腐蚀和耐磨等性能。

    在工业实践中,由于提炼和加工困难、产量不多,锆被列为稀有金属。

    锆的应用领域非常广泛。其中,63%以上的锆以硅酸锆、氧化锆的形式应用于陶瓷、耐火材料领域,约有13%用在锆化学品领域,仅有3%~4%的锆矿石被加工成金属锆。因其具有惊人的抗腐蚀性能、极高的熔点、超高的硬度和强度等特性,锆还被广泛应用在航空航天等领域。

    锆的元素符号为Zr,锆元素在地壳中的含量仅约为0.025%。

    地壳中大部分锆呈分散状态存在于许多矿物中,已知含锆的独立矿物有38种,锆英石(ZrSiO4)和斜锆石(ZrO2)是主要的具有工业价值的含锆矿物。锆英石主要赋存于海滨砂矿中,是世界冶炼金属锆的主要来源。斜锆石主要产于碱性火成岩中,与霞石、霓石、磷灰石、萤石、钙钛矿、锆石、烧绿石等共生。

    含锆的天然硅酸盐ZrSiO4被称为锆石或风信子石,广泛分布于自然界中,具有从橙到红的各种美丽的颜色,自古以来被认为是宝石,印度洋中的岛国斯里兰卡盛产锆石。

    1789年,德国人M.H.Klaproth对锆石进行研究时发现,将它与氢氧化钠共熔,用盐酸溶解冷却物,在溶液中添加碳酸钾,沉淀、过滤并清洗沉淀物,再将沉淀物与硫酸共煮,然后滤去硅的氧化物,在滤液中检查钙、镁、铝的氧化物均未发现,在溶液中添加碳酸钾后出现沉淀,这个沉淀物不像氧化铝那样溶于碱液,也不像镁的氧化物那样和酸作用,Klaproth认为这个沉淀物和以前所知的氧化物都不一样,是由Zirkonerde(锆土,德文)构成的。不久,法国化学家de Morueau和Vauquelin两人都证实M.H.Klaproth的分析是正确的,该元素拉丁名为Zirconium,符号认为Zr,中国译成锆。

    1808年,英国的H.Davy利用电流分解锆的化合物,没有成功;1824年,瑞典的J.J.Berzelius用钾还原K2ZrF6时制得金属锆,但不够纯。直到1914年,荷兰一家金属白热电灯制造厂的两位研究人员Lely和Hambruger用无水四氯化锆和过量金属钠同盛入一空球中,利用电流加热500℃,取得了纯金属锆。

    锆矿资源是稀有金属矿产资源之一。世界各大洲均发现有锆资源,主要分布在大洋洲和非洲,美洲、亚洲、欧洲也有发现。锆矿床按其成因可分为脉型岩矿和砂矿两种类型,但由于岩矿结构形态复杂,分离共生矿物成本高及开采难度较大等原因,导致目前全球工业开采多以砂矿型为主 。砂矿主要包括滨海砂矿、冲积砂矿以及残积砂矿,其中滨海砂矿最具工业开采价值,规模和产量远大于冲积砂矿及残积砂矿。

    据美国地质调查局数据显示,2012年~2018年,全球锆资源储量维持在7500万吨左右,澳大利亚、南非、肯尼亚及莫桑比克4个国家锆矿储量合计6140 万吨,占全球的84.11%,矿床类型多以滨海砂矿为主; 印度、马达加斯加、巴西、中国、美国、乌克兰、印度尼西亚及俄罗斯等国家锆矿储量1160万吨,占全球的15.89%。

    我国的锆储量和美国基本一致,约有50万吨,仅占全球储量的0.68%。相较于其他国家,我国锆资源非常缺乏,所以,我国的锆资源主要靠进口获得。随着需求量不断增大,近年来进口以每年6%的速度增长,国内每年锆进口需求量达到90%以上。

    锆英砂主要用于生产化学锆、电熔锆、硅酸锆、金属锆等。2019年,我国锆英砂市场需求量为62.02万吨,而我国自有资源产量不足1万吨,近3年的进口量均超过100万吨。

    中国和欧洲是锆的主要消费市场,中国对锆的需求在全球占比高达52%。

    锆矿按照主要用途分为金属锆和工业锆两类。金属核级锆处于锆产业链最顶端,工业锆主要用在化工耐酸碱设备、电子行业等领域。中国是世界陶瓷工业生产和出口大国,硅酸锆则是陶瓷行业的直接和主要原料,陶瓷制品离不开装饰,好的装饰使制品身价百倍,装饰材料是装饰的物质基础,陶瓷色料是最重要的陶瓷装饰材料。由此可见,陶瓷色料在陶瓷装饰中的地位,也可知氧化锆在陶瓷装饰中的地位。同时,随着中国陶瓷产业的迅速发展,锆需求也随之猛增。

    矿山废水变废为宝的秘诀 

    □胡四春

    在矿山开采、矿物富集分离过程中,会产生大量的矿山废水,其中包括矿坑水、露采厂废水、选厂废水、尾矿库和废石场的淋滤水,这些废水不仅被白白浪费掉,而且还污染了地表水和地下水,危害环境。

    根据产生的途径不同,矿山废水性质相差很大。例如,矿坑废水pH值要么是强酸性,要么是碱性;选厂废水可能含有大量的重金属离子和有机药剂,这些都给废水处理及回用造成了巨大的麻烦。因此,根据废水产生的途径和废水处理后的性质进行分类处理和分质利用就成了把矿山废水变废为宝的关键。

    矿山采选废水常见处理方法 

    一般来说,矿山采选废水常见处理方法主要包括七方面:

    自然净化法。自然净化法作为最廉价、最简单的废水治理方法,被我国的选矿厂普遍采用。自然净化法常以尾矿库为构筑物,废水通过管道运输至尾矿库,在库内发生沉淀、水解、氧化、挥发、光照降解甚至生物分解等作用,使悬浮颗粒和残余药剂浓度降低,甚至基本去除。

    自然净化的效果与曝晒时间、光照强度、水体温度、初始pH值、溶解氧等因素有关。通常曝晒时间越长、光照强度越强、温度越高,自然净化效果越好。

    特点:自然净化法具有成本低、管理方便、无二次污染等特点,但存在净化不彻底、耗时长、气候等自然因素干扰大等问题,特别在高寒地区,往往会因为净化效率低下而影响废水的回用。因此,自然净化法通常可作为选矿废水的预处理方法,或用于成分相对简单的重、磁选废水的处理。

    酸碱中和法。酸碱中和法是一种传统的废水治理方法,因简单实用而被广泛采用。这其中既包括酸性废水中的H+(或碱性废水的OH-)与中和剂中的OH-(或H+)发生反应,生成中性水分子,同时矿浆的合适碱度也有利于重金属离子与氢氧根离子反应生成难溶的氢氧化物沉淀,从而消除重金属污染。

    生产实践中,常用的中和剂有石灰、消石灰、硫酸、碱性废水废渣(电石渣等)、酸性废水废气等。在选择中和剂时,应优先考虑厂区周边的废料,以达到“以废治废”的目的。理论上各重金属在一定pH范围内均能沉淀,因此控制好pH值是中和法的关键。

    特点:酸碱中和法具有管理方便、费用较低、操作简便、处理量大、适应性强和运行稳定等优点,但也存在一些问题,如在用石灰中和时,设备及管壁结垢严重、污泥增量较大、易产生二次污染等。

    混凝沉淀法。混凝沉淀法是目前治理选矿废水较成熟的一种方法,常与活性炭吸附或氧化法组成混凝沉淀——活性炭吸附法和混凝沉淀——氧化法。

    混凝沉淀法使用的药剂主要包括凝聚剂和絮凝剂两大类。凝聚剂主要有氯化铁、硫酸铁、硫酸铝、氯化铝、聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合硫酸铁(PFS)等,使用最普遍的絮凝剂是聚丙烯酰胺(PAM)。混凝剂的选择至关重要,它直接关系到净化效果的好坏。

    特点:混凝沉淀法可以有效去除废水中的悬浮颗粒和一些重金属离子,是一种成熟、稳定、高效的废水治理方法,但也存在对有机化学药剂净化不彻底,因药剂用量过大易产生二次污染等问题。

    化学氧化法。化学氧化法是深度治理废水中残留浮选药剂的有效方法,特别是近年发展起来的高级氧化技术(AOP)能彻底去除废水中持久性难降解有机污染物。

    化学氧化法的实质是,氧化剂通过夺取废水中有机污染物中的H原子等途径,将有机污染物氧化成无毒或低毒的小分子物质,或转化为容易从水中分离的物质,从而降低废水的COD、BOD。常见的氧化剂有臭氧、Fenton试剂、双氧水、次氯酸钠等。

    特点:化学氧化法治理废水具有操作稳定、反应彻底、处理效率高并能提高废水的可生化性等特点,特别对于处理高COD的有机废水具有显著优势,但也存在运行费用较高等问题。

    人工湿地法。人工湿地是仿照自然湿地人工修建并参与监督控制的具有流动或静止水体的浅水水域,是以基质-植物-微生物为核心的综合生态系统,可通过基质截留、过滤、吸附,植物吸收、拦截,微生物摄食、分解等途径去除废水中的污染物,充分发挥了物理、化学和生物的协同作用。

    特点:人工湿地法为治理废水提供了一条绿色化、生态化的技术路线,但也存在基质易堵塞、占地面积大、受气候等因素干扰大等局限性。

    微生物处理法。微生物处理法对于矿山酸性废水具有显著的优势。其净化原理是利用微生物的新陈代谢作用降解水体中的污染物,从而达到净化废水的目的。

    特点:微生物法治理废水拥有巨大的发展潜力,具有环境友好、选择性好、二次污染少等特点,甚至还可以回收某些重金属原料,但如何筛选出适应性强的菌种是个难题。

    矿山废水的分步处理和分质利用 

    一般来说,铅锌矿矿山废水的分步处理和分质利用分4步来进行:

    一是将铅精矿和锌精矿的浓密溢流水直接回用到各自的选别流程。

    二是向尾矿水加入一定量的钾明矾和阴离子PAM进行混凝反应和絮凝沉降,将尾矿废水中影响选矿指标的铜、铅、锌、镉、铬等重金属离子去除掉。然后,再加入一定量的椰壳型粉末活性炭,并通过纤维球过滤塔来去除掉影响选矿指标的部分有机残留药剂,适度处理后的废水大部分回用到选矿流程。

    三是采场废水一部分用于厂区绿化用水和尾矿干堆库区降尘喷淋用水。

    四是加入一定量的纯碱来降低水的硬度,通过砂滤和膜滤工艺来降低水的浊度等,然后将深度处理后的水分别用于陶瓷过滤机的槽洗水、酸洗水及浮选药剂的配制溶解用水。

    根据其性质及成分存在差异,选用合适的废水处理技术及回用方法,可提高选矿废水循环利用率,实现废水的清洁排放,真正做到变废为宝。

    生态画卷 资源综合利用有新突破

    近日,由中国地质调查局岩溶地质研究所承担的“湘江上游岩溶流域1:5万水文地质环境地质调查”项目在武水流域建立两种地下水有效开发利用模式。

    两种地下水有效开发利用模式分别为开挖隧道引水灌溉与高落差地下河系统发电。开挖隧道引水灌溉成功案例为香花岭地下河,香花岭地下河长5.3千米,其系统面积约12.5平方千米,通过在位于地下河出口上游约800米处的大井村进行隧道开挖,隧道长约900米,隧道为半椭圆形,高约1.5米,宽约1.2米,连通地下河,利用自然高差,使地下河水流出,该隧道引水枯水期流量 0.035方/秒,丰水期流量0.5 方/秒,灌溉农田面积2000亩,自隧道修建以来,为下游耕地灌溉用水提供了充足的保障。

    高落差地下河系统发电成功案例为红岩地下河系统,红岩地下河系统位于粤北岩溶石山区向星子盆地过渡地区,地下河系统总长约10千米,地下河入口、出口标高落差近300米,同时地下河流量较大,水力资源十分丰富,在地下河系统内共修建了三级发电站。一级发电站引上游红层碎屑岩外源水,采用明渠引水,引水渠道长约400米,年均发电量约为41万度;二级发电站建在地下河中游狭长天窗处,在地下河入口处修建拦水坝,通过隧道引水至发电站处,两者高差约100米,引水隧道直径约为1.5米,隧道长约3千米,枯水期与平水期基本上引走全部水量,引用量在0.5~2.5方/秒之间,年均发电量约为350万度;三级发电站建在地下河出口下游约300米处,通过引水管道引至发电站处,两者高差约25米,引水量在0.5~3 方/秒之间,年均发电量约为200万度。该地下河系统自三级发电站修建以后,取得了良好的经济效益。

    两种地下水有效开发利用模式的建立为西南岩溶山区提供了成功案例,可推动西南岩溶石山地区地下水资源的合理开发与利用,同时也为西南岩溶石山地区精准脱贫提供经验借鉴。

    岩溶所在武水流域建立两种地下水有效开发利用模式

    2018年4月28日,中国-捷克陕西省汉中天坑群联合科学考察团进驻陕西省汉中市南郑区小南海镇。本次科考活动是中国地质调查局岩溶地质研究所、陕西省地质调查院与捷克洞穴学会、英国洞穴协会共同组织的国际天坑——洞穴科考活动,其中外方团队由国际洞穴联合会副主席、捷克洞穴学会主席兹德内克.莫提契卡先生带领;中方团队由亚洲洞穴联盟副主席、岩溶所张远海教授级高级工程师带领。

    本次科学考察采取野外小组分组的形式对小南海台原地区的洞穴系统、天坑、地下河排泄情况进行了调查摸底。自4月28日至今,科学考察活动已经进入工作区6日,取得了阶段性调查成果。

    捷克团队11人共分3组,分别利用地下潜水、皮筏艇漂流、洞穴SRT技术对观音洞地下河系统、天星洞洞穴系统、伯牛坑洞穴系统进行了洞穴测量。其中,洞穴测量新发现伯牛坑上游洞道400米,下游洞道300米;天星洞新发现洞道长度300米、观音洞新发现洞道300米,合计新发现洞穴长度1300米。同时,针对小南海台原地区地下河排泄的水动力条件,于伯牛坑地下河投放了荧光素钠的示踪剂,以揭示小南海地区洞穴水系的关系。同时,捷克团队的小组人员进行了实时的采样监测以分析地下水排泄的途径。

    中方团队承担了大佛洞洞穴系统、西沟洞洞穴系统的补充测量工作,并就小南海台原地区的洞穴沉积物进行了系统的采样工作。此次共新探测大佛洞上层洞道长约900米,并在大佛洞末端发现沉积于早期洞道的钙华瀑布沉积,体量长150米,宽12米,高8米,是目前发现的洞内最大分布面积的洞顶钙华沉积,这反应了早期洞道的流水中碳酸钙过饱和的状态,与现在发现的洞穴滴水环境具有很大的差异。目前,大佛洞洞道末端洞穴石笋几乎全部中空,代表了地质历史某个阶段洞穴水溶蚀强度增大。洞穴发育早期与晚期不同的水化学特征与洞穴发育阶段密不可分,是进行洞穴沉积环境对比的良好素材。同时,岩溶所团队调查发现大佛洞不同层位洞道内沉积有大量古地下河砾石层,根据砾石成分统计,黄绿色粉砂岩占比45%,粘土及砂土占比30%,含燧石和石英的粗砾岩占15%,花岗岩砾石占比7%,石英砾石占2%,灰岩砾石占比1%。这说明小南海台原地区大佛洞洞穴系统与外围地区元古代岩体的水动力联系,外源物质进入洞穴的埋藏年龄是揭示洞穴发育和台原地貌解体的时间钥匙。

    本次中-捷联合考察将进一步推进天坑与洞穴年代学研究、天坑与洞穴分布区区域生态环境演化研究、地下河洞穴系统展布特征及形成演化研究,提升汉中岩溶地质景观研究的科学价值,为汉中天坑群申报世界地质公园提供科学依据。

    同时,本次科考对推动岩溶所牵头实施的“全球岩溶动力系统资源环境效应”国际大科学计划中岩溶地质景观调查、对比和评价起到了促进作用,为开展全球尺度岩溶地质景观区划提供了重要科学依据,奠定了良好基础。此外,本次科考成果对推进联合国教科文组织国际岩溶研究中心建设起到了举足轻重的作用。国际岩溶研究中心的目标任务之一就有关于地质公园建设、地质景观合理开发,以帮助当地百姓减贫脱贫。而本次科考成果,一方面可用于开展全球景观对比及类比研究,另一方面为当地政府提供了可持续发展的重要依据,有助于完成了岩溶中心对教科文组织的承诺,有力支持了岩溶中心的建设与运营。

    汉中天坑群国际科考取得阶段性成果

    2016年3月23—27日,在中国地质科学院岩溶地质研究所、联合国教科文组织国际岩溶研究中心、国土资源部/广西岩溶动力学重点实验室的组织协调下,中国科学院袁道先院士带领地科院岩溶所的三名科研人员,为西南大学、桂林理工大学、中国地质大学(武汉)、广西地质调查院及地科院岩溶所的部分研究生和新职工等近40人进行了为期五天的桂林周边岩溶地貌、岩溶形态野外实习教学。

    桂林是岩溶研究的圣地,其峰林地形以“中国式岩溶” 而闻名,地表和地下、宏观和微观、溶蚀和沉积形态齐全, 而且地表宏观岩溶形态规模大, 正负岩溶形态反差强烈, 是进行岩溶形态组合研究、岩溶地貌演化和岩溶动力系统研究的理想场所。实习的前三天,从尧山到西山、穿山、普陀山,从仁头山到雁山再到漓江边,从海洋山到南圩再到西塘,在漓江两岸、多个断面,在实习教员的带领下,大家认识了各种地表、地下岩溶形态的特征和成因, 以及“岩溶形态组合”的意义;理解了外源水和红层对桂林峰林地貌演化的意义。第四天考察了有30年历史的岩溶研究基地——丫吉试验场,大家对丫吉表层岩溶带、岩溶泉的特点及研究方法进行了学习。第五天为学生实习课后作业,学生通过爬老人山,进一步理解了红色角砾岩及其对桂林地貌演化的意义。

    山如簪来水如带,杜鹃花在阳光下更加红艳,84岁高龄的袁道先院士时而会心地聆听讲解,时而亲自将桂林山水的演化娓娓道来,指导年轻的岩溶地质工作者们从新角度认识了岩溶地貌,从理论到实践,再从实践到理论。这几天大家学到的,不仅仅是不同的岩溶形态,更是一种山水在心中,心中有山水的情怀。

    袁道先院士带队开展桂林岩溶地貌野外实习教学
    所在单位:地科院地质研究所
    完成人员:朱祥坤、孙剑、房楠、李世珍、潘晨旭、陈岳龙
    项目来源:国家自然科学基金项目,行业基金项目
    起止时间:2009年1月-2014年12月

    主要进展

      白云鄂博稀土-铌-铁矿床是世界著名的超大型多金属矿床,受到国内外地学界的广泛关注。自1927年发现以来,前人在此做了大量工作,取得了一系列成果,但对矿床形成机制和成矿时代或期次的认识仍存在很大分歧。本项目利用新兴的铁、镁同位素示踪技术,结合传统的钐-钕、锶、碳、氧同位素体系,对矿床的形成机制和成矿时代进行研究,取得了以下创新性成果:

      1.首次系统地开展了白云鄂博矿床的铁、镁同位素研究,对矿化元素本身和赋矿层的主量元素进行了直接示踪,结果为矿床的岩浆成因提供了有力的证据。这不仅是白云鄂博矿床成因研究的一大重要进展,也为如何运用铁、镁等新兴同位素体系进行矿床成因研究提供了范例(成果发表在Precambrian Research, International Geology Reivews, Chinese Journal of Geochemistry, 岩石学报等)。

      在白云鄂博矿床的成矿机制方面,前人争论的焦点在于铁的物质来源和赋矿层“H8”白云岩的成因(火成或水成),但缺乏直接可靠的证据。由于铁是成矿元素,铁、镁是赋矿层的主量元素,本研究系统开展铁、镁同位素研究,为矿床的成矿物质来源和矿床成因进行直接示踪。

      首先对典型沉积成因的含铁建造及其碳酸盐岩、和矿区广泛分布的火成碳酸岩墙的铁、镁同位素进行了研究,结合已有工作,厘定了沉积、火成岩石的Fe、Mg同位素组成分布范围。在此基础上,详细调查了白云鄂博矿床铁矿体及赋矿层“H8”白云质大理岩的铁、镁同位素分布特征。研究结果表明,白云鄂博矿床细粒铁矿石和“H8”白云岩的铁同位素平均值δ56Fe-IRMM在0附近,并且变化范围很窄,与火成岩的铁同位素组成一致;同时,磁铁矿和白云石矿物之间的铁同位素分馏很小,指示高温形成环境。“H8”白云岩的大部分样品镁同位素组成落在火成岩范围,少量数据落在火成岩和沉积白云岩之间。这表明白云鄂博矿床是以岩浆作用为主导而形成的矿床。由于铁、镁是白云鄂博矿床的主量元素,铁、镁同位素的研究成果为该观点提供了有力而直接的证据。

      2. 运用Sm-Nd同位素技术对白云鄂博矿床的形成时代进行了精确定年,并重新厘定了矿床的成矿时代和成矿期次(成果发表在Ore Geology Review, 地球学报等)。

      在白云鄂博矿床成矿年代学方面,前人已对开展大量的研究,获得了大量的年龄数据。虽然如此,这些年龄数据所代表的真正地质意义仍有待进一步研究,白云鄂博矿床的成矿时代和成矿期次仍然存在激烈的争论。由于白云鄂博矿床是一个稀土矿床,本研究利用Sm-Nd同位素体系对矿床的成矿时代和成矿期次进行直接制约和厘定。

      由于白云鄂博矿床遭受了复杂的地质作用和多期次的交代作用,选取合适的样品是获得可靠的定年结果的基础。本研究首先开展了详细的岩相学和矿相学研究,对矿石和赋矿岩石的期次进行了划分。在此基础上,选取了未遭受交代作用的白云岩“原岩”进行Sm-Nd同位素定年,获得了高精度的等时线年龄1287±26Ma。同时,对不同期次的矿石和赋矿岩石的全岩和单矿物进行了Sm-Nd同位素测定。综合前人的数据,利用Sm-Nd同位素体系对矿床的成矿时代和期次进行了厘定。结果表明,白云鄂博稀土的成矿时代约为1.3Ga,与碳酸岩墙的形成时间一致,成矿物质来源于地幔。加里东期的热事件(约0.44Ga) 导致了白云鄂博矿床的晚期稀土矿脉的形成和原有矿体中部分稀土矿物的重结晶,但成矿物质主要来源于矿体内部的稀土再循环,外源物质的贡献不明显。约1.3Ga到约0.44Ga间的一系列中间年龄为后期热扰动的结果,并不代表成矿事件。简言之,白云鄂博矿床只在中元古代发生过一次实质性的稀土矿化作用,地幔是稀土物质的单一源区。

      3. 对白云鄂博矿床开展了铁、镁、碳、氧、锶、钕等同位素的综合研究,完善了白云鄂博矿床的成矿模式。
      利用不同同位素的特点,综合开展了铁、镁、碳、氧、锶、钕等同位素的综合研究,从不同角度对矿床的成因进行制约。研究表明,白云鄂博矿床可能是在中元古代时期(约1.3Ga)的大陆裂谷环境下,由火成碳酸岩岩浆在海底侵入或喷出而形成,岩浆侵入或喷发期间可能有海水或少量沉积碳酸盐岩加入,也很有可能伴随热液活动。矿床形成后区域上发生了多次地质事件,矿床发生了一定的热扰动,但成矿物质只在内部发生了再循环,外源成矿物质的加入很有限。
     
      上述研究为白云鄂博矿床的成因和成矿时代提供了重要制约,完善了白云鄂博矿床的成矿模式。

      上述研究的部分成果已在国内外期刊上发表论文18篇(其中SCI期刊8篇,EI期刊3篇)。


    图1 白云鄂博矿床Fe同位素组成及与其他类型矿床的对比


    图2 白云鄂博矿床Mg同位素组成


    图3 白云鄂博矿床成矿模式图

    1-5 白云鄂博矿床成因再研究

    19个天坑!

    11月15日,在2019年(第十届)中国—东盟矿业合作论坛期间举办的中国—东盟自然景观资源图集研讨会上,自然资源部中国地质调查局公布在广西壮族自治区那坡县发现了由19个天坑组成的大型天坑群。这是我国境内继广西乐业大石围天坑群、陕西汉中天坑群后,发现的又一世界级天坑群,也是目前北回归线以南发现的最大天坑群。

    为揭开这一世界级天坑群的神秘面纱,记者近日采访了亚洲洞穴联盟主席、自然资源部中国地质调查局岩溶地质研究所教授级高级工程师张远海。

    那坡天坑群天坑数量多、亮点多

    谈起那坡天坑群的发现,张远海介绍说,最近几年,广西的洞穴探险爱好者通过“谷歌地球”在那坡岩溶区发现许多疑似天坑的负地形。2019年,自然资源部中国地质调查局“古生物化石与地质遗迹调查”工程,安排了《西南岩溶区碳酸盐岩地质遗迹调查与评价》二级项目,开展西南岩溶区碳酸盐岩地质遗迹的梳理与调查,着重于新发现与新认识,服务于区域地质遗迹与岩溶景观资源的保护与管理。由此,正式开始了对那坡地区的调查。

    那坡地处桂西南边陲、云贵高原余脉六韶山南缘,相对其他地方来说,地理位置非常偏远。2019年1月,项目组采用线路踏勘和无人机调查的方式,沿当地主要地下河,在定业地下河核心区开展了调查,首次在那坡县龙合乡发现串珠状天窗,有些达到天坑规模。5月,项目组对那坡城厢镇区域进行调查,还是线路踏勘和利用无人机进行调查。11月,项目组深入天坑底部开展调查,确认天坑群的数量,并在一些较大的天坑中发现了一些珍贵的天坑植被。

    据张远海介绍,根据调查,那坡天坑群形成于定业地下河流域内,定业地下河汇水面积486平方千米,地下河总长60千米,落差292米。那坡天坑群由19个天坑组成,主要分布于那坡县城厢镇和龙合乡,其次在坡荷乡和定业乡各有一个。这些天坑有的发育于海拔1000多米的高原之上,有的顺着地下河轨迹呈串珠状分布。 “我们发现,那坡天坑群主要还是数量多,个体规模均是普通天坑,没有大型天坑。”

    张远海指出,那坡天坑群的主要特点一是分布集中,保存完好,而且很多是水缸状的天坑,比较已发现的乐业大石围天坑群和汉中天坑群的发育特点和历史,说明这些天坑比较“年轻”。二是发育的地层为泥盆系—石炭系,这与全国其他天坑群不一样。三是天坑群发育的水文地质背景与其他地区也有差别,就是外源水特别少,而且地下河的水力落差也不大。四是因为那坡天坑群在北回归线以南,天坑植被具有典型的热带属性。那坡天坑群保存有完好的原始植被群落,如董棕、蛇根草、爬树龙、香木莲、棕榈树等,其中国家二级保护植物的董棕群落,林木均高在30米以上,如此高大的天坑野生董棕林为国内首次发现;天坑中央的香木莲树高50米,仅次于大石围天坑香木莲。

    尤其值得指出的是,那坡天坑群地处南亚热带,是北回归线及其以南最大的天坑群。这与靠近我国南北气候分界线的汉中天坑群这一北亚热带最大天坑群对应,有利于开展两者的对比研究。

    那坡天坑群的发现具有重要的科学研究价值和现实意义

    岩溶地区的主要特点是地表和地下双层系统。天坑是地表和地下连接最直观的地貌,是岩溶地貌演化的重要标志。

    张远海指出,那坡天坑群的发现,在某些方面填补了天坑发育和区域分布的空白,在于它的地层、水文地质、自然地理环境与众不同,为开展天坑对比研究提供了范例。其次,那坡天坑分布集中,分布密度较大,值得开展与地质构造相关的研究。

    此外,那坡天坑群的发现,更加确立了广西“天坑王国”的地位,也为普及天坑科学知识提供了条件。除天坑群外,定业地下河流域内还发育有类型众多的岩溶地质遗迹,尤其是发育丰富多彩的岩溶洞穴、岩溶峡谷、伏流和瀑布景观。“难能可贵的是,那坡天坑群和洞穴普遍保存完好,天坑周边植被也保存很好。洞穴内次生化学沉积物景观也很漂亮,旅游价值很高,旅游潜力很大,对中—越沿边旅游带构成极好的补充。这对当地旅游经济可持续发展和脱贫攻坚意义重大。”张远海说。

    这次调查还是由中国地质调查局岩溶地质研究所牵头实施的“全球岩溶动力系统资源环境效应”国际大科学计划的组成部分。国际标准化组织岩溶技术委员会已于今年9月正式落户岩溶地质研究所。那坡天坑群的发现,将进一步丰富和拓展制定相关岩溶国际标准的样本。

    为此,项目组今后针对那坡天坑群开展的工作是科普宣传和科学研究并重。一方面,进一步加强科普宣传,让公众认识到天坑群的价值,提高对天坑的保护意识;另一方面,对与天坑有关的洞穴开展进一步调查和对比研究,提升天坑研究水平。

    我国具有开展天坑研究的天然优势

    天坑是碳酸盐岩地区的溶洞大厅塌陷形成的,口径和深度不小于100米,和(或)容积大于100万立方米,四周或大部分周壁为陡崖,且与或曾与地下河溶洞相通的特大型地质漏斗。2001年之前,天坑一直被作为喀斯特漏斗的特例,直到2001年我国学者正式提议将这种喀斯特地貌命名为“天坑”。

    我国岩溶分布和发育具有得天独厚的条件,迄今发现的天坑数量比世界其他地方的总和还要多。据张远海介绍,截至2017年底,以约100平方千米分布区域为界而论,我国发现的天坑群数量27个(不包括网络报道未经实地验证发现的天坑群),仅这些天坑群的天坑数量就达到172个。这些天坑群主要集中于我国的广西、贵州、重庆、云南和四川,以及陕西汉中。27个天坑群中,最大的天坑群为广西乐业的大石围天坑群,在约100平方千米范围内分布有29个天坑(早期统计38个)。其次是广西巴马的盘阳河天坑群,在约100平方千米范围内发现天坑16个(早期统计20个)。第三是陕西镇巴县的三元天坑群,在约100平方千米范围内发现天坑13个(早期统计19个)。在27个天坑群中的172个天坑中,天坑直径大于500米或天坑容积大于5000万立方米的超大型天坑有16个。

    从2003年天坑理论体系建立, “天坑”成为继石林、峰林、峰丛之后第四个来自中国的岩溶科学术语。我国的天坑研究一直走在世界前列。中国地质调查局岩溶地质研究所分别于2005年和2018年在桂林和汉中举办了两次国际天坑研讨会,“天坑”这一科学术语也因此受到世界岩溶和洞穴学家的关注,逐步得到了世界的认可。国内外学者从天坑形态、类型、成因、发育等方面进行了系统地研究,同时吸引了除地质学之外的旅游学、景观学、地理学、生物学、环境学、气候学、水文学、体育学、文学、传播学等众多学科学者的积极关注与广泛参与,为这些学科带来了新的研究方向,但多学科研究还处于起步阶段。

    张远海指出,天坑作为一种岩溶地貌类型,与地下河密不可分。因为天坑是地下河侵蚀、溶蚀,洞穴发育到非常成熟的形态——溶洞大厅垮塌后并逐渐在地表呈现的形态。因此,天坑作为岩溶地貌演化的标志显得尤为重要。而天坑的形成年龄研究及其研究手段,目前还很不理想。

    利用我国具有的天坑研究的优势,中国地质调查局岩溶地质研究所将广泛开展国际合作,进一步推动“全球岩溶动力系统资源环境效应”国际大科学计划的实施,并为相关岩溶国际标准的制定提供科学依据。

     

    弄羊天坑  伍红鹰 摄

     

    定业地下河出口洞穴石幔  向航 摄

     

    燕子洞天坑  伍红鹰 摄

     

    弄羊天坑底部董棕树林  萧文往 摄

     

    科考队员探秘天坑底部  向航 摄

    走出深闺待人识

    湘潭水稻种植试验

    应用根系微地球化学障技术进行水稻育苗

    环境矿物材料土壤改良试验田

    EK—SS中试实验装置

    土壤承载着世界万物,提供养料,蓄积水分,塑造了丰富的自然环境。在人类活动的作用下,土壤不断受到侵蚀和污染。正如蓝天不能雾霾如盖,大地亦不能厚土载污,土壤污染防治迫在眉睫。

    相对水体和大气污染而言,土壤污染更具隐蔽性、滞后性和难可逆性,其治理修复难度大。相对于污染场地与矿山,耕地土壤的修复因为要尽可能地恢复其种植功能,难度更高。在第29个全国土地日到来之际,我们聚焦地质科技工作者研发的土壤污染修复新技术,看看他们如何让被污染的耕地重新焕发生机。

    生物质电厂灰渣:

    有效降低农作物对重金属的吸收

    范建勇

    土壤重金属污染钝化修复技术主要是通过添加外源物质,将重金属转化为不易溶解、迁移能力或毒性更小的形式,以降低其对农田生态系统的危害风险。

    针对以上问题,中国地质调查局水文地质环境地质研究所韩占涛研究员课题组经过6年研发,成功将生物质电厂灰渣制成重金属污染土壤的钝化剂,取得了对镉、镍、铅等重金属较好的钝化效果,不仅成本低廉、效果稳定,而且可改良土壤,增加作物产量。

    2016年,课题组在湖南湘潭一块土壤镉含量在2.05~2.60毫克/千克的土壤中,进行了稻麦两季种植试验,每块试验地块面积为7.5平方米,添加了课题组制备的两种型号的钝化剂,添加量为土壤干重的1%、2%、5%(约合2吨/亩、4吨/亩和10吨/亩)。种植试验选用“新华两优9号”水稻,种植期间的浇水、施肥等均由当地农民按传统水稻种植方法管理。

    第一季晚稻收获后测量结果表明,稻米亩产从背景土壤中的373~423公斤/亩增加到528~666公斤/亩,增产幅度达24%~79%。稻米中的镉降幅达69%~88%,镍的降幅为60%~72%,锌的降幅33%~45%,铜的降幅17%~32%。

    2017年第二季晚稻的试验结果更为喜人。添加1%的钝化剂后,稻米中镉的降幅达93%,由背景样品中镉含量接近2毫克/千克降到了标准值0.2毫克/千克以下;镍含量未检出,铜降低14.3%,锌降低19.2%,而稻米产量相对于对照区仍然保持了14.8%的增幅。至此,该农田可以认为完成了修复。

    在两季水稻之间种植了冬小麦。小麦收获后的测量数据表明,小麦籽粒中镉含量降低了65%~76%,镍含量降低了84%~93%,对作物生长有益的铜和锌的含量降低则较少。同时,小麦增产24%~36%,实现了与水稻相似的钝化和增产效果。

    针对北方镉污染小麦问题,课题组在河南省济源市一处镉铅污染农田开展了钝化修复试验,向试验田中添加了土壤干重2%的本钝化剂,收获后的测量结果表明,小麦籽粒镉含量降低33%,产量增加72.5%。

    除此之外,课题组还将该钝化剂在云南会泽县者海铅锌镉污染土壤修复、河南新乡镉污染小麦田修复中进行了试用,均取得了很好的修复效果。

    生物质电厂灰渣是生物质在电厂锅炉中燃烧产生的灰渣,由于使用的燃料为秸秆,因此排出的灰渣属于草木灰系列,含有大量的硅酸盐,以及钙、钾、铁、镁等有益元素。因此,用生物质电厂灰渣制作的土壤修复钝化剂,绿色安全,可改良土壤。同时,具有明显降低作物对镉、镍等重金属的吸收,但不会大幅度降低作物对锌、铜等有益元素的吸收,以及增产效果显著的优点。这为我国大面积重金属污染农田修复提供了一种低成本、高效益的快捷方法,具有巨大的推广价值。

    “根系微地球化学障”修复技术:

    从农作物根部减少对重金属吸收量

    朱晓华

    在江西省赣州市,中国地质调查局地质实验测试中心开展了在产农田重金属污染修复工作,针对不同水稻类型和不同耕作方式,结合当地耕作工艺,利用地球化学工程技术对农田进行修复,取得良好修复效果。在此基础上,研究团队首创性提出了“根系微地球化学障”修复模式和修复技术,改善修复工艺,显著降低修复成本。

    研究团队在水稻栽种的不同环节利用传统工艺进行材料添加。实验结果表明,在水田种植条件下,改性材料修复效果明显强于原矿材料;改性后的无定形材料修复效果要好于球形材料;不同耕作环节添加材料,对修复效果影响巨大。

    根据以往工作成果和文献调研结果,研究团队创新性提出“根系微地球化学障”全新修复概念,将地球化学障技术应用于水稻根系上,形成微型障,阻滞水稻往根系中迁移,减少根系对镉的吸收量,从而降低稻米中的镉含量。该技术是针对当前应用面最广的抛秧种植水稻技术研发,在育秧过程中,将修复材料按照一定比例添加到育苗土中,并使其固定在秧苗的底部,在抛秧时进入农田,在稻米根系处发挥作用。该方法将材料用于关键部位,避免了大田播撒时部分材料分散在非根系吸收范围内,而不能真正发挥作用。该操作完全基于农耕工艺,基本不增加农民的工作量,可以大大降低修复材料的使用量和人力成本。

    在研究区域,通过一季稻修复示范,效果明显,稻米中镉去除率超过80%,修复成本大幅下降,成本比市场价降低超过80%,基本解决了该类污染农田的修复成本瓶颈问题,具有应用推广价值。

    环境矿物材料:

    降低土壤中重金属的活性成分含量

    殷汉琴

    近年来,针对浙江省内部分耕地受重金属污染的情况,浙江省地质调查院开展了利用环境矿物材料进行污染土壤修复和改良的试点研究,取得明显成效,为浙江省污染耕地的安全利用和土壤污染修复提供了技术支持。

    重金属在土壤中有多种赋存形态,包括离子交换态、水溶态、碳酸盐态、腐殖酸态、铁锰氧化态、强有机态、残渣态等。其中,前三种形态可直接被作物吸收,将其转化成其他不易被作物吸收的形态或者络合固定是研究的目的。浙江的试验研究表明,对土壤中活性成分较高的重金属污染的土壤,矿物材料钝化修复效果较好。湖州试验田的土壤为中性偏碱性,添加单一的膨润土就能够有效地降低土壤中重金属的有效态含量,减少农作物对镉的吸收,且具有环境友好的特征。试验结果显示,稻米镉的含量降低50%,达到安全水平。

    龙游黄铁矿区的试验田土壤酸性较强,单一的吸附材料如膨润土和沸石对降低稻米中重金属的含量作用甚微,而偏碱性的磷灰石则作用显著。实验还发现,添加膨润土、沸石与磷灰石组成的混合材料,对重金属含量的降低程度大于单一材料的理论叠加。龙游60亩试验田中,两种不同的组合环境矿物修复试验结果表明,稻米中镉的含量分别降低83.0%和63.9%,含量均达到安全水平。

    经成本核算,用环境矿物材料修复重金属污染土壤,酸性土壤的修复成本在680~2720元/亩,碱性土壤的修复成本在400~1600元/亩。综合考虑修复效果和成本,针对浙江省酸性土壤重金属污染,膨润土加磷灰石是最优选的矿物钝化修复材料;而碱性土壤重金属污染的修复,膨润土或沸石都是优选材料。

    电动—稳定化修复技术:

    将重金属与土壤直接分离

    黄园英

    中国地质调查局地质实验测试中心在湖南湘潭针对多重金属复合污染土壤,提出了电动—稳定化(EK-SS)修复技术,以锌、铅、镉、铜和汞为主要目标污染物,研发了EK-SS技术工艺流程及中试实验装置。

    结果表明,自主研发的活化剂性能优越,最佳添加量为0.3%;活性炭作为重金属稳定剂(捕获材料),SS技术(重金属捕获器)能够将污染重金属固定在负极材料中,与土壤直接分离。该项研究重点解决了如何使土壤中的多种重金属同时做快速定向运动和如何将EK-SS的具体修复方案和修复装置实用化两个技术难点。

    在全面总结前人电动修复技术的基础上,课题组提出了有别于美国孟山都公司LasagnaTM模式的EK-SS模式,试制了16台小试实验装置(土壤量为2 千克)和6台中试实验装置(土壤量为200 千克)。

    典型示范结果表明,该技术对多种污染土壤各种形态的重金属都有去除作用,包括铜、铅、锌、镉、汞和砷,尤其对土壤中残渣态重金属能够大幅度去除,经过48小时处理,土壤中大多数重金属浓度可降低70%左右。经研究试验,电极板作用距离从20厘米扩大至200厘米,修复周期从3月~3年缩短至2~4天,大幅度提高了修复速度和效率,使修复成本由每立方米高于2500元降低至565元左右,初步形成了重金属复合污染场地修复的EK-SS新技术和配套修复装置等创新成果。

     

    还大地一片净土

    捷克团队在小南海地下河做示踪试验。翟秀敏 摄

    天星岩“T”字大厅主洞地下河下游方向,受洞道崩塌块石的淤塞,因而在崩塌体上游一侧堆积大量砾石。更为奇特的是在崩塌体之上,有水平层理保存完整的古砾石层,说明崩塌体年代较久。 扬·斯洛特克 (捷克) 摄

    中外科考队在天星岩主洞和支洞交叉的“T”字大厅合影。扬·斯洛特克 (捷克) 摄

    占据全球天坑总数1/4的陕西汉中天坑群,一经发现便引起国内外的广泛关注。

    中国地质调查局岩溶地质研究所、中国地质环境监测院、陕西省地质调查院联合开展天坑和洞穴普查,发现典型的天坑和漏斗54个,其中口径大于500米的超级天坑2个、大型天坑7个、常规天坑45个,其他地质遗迹473处。中国科学院院士袁道先一行对汉中进行实地考察后认为,这是在北纬32°~33°范围首次发现的、我国岩溶台原面上发育数量最多的天坑群,这一发现将我国湿润热带—亚热带岩溶地貌区界线显著北移,对中国南北方乃至全球古地理环境及气候变化的对比分析具有重要科学价值。

    为了更好地保护和利用汉中天坑群地质遗迹资源,通过岩溶水文地貌系统的深入调查进一步揭示汉中天坑群的演化机理,中国地质调查局于2018年下达了《陕中南岩溶区水文地质环境地质调查》项目,由岩溶所承担,并作为“全球岩溶动力系统资源环境效应”国际大科学计划的组成部分。4月28日~5月9日,岩溶所通过自然资源部第四次邀请捷克科学院地质所和捷克洞穴协会的专家,协助开展了汉中南郑洞穴调查;同时,与陕西省地质调查院、中国地质环境监测院共同组织精兵强将,开展了区域地质、水文地质、地下水示踪、洞穴年龄、第四纪古环境等方面的调查与研究。

     

    中捷联合科学考察新发现

    张远海 翟秀敏 陈伟海

     

    这是中国—捷克第四次对汉中天坑群进行联合科学考察。

    捷克团队11人共分3组,分别利用地下潜水、橡皮艇漂流、洞穴单绳技术对小南海观音洞地下河系统、天星岩洞穴系统、伯牛坑洞穴系统进行了洞穴探测。中方团队29人,承担了大佛洞洞穴系统、西沟洞洞穴系统的补充探测工作,并就小南海台原地区的洞穴沉积物进行了系统的采样。

    此次科考新发现洞道15.3千米,其中天星岩新发现洞道6224米,包括2处溶洞大厅;伯牛坑新发现洞道407米;小南海观音洞新发现洞道1036米,它是大佛洞主要的地下河排泄系统;吊洞新发现洞道584米;新发现大佛洞支洞5547米,探测西沟洞1442米。大佛洞地下河系统新发现洞道超过1000米,并与多个洞穴大厅相连,说明大佛洞洞穴系统发育期次之多,规模之大超于早期认知。

    科考团队采集了重砂样品5件,其中洞内3件、地表样2件,为揭示洞内砾石来源和地下水运移途径提供了科学依据;采集岩石标本8件和草测地质剖面4条,以揭示南郑台原地区的天坑、洞穴发育的构造、岩性的控制作用,分析天坑洞穴的成因规律;采集宇生核素石英样品8件,以测定洞内石英的埋藏年龄和洞口石英沉积物的曝露年龄,推理洞穴发育时间和崩塌时间;采集洞穴石笋4根,分析了南郑地区末次冰期DO18事件的区域特殊性,是北半球驱动的特殊响应。

    科考团队在伯牛坑投放荧光素钠示踪剂,并于大佛洞地下河出口、观音洞、白水洞、龙王庙洞进行了样品的接收,实验结果将揭示南郑台原地区洞穴系统的排泄途径和地下分水岭情况,为揭示岩溶洞穴、天坑发育提供又一有力证据。

    此次科考在陕西最大溶洞大厅发现,地下分水岭成因揭示和天坑演化地貌背景研究等3个方面取得新成果。

    ——发现陕西最大的溶洞大厅。

    2016年5月,第一次中国—捷克联合天坑科考队在汉中市南郑区小南海岩溶台原面西北侧干河沟村发现了天星岩。当时,对天星岩2个消水洞和天星岩漏斗的探测结果是,洞穴长度157米,认为这是一个季节性的消水洞。今年5月1日,科考队再次对消水洞进行勘查,发现150米深处的地下河峡谷,沿地下峡谷1.7千米后,在丁字洞道交叉处发现主洞道,主洞道高大宽敞,沿主洞道行进3.5千米后,发现了长300余米、宽100米的溶洞大厅,而且主洞道仍在延伸。科考团队根据区域地质情况推测,这可能是陕西最大的洞穴大厅。

    岩溶所副所长蒋忠诚指出,一般在岩溶发育条件非常好的热带及亚热带低纬度地区才有洞穴大厅。此次发现的长300米长、宽100米的洞穴大厅,相当于十几个足球场的大小,这在亚热带和温带交界地区是少见的。这说明,这里的岩溶发育程度、岩溶动力条件非常好。

    ——揭示分水岭成因。

    在天星岩探测过程中,科考队发现,洞穴走向完成了一个360度的大拐弯,最后向西北侧的白水洞排泄;而在同纬度的小南海岩溶台原面东北侧却是小南海地下河出口。二者间地下分水岭在哪里?岩溶所教授级高级工程师吕勇在经过仔细踏勘后认为,导致天星岩地下河和小南海地下河分水岭的原因是宽缓褶皱的背斜部位,更重要的是石灰岩众多硅质条带夹层的隔水作用。这个认识也解释了天星岩洞道东侧硅质条带上发育的众多瀑布的机理。

    ——天坑演化地貌背景研究新认识。

    过去在进行天坑演化历史的研究中,关注更多的是洞穴沉积物埋藏年龄研究,寻找洞穴古河流堆积物中的石英颗粒。而此次对大佛洞对岸罗汉洞的古地下河沉积物中石英颗粒的研究,转变为对石英暴露年龄的研究,这样一来,就从单纯洞穴演化历史的研究转变为对整个区域环境演化的研究。

    今后,岩溶所将在中国地质调查局的指导下,以及陕西省地质调查院的支持和配合下,继续加大投入开展《陕中南岩溶区水文地质环境地质调查》项目,用科学数据证实汉中天坑群的科学价值,进而提升岩溶地貌学、岩溶水文地质学的社会应用价值。

     

    汉中洞穴探险记

    张远海

     

    4月底,汉中的雨季尚未完全到来,虽然小南海岩溶台原面龙头山上还残留皑皑白雪,但气候业已回暖,鲜花盛开,正是洞穴调查探险的好季节。我们与来自捷克科学院地质所和捷克洞穴协会的探险家们一起,再次赶赴汉中,开展天坑群联合可科学考察。

    洞里淘砂

    龙洞,位于小南海台原面中东部,是个出水洞穴。5月5日,我们于午后从小南海镇出发前往龙洞。

    车停于洞口下方,我们带上安全帽和头灯,攀援而上。洞口凉风徐徐而来,洞底溪流叮当而出。在入洞50米许,中国地质调查局岩溶所的区域地质调查专家吕勇找到一处回水区,正好是沙砾堆积之处。按照吕勇的指导,我在下游堆一小坝,蓄水淘砂。

    淘砂是为了进行重砂分析,寻找它的地表源头。重砂是相对密度较大、物理和化学性质比较稳定的矿物,因其相对密度较大、呈砂状,故名重砂。根据重砂的矿物组合,进行物源识别,从而判定物源方向和物源区的大致位置。

    吕勇熟练地利用淘砂盆的角度首先将黏土淘洗出去,然后将大颗粒的砾石扔掉,很多遍之后,黑色的粉末状物质浮现出来。这就是重砂。后来我们又在溪流上游、洞穴深处又淘了两处重砂样,差不多1千克,装入塑料袋中,编上号,大功告成。

    接着,我们赶往大佛洞淘砂。大佛洞在1970年代是兵工厂所在地,如今被开发为旅游洞穴。因为做过工厂,洞中沉积物大部分已荡然无存。因此,寻找样品只能在洞穴深处和洞道高处。

    下午的时间所剩不多,我们分为两组分头行动。在距离大佛洞洞口200米东南侧上方、60~70米高处为古佛洞上层洞,2016年在探险过程中发现洞道一侧有古地下河水文边槽,边槽内有古地下河的沙砾堆积。从下层洞到上层的道路为30~40厘米宽的步道,甚是险峻。好在,2016年留下的绳索还在。我抓住绳索,绕右手腕一圈,一步一绕,匍匐上行。步道顶端为乱石堆,越过乱石堆,才至边槽平台。很快采满了一大袋样品,然后背负下洞。

    比起上坡,因为负重,脚底反而更稳,加上绳索护身,倒也不觉艰难。

    山中寻宝

    淘砂只能确定洞内的堆积物从何处来,无法确定沙砾堆积什么时候进入洞穴。要确定沙砾进入洞穴的时间,还要寻找更好的“宝贝”——沙砾堆积物中的石英。

    5月6日清晨,我们从小南海镇出发,到罗汉洞寻找石英。

    与我一同展开寻宝之旅的是陕西省地质调查院教授级高级工程师张俊良。出发之前,老乡告诉我们寻着养蜂人的小道可以方便地找到洞口。

    到达山边,果然看到了一条小道,但并不是养蜂人的羊肠小道。往山上望去,坡度60度以上不仅有浮土,更危险的是碎石,甚至大块石。一旦滚落山下,可能危及谷底的寺庙和香客。

    我们小心翼翼地尽量寻着基岩裸露的谷坡上行。上到一半,幸运地在毛竹林中找到了养蜂人的“之”字形小道。从小道穿过竹林,终于可以一窥洞口的风貌,却发现此洞口好像不是与大佛洞相对应的洞口。带着疑问,张俊良给同伴打电话,同时挥舞手中的强光手电,让同伴看看我们所站的位置是否是大佛洞正对的洞口。果不其然,同伴告知,大佛洞正对的洞口在我们所在洞口的右侧。从我们所在的位置向右望去,完全是悬崖峭壁。借助藤蔓的保护,我们决定翻越峭壁。

    抓住藤蔓,我们不敢上望,也不敢往下看,每移动一下,都思考数分钟,生怕意外发生。但越是小心,越出问题。有时藤蔓挂住背包的带子,有时缠住背包里露出的鎯头手柄,令人进退不得。只好一只手抓住藤蔓,腾出另一只手解开藤蔓,再继续前行。

    越过陡崖,终于到达另一个山坳,洞口就在陡坡上方50米左右的位置。比起峭壁,陡坡因为有许多松动的块石而更难攀援。我跪在陡坡上,寻找着可依附之物,或树根,或兰草,或藤蔓,好不容易上升了20多米,人已气喘吁吁。又前行了20余米,宽大的洞口已近在咫尺。

    仔细环视洞口,洞口呈岩屋状,宽50米左右,洞高15~20米,大洞口西侧还有一个小洞,洞口宽3米,洞高2米,洞深5米多,洞壁四周全是石英沙砾沉积,而且沙砾沉积表现明显的韵律层理,粗砂——较大的卵石和砂——细砂——黏土,如此循环反复。

    张俊良和我,一边讨论砂砾石形成的地质背景,一边测定砂砾石沉积剖面。我从上至下、从左到右依次取样;张俊良则采集10厘米以上的花岗岩砾石样和砂卵石样,回去左切片样,这样做物源分析更有效果。我采集了大约40多斤的样品,背负下山。

    坑底寻洞

    天星岩,是小南海台原面西北侧的一个天坑,于2016年中国—捷克联合科考探险时发现。

    天星岩天坑坑口直径和深度都接近百米,上部是天坑洞口,底部为一条季节性的消水洞。消水洞平时为干洞,下雨的时候,水会充盈溪沟,满灌洞口。

    在消水洞西北方向大约2公里是地下河出口——白水洞;而在消水洞东北方向约3公里也是地下河出口——小南海观音洞。那么,消水洞的水究竟流向何处?为了确定地下水的流向,探险队决定再次对天星岩地下洞穴进行探测。

    前三天,主要是安装单绳系统。探测从第四天开始进行。

    最开始探测数据显示,洞道往东南延伸,于是大家判断洞道往伯牛坑方向延伸,可能与伯牛坑相连。次日,探测数据显示洞道又转向东北方向,于是大家又推断,洞道往西沟洞方向延伸,可能与西沟洞相通。再探测的数据又显示东南向延伸,大家的推断又回到伯牛坑。每天科考回来,无论多晚,我们都要将数据输入电脑,看看洞道的延伸方向。直到第7日探测,探险队发现了一条宽30米、高50米以上的大洞穴,才明白以前探测的不过是天星岩洞穴系统的一个小支洞。

    我是最后一天参加科考的,随行的除了捷克的扬·斯洛特克三人团队外,还有汉中洞穴科考爱好者李辉和余欣。

    我们从路边下到季节性河道,然后顺河道走向天坑,首先是个30米的陡坎,然后横向30米,进入第二个40米陡坎,之后一小段横移,下第三个30米陡坎到地下河床。这三个陡坎,正好验证了天星岩天坑的演化历史阶段,从内往外随着河水侵蚀下切,裂点不断后退形成陡坎。

    到达地下河床后,洞底并非水平,也是一段一段的小陡坎和跌水、水潭。为了探测安全和方便,探险队安装了多种类型的绳索系统,从辅助的绳结式或扁带式攀登,到独木桥式跨越,锚点贴壁横移、悬空横移,甚至绳索桥,绳索桥和保护绳配套的横移,应有尽有。

    3个半小时后,我们终于抵达主洞和支洞交叉的“T”大厅。借助强光手电的光,我们初步估计大厅底的面积有1万平方米左右。我仔细观察洞道形态,主洞完全不同于支洞清晰的溶蚀沟槽、窝穴、流痕等丰富的微形态,主洞洞壁则式清晰可见、深浅相间的微倾斜岩层;与支洞洞底丰富的卵石堆积不同,主洞洞底大部分为黏土堆积和崩塌块石,局部可见河床卵石;与支洞峡谷状洞道不同,主洞洞道为大型廊道状,厅堂状洞道;与支洞倾斜洞底和众多跌水不同,主洞洞底则总体起伏不大,但洞道一侧总是伴随大量的崩塌体和黏土堆积形成的高坡;与支洞地下河占据整个洞底并伴随众多水潭不同,主洞地下河仅在洞道一侧流淌,或左或右,流量为支洞地下河的5倍左右。

    我们在洞道高处寻找古地下河沉积物堆积,看看是否能发现石英颗粒。很遗憾,大部分堆积体为黏土,即使发现卵石,其成分大部分为灰岩,个别为砂岩和硅质岩(燧石),没有发现石英颗粒。

    我们前行了一段距离,在采集两个重砂样后,算一算返回时间,决定先行撤离。经过连续4个半小时的艰难攀行,才看到洞口透进来微弱的光。

    (作者单位:中国地质调查局岩溶地质研究所)

    延伸阅读

    中捷科学家汉中探险

    ■ 2016年5月19日~5月31日

    中国地质调查局岩溶地质研究所通过国土资源部,邀请以捷克科学院地质研究所副所长迈克·菲利皮博士为领队的捷克科学院岩溶洞穴科学考察队,在陕西汉中南郑县开展了第一次岩溶洞穴科考合作,证实在陕西省汉中市南郑县小南海镇台原上存在天坑,并对其地下河进行了初步勘查。这是首次在我国热带—亚热带岩溶区最北界发现的天坑地质奇观。

    随后,岩溶所与中国地质环境监测院、陕西省地质调查院开展密切合作,将天坑理论系统引入地质调查工作,在整个米仓山岩溶台原面展开天坑岩溶地质遗迹调查,更多天坑不断被发现。

    ■ 2016年10月20日~11月1日

    岩溶所组织第二次中国—捷克岩溶洞穴科学考察,对宁强县地洞河地下河系统进入探测,探测长度12千米,为我国北亚热带及其以北最长洞穴。这次科考初步确定地洞河天坑发育的水文地质背景和发育特征方面的独特性;与此同时,组织国内洞穴科考爱好者对镇巴县圈子崖、天玄坑及其附近溶洞进行探测,并对天坑形态进行了系统探测。

    ■ 2017年4月30日~5月12日

    岩溶所组织第三次中国—捷克岩溶洞穴科学考察,对镇巴县风洞系统进行初步探测。

    根据以上调查成果,并通过对全球天坑进行对比分析,科考团队确定汉中小南海天坑群和我国西南大石围天坑群为各具特色的两种演化模式,即大石围外源水穿越型岩溶天坑演化模式和小南海内源水窗式岩溶天坑演化模式,同时将天坑类型确定为溶蚀性崩塌天坑和侵蚀性崩塌天坑两种类型。

    同时,岩溶所与陕西地质调查院开展合作,确定汉中天坑群的国际地位:汉中天坑群成群出现,数量众多,迄今发现4个天坑群54个天坑,集中分布于陕西汉中4个台原面,占据全球天坑总数的近1/4,举足轻重;汉中天坑群是内源水窗式岩溶天坑演化模式的典型范例。汉中天坑群是全球发育在岩溶台原上的最大天坑群,也是我国北亚热带最大的天坑群。

    再探汉中天坑群

     

    2015年中国西南岩溶石漠化分布图

      

    贵州巨木地下河出口筑坝拦蓄地下水

      

    中国西南地区岩溶景观

     

    致力于促进全球岩溶资源可持续利用和环境可持续发展的“全球岩溶动力系统资源环境效应”国际大科学计划,前不久在广西桂林正式启动。

    该计划由国土资源部中国地质调查局提出实施,旨在建立全球岩溶环境监测网络,攻克岩溶关键带科学难题,各国共绘全球岩溶一张图,为人类利用岩溶资源、保护岩溶生态提供科学方案和公共信息服务。

    国土资源部部长姜大明在贺信中称,这是一项雄心勃勃的大科学计划,更是一幅岩溶地质科学造福人类的宏伟蓝图。联合国教科文组织总干事伊琳娜·博科娃则通过贺信表示,国际大科学计划中提出的研究领域,对克服我们人类共同面临的难题来说是非常重要的,非常期待能听到关于项目实施取得进展并获得成功的好消息。

     

    1 中国为“全球岩溶”国际大科学计划实施奠定坚实基础

     

    阅读提示:中国取得了一系列具有全球视野的岩溶研究成果,并为国际大科学计划的实施提供了理论基础、科学思路、人才队伍、技术条件以及国际合作经验。

    目前,世界上的岩溶区分布面积约为2200万平方千米,约占世界陆地总面积的15%。我国的岩溶面积约为344万平方千米,约占国土面积的1/3。其中,我国西南裸露岩溶面积达54万平方千米,涉及贵州、广西、湖北、湖南、云南、四川、重庆和广东等8省(区、市),是我国碳酸盐岩层分布最为集中的地区,也是世界三大岩溶集中连片区中面积最大、岩溶作用发育最强烈的典型地区。

    岩溶地区山水奇特,水资源和油气资源丰富,为人类生产生活提供了得天独厚的物质资源和精神享受。但是,岩溶地区面临的干旱、石漠化、水污染、水土漏失等环境问题,也已成为当今制约经济社会可持续发展的全球性问题。

    近年来引发关注的是,岩溶作用在应对气候变化中可发挥重要作用。已有研究发现,全球的岩溶作用能够吸收与全球森林植被比例相当的大气二氧化碳,而且岩溶洞穴石笋可以年际分辨率记录气候环境变化,与黄土、冰芯、湖泊沉积及树轮等古气候环境记录比较,具有记录时间跨度大、年代记录准、分辨率高等优势。

    为有效解决岩溶地区的资源环境问题,促进全球岩溶资源的可持续利用和环境的可持续发展,科学应对全球气候变化,中国地质调查局倡导设立了“全球岩溶动力系统资源环境效应”国际大科学计划(以下简称“全球岩溶”国际大科学计划),依托联合国教科文组织国际岩溶研究中心和中国地质调查局岩溶地质研究所,以地球系统科学和岩溶动力学理论为指导,利用10~12年时间,建立全球岩溶生态环境监测网络,研究和查明全球不同岩溶动力系统类型的碳—水—钙循环规律和资源环境效应,突破岩溶关键带资源环境科学问题的瓶颈,创新岩溶资源勘探开发和岩溶环境治理与保护科学技术体系,创建全球岩溶资源环境信息平台,各国共绘全球岩溶一张图。

    据该计划负责人、联合国教科文组织国际岩溶研究中心常务副主任曹建华介绍,目前,国际岩溶研究中心及其依托单位中国地质调查局岩溶地质研究所,已经为计划的实施奠定了坚实基础。

    以中国科学院院士袁道先为首的科研团队建立了以碳—水—钙循环为核心、以岩石圈、水圈、大气圈、生物圈四大圈层为主体结构的地球系统科学观下的岩溶动力学理论,为计划的实施奠定了理论基础。在国际地球科学计划(IGCP)中国国家全委会支持下,我国科学家牵头连续主持实施了5个岩溶领域国际地质对比计划,储备了40个国家200多名优秀的专业技术人才,为计划实施提供了科学思路和人才队伍。国际岩溶研究中心7年的高效运行,已与15个国家和国际科研机构签订了合作备忘录,推动了8个国家间岩溶领域的深入合作研究,成功联合国际著名岩溶学者举办了7次国际培训班,为计划的组织实施提供了国际经验和基础。国际岩溶研究中心在中国、美国、泰国、斯洛文尼亚等岩溶国家建立了岩溶生态环境监测站,并与东亚东南亚地学计划协调委员会(CCOP)国家、东南亚国家合作开展了岩溶地质和跨界含水层编图,建立了全球岩溶科技创新平台和编图技术方法,为计划实施提供了技术条件。

    更为重要的是,我国在岩溶作用与碳循环、洞穴石笋古环境重建、岩溶生态系统与石漠化治理、岩溶地质公园和世界自然遗产申报与保护,岩溶地下河和表层岩溶水探测与开发、碳酸盐岩油气储存区古岩溶刻画等方面取得了一系列具有全球视野的岩溶研究成果,奠定了我国岩溶研究的国际领先地位,使中国地质调查局牵头组织实施“全球岩溶”国际大科学计划顺理成章。

     

    2 建立全球岩溶生态环境监测网,因地制宜修复和保护岩溶生态

     

    阅读提示:只有揭示全球不同类型岩溶动力系统的演化、形成过程、结构功能和运行机制,因地制宜运用各国经验,才能科学、合理地修复和保护岩溶地区生态,并实现其可持续发展。

    我国岩溶动力学理论的发展历史,可以追溯到20多年前对岩溶地球化学的研究。

    国土资源部岩溶动力学重点实验室的研究团队,在中国科学院院士袁道先的带领下自1990年以来连续实施的国际岩溶对比计划项目,在岩溶形成演化、碳循环、岩溶生态和水资源等领域,为国际岩溶学术界提供了共同解决岩溶地区资源环境问题的平台,将地球系统科学思想引入现代岩溶学,建立了岩溶动力学理论,有力推动了国际岩溶学科的发展。

    曹建华介绍说,在岩溶地区,岩石圈、水圈、大气圈、生物圈界面上的碳—水—钙和其他元素之间的物质、能量传输与转换,构成了岩溶动力系统。由于岩溶动力系统同时受到地质、水文、大气和生物过程的影响,因此岩溶动力系统有各种不同的类型。在上世纪90年代,我国岩溶地质学家开展了一系列研究,提出了将“岩溶形态组合”(即在相同环境下形成的宏观的微观的、地表的地下的、溶蚀的和沉积的岩溶形态的配套组合)作为全球岩溶对比的基础,推动了全球岩溶对比的顺利进行,并揭示出在世界上具有不同地质环境背景的岩溶区,其岩溶系统与人类活动的相互作用是极不相同的。因此,只有对全球不同类型的岩溶动力系统进行对比,揭示其不同的演化、形成过程,及结构功能和运行机制,因地制宜地运用各国经验,才能更加科学、合理地修复和保护岩溶地区的生态,并实现其可持续发展。

    为进一步开展国际合作与对比研究,“全球岩溶”国际大科学计划将针对全球岩溶主要类型,重点在中国西南与中南半岛热带亚热带岩溶区、北美亚热带温带岩溶区(美国)、 加勒比海地区和印尼热带新生代孔隙碳酸盐岩岩溶区、中东干旱岩溶区(伊朗、土耳其)、地中海型气候岩溶区(斯洛文尼亚、塞尔维亚等)、冈瓦纳大陆岩溶区(巴西、澳大利亚)设置岩溶环境监测站,逐步实现典型地区连续高分辨率监测,建成覆盖全球的岩溶环境监测网络。

    为保证全球数据统一及不同比例尺数据的交互使用,还将建设分布式全球岩溶数据平台。

     

    3 创新资源勘探开发和环境治理技术体系,应对岩溶区生态环境面临的挑战

     

    阅读提示:瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等进行技术创新。

    “让我们共同协商,推进国际大科学计划的完善和实施,为应对岩溶地区脆弱的生态环境面临的诸多挑战,为全球岩溶地区的资源合理利用、经济社会发展贡献岩溶地质科学家的智慧与才华。”在“全球岩溶”国际大科学计划启动仪式上,中国地质调查局岩溶地质研究所所长刘同良代表中国岩溶地质科学家,向全球从事岩溶科学研究的同行们发出倡议。

    推动岩溶科技创新,切实改善岩溶地区居民生活质量,是全世界岩溶国家和广大岩溶科技工作者的一致目标。为此,“全球岩溶”国际大科学计划瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等领域,发挥国际岩溶研究中心国际平台作用,充分利用各岩溶国家的技术及资源优势,创新科学技术体系,应对岩溶区脆弱生态环境面临的挑战。

    已有的研究数据表明,随着植被的恢复、岩溶作用强度的增加,近10年中国西南岩溶区石漠化综合治理工程增加了2500万吨的岩溶碳汇量。中国地质调查局岩溶地质研究所创新流域尺度岩溶碳循环研究方法,研发的陆地植被、土壤改良、引入外源水和沉水植物等人工干预固碳增汇技术,引领了国际岩溶地质碳汇研究新方向。此外,利用微区取样技术,通过同位素微量测试,准确获得了石笋记录的年际尺度历史气候变化信息,恢复重建了高精度的古气候和古环境变化历史,为预测未来气候变化趋势提供了科学依据。为科学应对气候变化,“全球岩溶”国际大科学计划将着重开展岩溶环境二氧化碳增汇效应研究,在查明流域水文地质、环境地质条件基础上,对比研究植被变化、土壤改良、土地整理等人工干预措施对流域碳通量的影响,进而创建人工干预增加岩溶碳汇技术体系。

    岩溶区地下水的开发利用,为世界约25%的人口提供了饮用水源。但岩溶地区孔、隙、缝、管、洞并存,岩溶地下水流运动规律复杂,时空分布极不均匀,使得岩溶地下水的开采难度大大增加。对此,“全球岩溶”国际大科学计划将选择典型岩溶水系统,开展不同类型岩溶地下水开发利用技术与方法研究,形成岩溶水开发利用模式和高效利用技术集成。针对典型岩溶地区岩溶干旱、内涝、石漠化、水污染、水土漏失等问题,建立岩溶地区水土耦合调控信息平台,形成岩溶地区水土耦合调控技术体系。

    岩溶石漠化是岩溶生态系统在特定条件下运行的产物,其分布具有区域性。针对全球不同岩溶环境类型区,“全球岩溶”国际大科学计划将研发适宜各种类型的石漠化综合防治和岩溶生态修复模式及技术体系,阐明生态环境对水资源的调蓄功能,研发生态与工程联合调蓄岩溶水资源的技术,并开展试验示范。在岩溶含水层水质详细调查的基础上,选择已经发生污染的地下河(泉)系统或子系统为典型案例区,开展岩溶地下水环境修复技术及工程研究。

    旱涝、石漠化、水污染、水土漏失、岩溶塌陷等在全球岩溶区普遍发生,更令人担忧的是,这些环境问题和岩溶地质灾害形成演变过程十分复杂,而且具有隐蔽性,难以防治和预测,严重威胁着岩溶区水安全、生态安全、乃至当地居民的生命安全。对此,“全球岩溶”国际大科学计划将瞄准建立岩溶塌陷调查、风险评价和监测预警方法,重点研究大型岩溶塌陷风险评价、监测预警、早期识别与防控技术。

     

    4 在六大领域引领国际研究方向,建立“岩溶地球”大数据平台

     

    阅读提示:直击全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等重大岩溶科学问题。

    据曹建华介绍,“全球岩溶”国际大科学计划主要依托联合国教科文组织国际岩溶研究中心和岩溶动力系统与全球变化国际联合研究中心,破解重大岩溶科学问题,在全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等领域,引领国际研究方向,建立“岩溶地球”大数据平台。

    在岩溶作用与碳循环调查研究方面,将重点研究碳在岩溶动力系统中的迁移过程与土地利用、水生植物光合作用的关系,水库或湖泊等水体中的碳汇效应;调查研究不同水体的生物地球化学变化规律,利用水化学与碳同位素技术厘定碳的来源、不同碳形态之间的转换与通量估算,分析不同水体碳汇与生物地球化学效应,研究碳酸盐岩沉积/溶蚀、脱气与水生植物光合作用之间的相互关系,进而为科学应对全球气候变化提供依据和支撑。

    为提高岩溶水的开发利用效率和效果,“全球岩溶”国际大科学计划将选择全球典型岩溶水系统,开展岩溶地下河管道和含水介质探测,岩溶地下水循环的水动力对比试验,以及降水、地表水、土壤水、表层岩溶水与地下河水“五水”转化机制和过程研究,揭示不同类型岩溶水循环模式,建立不同岩溶水系统水资源评价模型,进行水质、水量定量评价,阐明岩溶关键带对水资源的调蓄功能和地下水资源动态变化规律。同时,开展生态环境对岩溶水资源的影响调查研究,岩溶含水层水质和污染调查研究,进行岩溶含水层防污性能评价,建立岩溶地下水水质监测网,尤其是加强对地下河和岩溶大泉的监测,并对已被污染的地下河和岩溶大泉进行修复示范。

    中国在西南岩溶地区开展的石漠化综合治理地质调查工作,建立10处石漠化综合治理示范区,形成了4种可复制、可推广的石漠化综合治理模式:岩溶峰丛洼地区土地整理与生态产业协调模式,解决了石漠化区无地可用的问题;岩溶高原区地表水地下水联合调度模式,解决了石漠化区无水可用的问题;岩溶地质景观区土地流转与生态旅游模式,促进了石漠化生态修复景观产业化;岩溶断陷盆地区流域尺度综合治理模式,力促县域生态产业可持续发展。目前,中国岩溶石漠化研究与治理示范,已在新西兰、坦桑尼亚等6个国家推广应用。

    全球有具有岩溶特征的世界遗产47处、世界地质公园46处。但迄今为止,国际上一直没有反映全球岩溶资源与环境的系统数据与专题图件,缺乏普及全球岩溶知识的信息数据平台。为科学评价和保护岩溶地质景观,“全球岩溶”国际大科学计划将开展全球岩溶地质景观调查评价,划分涵盖全球岩溶地质景观类型,进行全球尺度岩溶地质景观区划,提出岩溶地质景观设立世界遗产、世界地质公园、国家公园、地质保护区、旅游开发景区等方面的开发利用与保护规划建议。在此基础上,编制全球性岩溶景观与洞穴资源分布图集开发利用保护图件,建立全球岩溶地质景观信息系统,面向全球提供检索、咨询与开发规划等应用服务。

    为摸清全球岩溶塌陷发生规律,“全球岩溶”国际大科学计划将从23个岩溶塌陷国家的岩溶塌陷发育现状、地质背景、水文工程地质特征分析入手,结合岩溶塌陷动力条件监测,深入研究岩溶塌陷形成演化的地质环境模式,建立全球岩溶塌陷发育的动力模型,重点研究极端气候特别是极端暴雨影响下岩溶塌陷形成演化机理,提出国际岩溶塌陷发育态势与对策。

    岩溶区的油气资源具有很大的勘探开发潜力。世界碳酸盐岩大型油气田有321个,其油气资源量占全球油气资源总量的50%,产量占到60%以上。为认识油气储存与岩溶介质内在关系。“全球岩溶”国际大科学计划将以“将今论古”的方法,在对现代岩溶发育特征、规律认识的基础上,开展古岩溶、深部岩溶发育的科学研究,探索古岩溶在区域差异、垂向上分带、时代分期发育特征,揭示古岩溶发育对油气储存岩溶介质的控制作用,建立岩溶油气储层地质模型。

     

    5 实现全球岩溶信息社会共享服务,支撑岩溶区资源与环境可持续发展

     

    阅读提示:全球岩溶国家密切合作,建立实时更新的全球岩溶网络信息平台,促进岩溶学技术进步。

    “全球岩溶”国际大科学计划的实施,不但需要有科学的理论基础、先进的技术支撑,还需要全球岩溶国家的共同参与和密切合作。目前,国际岩溶中心已经收到了来自15个国家的23名资深专家学者签署的支持函。

    通过“全球岩溶”国际大科学计划的实施,国际岩溶研究中心将编制全球岩溶地质、岩溶地貌、岩溶水文地质和岩溶环境地质图,编制“一带一路”岩溶地区和重点岩溶区专题图件,查明全球岩溶动力系统的碳—水—钙循环规律,科学评价全球岩溶资源和岩溶环境,编制典型岩溶类型区资源开发与环境综合整治区划;研发具有国际先进水平的岩溶动力条件快速捕捉、岩溶资源勘探利用和环境治理关键技术方法;在岩溶地下水、石漠化、岩溶塌陷、应对全球气候变化、岩溶地质景观等领域形成4~5项国际领先水平大成果。

    同时,通过计划的实施,进一步建实建强国际岩溶研究中心,建立完善全球岩溶环境监测网点,建立定时更新的全球岩溶网络信息平台;在我国,建设岩溶动力学国家重点实验室,建强岩溶动力系统与全球变化国家级国际联合研究中心,建实国际一流岩溶地质调查研究机构,建强岩溶环境监测野外台站和研究基地。

    通过国际大科学计划的实施,全球岩溶科技成果不仅可促进岩溶学的跨越式发展、技术进步和多种形式的国际合作,实现全球岩溶信息社会共享服务,而且可提升我国的国际地位和话语权,培养我国的国际领军人才,并为“一带一路”战略决策和实施提供科学依据及资源环境保障。

    让岩溶地质科学造福人类