分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到53条相关结果,系统用时0.01秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    探索资源环境和谐发展之路

    邓杰 邓善芝

    资源的综合利用,主要是指在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用;对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用;对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    资源综合利用的重要性

    矿产资源综合利用不仅是解决矿产资源短缺的重要途径,而且是实现矿业经济可持续发展战略目标的现实选择,对有效利用和合理保护自然资源起着积极的推动作用。矿产资源综合利用是矿产开发的一项重要政策,也是合理开发、保护环境、维护生态平衡的一种有效手段。在矿产资源综合利用过程中,倡导低碳经济不仅有利于缓解我国经济发展的资源约束矛盾,调整优化结构和转变经济发展方式,而且对于减少污染排放、改善环境质量具有重要意义。

    1.矿产资源低碳开发

    就我国有色金属工业来说,每年排出废石上亿吨、尾砂7000多万吨,占用大量土地;数亿吨废水只有少部分复用或处理达标后排放。有色金属材料生产过程的许多材料含有一定量的有毒金属,如汞、镉、钍等,产生的废弃物已成为环境污染的重要因素之一。有色金属采选回收率仅为50%~60%;矿产资源综合利用率达70%的矿山仅占7%,综合利用率达50%的矿山不到15%,75%的综合型矿山企业综合利用率不到2%~5%;选矿回水利用率65%~70%;尾矿综合利用率为20%左右;冶炼的资源综合利用率为40%~60%,许多共、伴生矿没有综合回收;工业水重复利用率为72.8%;固体废物资源综合利用率为7%~8%;SO2的利用率约70%左右,致使每年排放大气中的SO2高达50余万吨。因此在有色金属工业的采、选、冶、加工过程中,对尾矿及“三废”进行综合利用显得格外迫切。

    2.再生资源回收利用

    除开展矿产资源的综合利用之外,发展再生资源回收利用也是非常重要。

    发展再生资源回收行业,可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。业内预计,到2020年末,我国再生资源回收行业整体产业链产值将达3万亿元。

    资源综合利用的途径

    综合利用固体废物生产的产品包括:利用煤矸石、铝钒石、硼尾矿粉、锅炉炉渣、冶炼废渣、化工废渣及其他固体废弃物生产建材产品、电瓷产品、肥料、土壤改良剂、净水剂、作物栽培剂;利用制糖废渣、滤泥、废糖蜜、淀粉废渣、造纸污泥等生产造纸原料、建材产品、酒精、饲料、肥料、赖氨酸、柠檬酸、核甘酸、木糖,碳化硅、饲料酵母,及多种有机糖类。

    综合利用废水(液)生产的产品包括:利用化工、纺织、造纸工业废水、制盐液(苦卤)及硼酸废液,生产银、盐、锌、纤维、碱、羊毛脂、多种无机盐类、粘合剂、酒精、香兰素、饲料酵母、肥料、制冷剂、阻燃剂、燃料等;利用酿酒、酒精、制糖、制药、味精、柠檬酸、酵母废液生产饲料、食用醋、酶制剂、肥料、沼气,以及利用糠醛废液生产的醋酸钠;利用石油加工、化工生产中的废硫酸、废碱液、废氨水以及蒸馏或精馏釜残液,生产硫磺、硫酸、硫铵、氟化铵、芒硝、硫化钠、环烷酸、肥料,以及酸、碱、盐等无机化工产品和烃、醇、酚有机酸等有机化工产品。

    再生资源生产的产品包括:回收生产和消费过程中产生的各种废旧金属、废旧轮胎、废旧塑料、废纸、废玻璃、废旧家用电器、废旧电脑及其他废电子产品 ,从中提取金属(包括稀贵金属)非金属和生产的产品;利用废棉、废棉布、废棉纱、废毛、废丝、废麻、废化纤、废旧聚酯瓶和纺织厂、服装厂边角料,生产造纸原料、纤维纱及织物、无纺布、毡、粘合剂、再生聚酯产品;利用废轮胎等废橡胶、废塑料生产的胶粉、再生胶、轮胎、防水材料、橡胶密封圈、塑料制品、建材产品、装饰材料、保温隔热材料;利用杂骨、皮边角料、毛发等生产骨粉、骨油、骨胶、明胶、胶囊、磷酸钙及蛋白饲料、氨基酸、再生革、生物化学制品。

    城市矿产垃圾:放错地方的资源

    据测算,每回收利用1万吨再生资源,可节约自然资源4.12万吨,节约煤1.4万吨,减少6万吨~10万吨垃圾处理量;每利用1万吨废钢铁,可炼钢8500吨,节约铁矿石2万吨,节能0.4万吨标煤,少产生1.2万吨废渣,减少86%的空气污染。

    在“城市矿产”回收体系当中,垃圾分类处理是废弃资源再生回收利用中重要的一个环节。通过分类投放、分类收集,把有用物资,如纸张、塑料、橡胶、玻璃、瓶罐、金属以及废旧家用电器等从垃圾中分离出来回收利用,既提高垃圾资源利用水平,又可减少垃圾处置量。按照一般城市特点,我们将城市可能产生的垃圾进行分类,主要分为:动物尸体、人畜粪便、可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾。

    垃圾分类处理大致分为三个步骤:湿垃圾(有机垃圾)在有机垃圾加工利用厂被加工成有机肥或有机复合肥,用于绿化或农业施肥;干垃圾(无机垃圾)在生活垃圾分拣中心被进一步细化分类为废纸张、废塑料、废玻璃、废金属等可回收利用成分,再由相应的再生利用厂进行再生利用;有害垃圾在有害垃圾分拣处置站分拣,可回收利用物送去回收利用,残渣进行焚烧或安全填埋处理。

    对垃圾进行分类收集,有以下诸多优点:

    一是减少占地。生活垃圾中有些物质不易降解,使土地受到严重侵蚀。垃圾分类,去掉能回收的、不易降解的物质,能减少垃圾数量达60%以上。

    二是减少环境污染。废弃的电池中含有金属汞、镉等有毒的物质,会对人类产生严重的危害;土壤中的废塑料会导致农作物减产;抛弃的废塑料被动物误食,会导致动物死亡。

    三是变废为宝。中国每年使用塑料快餐盒达40亿个,方便面碗5亿~7亿个,一次性筷子数十亿支,这些占生活垃圾的8%~15%。1吨废塑料可回炼600公斤柴油。回收1500吨废纸可生产1200吨纸。1吨易拉罐熔化后,能炼结成1吨很好的铝块,可减少开采20吨铝矿。生产垃圾中有30%~40%可以回收利用,应珍惜这个本小利大的资源。

    石墨,缘何脱颖而出?

    曾小波 徐明

    2008年,英国曼彻斯特大学两位学者因发明石墨烯材料获得诺贝尔奖,在全球引发“石墨热”;欧盟宣布石墨烯入选“未来新兴旗舰技术项目”,并设立专项研发计划;日本将石墨作为重要战略性矿产资源进行储备;美国将石墨列为高新技术产业的关键矿物原料,实行立法保护。2015年10月,习近平总书记考察访问英国莫彻斯特大学石墨烯重点实验室;2015年10月,华为与曼彻斯特大学石墨烯研究所签订石墨烯合作战略协议;2016年,《全国矿产资源规划》将晶质石墨列为我国战略性非金属矿产资源。

    石墨烯晶体结构模型

    石墨到底是一种什么样的资源,为什么会在众多矿产资源中“脱颖而出”?在中国经济面临新常态、产业转型升级的关键时期,晶质石墨资源开发及高科技利用将会带来怎样的机遇与挑战?

    一、晶质石墨是什么

    石墨,别称“石涅、石黑、石螺、石黛、画眉石”,是C元素的结晶矿物之一,素有“黑金子”的美称,呈钢灰色、黑灰色,具半金属光泽,有滑感,易污手。

    石墨分为天然石墨和人造石墨,天然石墨可分为晶质石墨和隐晶质石墨。晶质石墨特别是大鳞片晶质石墨是高端石墨产品的重要原料,工业价值较大。

    中国石墨矿产分布及生产加工基地示意图

    二、晶质石墨的战略地位

    1.晶质石墨的性质

    晶质石墨具有金属和非金属两种特性,同时是碳结晶矿物,具有优异的导电、导热、自润滑、耐高低温、高化学稳定性、密封、抗辐射及可塑性型强等特点,使其在光学、微电子、热力学等方面具有独特的优异性能。

    2.晶质石墨的主要产品

    耐火材料:鳞片石墨大量应用于冶金工业中的石墨坩埚和镁碳砖生产等。

    高纯石墨:高纯石墨材料要求C≥99.9% ,用于核能、半导体等高新技术产业的材料,则要求C≥99.99 %。

    铸造工业用石墨:用石墨作铸模涂料,增加铸件的光滑度,减少铸件的裂纹和孔隙。对石墨原料的要求一般粒度0.074mm,含碳70%~80%。

    柔性石墨:具有较高的化学稳定性、耐高低温、耐腐蚀、耐辐射、导电、导热、安全无毒,且具有良好的柔韧性、自粘性和润滑性,广泛应用于石油、化工、冶金等领域。

    胶体石墨:拉丝用石墨乳粒度小于10μm,含碳98%~99%;模锻用石墨乳呈鳞片状,含碳要求在80%~99%以上,粒度+0.15μm。

    锂离子电池负极材料:目前成熟应用的主要是碳石墨材料,是电子、新能源汽车等新兴产业的关键性材料。

    各向同性石墨材料:是核能、半导体、电火花加工等高新技术产业发展急需的高端石墨产品,大量用于单晶硅、多晶硅等半导体材料的制造设备。

    电气工业用石墨:利用石墨制作电极、电刷、碳棒、碳管、阳极板、石墨垫圈等。对石墨原料的要求为粒度43μm,含碳94%~97%。

    石墨烯:是目前发现的最薄最轻、硬度最高、韧性最强、导热性和导电性最好的纳米材料,被誉为“21世纪的新材料之王”。

    3.晶质石墨的战略地位

    晶质石墨是多种工业必需的关键性原料:在航空航天方面,用于制造远程导弹或者航天火箭推进器的材料、宇宙航行设备的零部件等;在国防军工方面,用于制造新型潜艇的轴承,生产国防用高纯石墨、火药、石墨炸弹、隐形飞机和导弹的鼻锥等;在化工方面,用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、泵等设备,用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业;在电子方面,用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层、电磁屏蔽的导电塑料等;在新能源汽车方面,可用于锂离子电池负极材料;在核能工业,高密度的高纯石墨和氟化石墨,用作核反应堆中子减速剂和防原子辐射的外壳;在光伏产业,石墨烯是一种较好的储氢材料,用于制作大比电容的超级电容,提高锂电池的充放电效率,石墨烯也是太阳能电池较好的备选材料。

    晶质石墨将带动新能源、新材料等领域的技术革命。石墨烯将带来诸多工业革命性的技术进步,是未来科技竞争的核心。计算机及互联网领域的技术革命:石墨烯芯片的主频可达1000GHz,是普通晶硅电脑芯片的数百倍;通信领域的技术革命:石墨烯制成的天线以1000GHz的频率正常工作,远超目前常规的天线;新能源工业技术进步:石墨烯制成的超级电容器,充电时间只需1 毫秒,新能源汽车电池有望充电10分钟,连续开行1000公里;国防军工:石墨烯强度比钢强200倍,是现有测试材料中轻度最强的,这将带来武器工业的技术革命。

    4.晶质石墨的需求

    未来,传统领域石墨需求保持稳定,新兴产业石墨需求将快速增长,需求增长集中在晶质石墨。据中国地质调查局预测,2020年晶质石墨需求将达到95万吨,新兴产业需求占比将超过45%,其中,新能源和新能源汽车领域需求约23万吨,核电领域需求约14万吨,高端制造和电子信息等领域需求10万吨以上。预测到2030年,晶质石墨需求将达到135万吨,新兴产业需求占比将进一步提高。

    三、晶质石墨产业发展机遇与挑战

    1.我国石墨资源丰富,资源保障程度高。

    据美国地质调查局(USGS)统计,2017年,全球石墨储量2.7亿吨,80%集中分布于土耳其、巴西和中国。矿石种类上,晶质石墨主要分布在中国、乌克兰、斯里兰卡、马达加斯加、巴西等国;隐晶质石墨矿床主要分布于土耳其、印度、韩国、墨西哥、奥地利、中国等地。多数国家只产出某一类型石墨,中国是少数几个石墨资源种类齐全的国家之一。

    中国石墨资源丰富,总保有量长期位居世界前列,其中晶质石墨资源量约2.6 亿吨。晶质石墨以大、中型矿居多,占矿产地总数的70%,全国晶质石墨保有矿物储量约88%集中分布于大型矿中。目前,我国已形成六大石墨生产加工基地,产量占全国的80%以上,其中晶质石墨主要产地有黑龙江鸡西、黑龙江萝北、山东平度、内蒙古兴和等;隐晶质石墨主要产地有湖南郴州、吉林磐石等。

    2.晶质石墨深加工技术相对落后,尚未成为资源强国。

    长期以来,我国晶质石墨深加工技术相对落后,大量出口低附加值产品,高端深加工产品主要依赖进口,开发利用粗放。

    石墨产品一般分为高纯石墨(固定碳含量>99.9%)、高碳石墨(94%~99%)、中碳石墨(80%~93%)和低碳石墨(50%~79%)四大类,国内企业主要生产低碳、中碳石墨产品,高碳和高纯石墨产品较少。球化石墨、柔性石墨和氟化石墨等深加工产品占比有限,深加工技术相对落后。出口的石墨产品80%为初加工产品,同类产品进出口价格相差悬殊,如球化石墨进口价格是出口价格的两倍以上。

    石墨矿石中含有大量的杂质矿物,晶质石墨矿石的品位较低,一般为3%~15%,但可浮性很好。在选矿过程中,需采用多段磨矿多段选别,通过筛分或水力旋流器分级,及时将已解离的大鳞片石墨分离出来,避免受到反复磨损。

    我国中小型采选企业数量多,生产规模小而散,技术设备落后,采富弃贫、采易弃难等现象突出,晶质石墨利用率仅为40%,资源浪费严重。

    四、结语

    晶质石墨不仅应用于耐火材料、电极电刷、铅笔、铸造、密封、润滑等传统工业领域,更是高端装备制造、新能源、新材料等战略性新兴产业及核电领域的关键资源,被誉为“21世纪支撑高新技术发展的战略资源”,素有“黑金”美誉。随着技术发展和应用领域的不断拓展,晶质石墨资源的战略地位越来越受到重视。

    我国是世界石墨资源大国,第一大石墨生产国、出口国和消费国,但长期以来石墨加工技术落后,大量出口低附加值产品, 高端深加工产品主要依赖进口,资源优势未能转化为技术和经济优势。未来,随着我国石墨资源战略地位凸显,科学利用和保护天然石墨资源,开发深加工技术和发展高端产品,将成为石墨产业发展的必然趋势。

     

    绿色引领 科学高效利用资源

    近两年来,中国地质调查局自然资源综合调查指挥中心启动自然资源要素综合观测工程,在技术创新、数据收集、资源-环境综合研究等方面取得重要进展和认识,探索建立全国自然资源要素综合观测体系,为自然资源管理、区域高质量发展等提供了数据和科技支撑。

    一是探索建立全国自然资源要素综合观测体系。创新自然资源动态区划技术,将全国划为12个一级、100个二级和800个三级区域,并在此基础上构建了三级站网架构。建立了包括四大类、十四小类、三十四个模块的自然资源-生态-环境系统统一观测指标体系,形成了空-天-地-网立体协同观测技术方法和观测-模拟-预测技术体系,在青藏高原、黄河流域、塔里木河流域等区域通过融合共建和空白添建方式,构建起覆盖全国11个典型自然资源区的30余个观测站。

    二是高质量观测数据助力资源环境问题研究。构建了全国自然资源要素综合观测一体化平台,实现了自然资源要素数据在线采集、存储、传输,现已汇聚形成5TB观测数据。开展了一系列资源-环境综合研究,初步摸清了长江源沱沱河地区冰川冻土资源家底,研究了格拉丹东大陆型冰川演变变化及其在2018~2020年期间年均消融产生的水资源量,计算了黄河三角洲单季水稻、黑麦草、苜蓿等作物全生育期单位面积耗水量。

    三是典型示范成果带动科技发展与多方资金投入。以观测站网建设和综合研究典型示范成果为依托,成功申报获批自然资源部自然资源要素耦合过程与效应重点实验室;召开“变化环境下的自然资源与观测预测”第706次香山科学会议,举办2期自然资源要素综合观测大型研讨会;在黄河流域、云贵高原等地获得地方政府批准长久观测用地5处800余亩,带动相关高校和企业投入资金500余万元;向自然资源部、西藏自然资源厅等提供咨询建议报告4份。

    “十四五”期间,将继续扎实推进观测体系建设,力争到2025年形成覆盖全国的全天候、全时段、全要素天-空-地立体观测能力,形成不同区域、不同尺度下自然资源系统演化规律和生态环境退化机理等科学认知,助力自然资源“两统一”管理、生态文明建设及区域高质量发展。

     青藏高原自然资源要素综合观测研究站10米标准气象站

    自然资源要素综合观测工程取得重要进展

    本报乌鲁木齐7月1日电  (记者蒋云龙)近日,新疆维吾尔自治区自然资源厅、中国地质调查局西安地调中心历时9年,完成南疆近21万平方公里土壤地球化学调查,首次全面摸清了南疆土壤的54种元素和指标数据,发现一条沿天山南麓横跨千公里的“硒腰带”,划定优质耕地90.81万亩,为推进南疆耕地保护和高标准农田建设,发展特色农业、健康食品产业奠定了坚实基础。

    此次土壤地球化学调查以绿洲区为重点,获取了2.4万条涵盖养分元素、重金属元素及生命健康元素等54种元素和指标的数据,形成了南疆迄今为止最为系统、空间精度最高、指标最全的土壤地球化学填图国情实测数据。尤其是发现了一条东起焉耆盆地、经阿克苏地区,西至克孜勒苏柯尔克孜自治州,长度近千公里的土壤硒富集区——“硒腰带”,富硒土地近4900万亩,其中富硒耕地1130万亩,占南疆耕地面积的27%。

    目前,焉耆回族自治县、博湖县、和硕县、温宿县等5处富硒地块(合计近30万亩)已通过国家天然富硒土地认证,占全国已认证面积的10%。不只是硒,富钙、富镁土地分别占到南疆绿洲区面积的99.3%和91.8%,富钼土地占比20.2%,集中分布在阿克苏—库尔勒一带;富钾土地占比2.1%,主要分布在阿克苏地区。

    基于2000余件动植物样本数据,调查发现了22种富硒产品,涵盖3种粮食作物(小麦、水稻、玉米)、7种果蔬产品(鲜食辣椒、鲜食番茄等)、3种畜禽产品(鸡蛋、鸡肉、牛肉)以及2种调味品(大蒜、孜然)。

    调查数据覆盖南疆97%的耕地。评价显示,南疆耕地均为碱性土壤,其中强碱性土壤占比33.4%;99.8%的耕地土壤属于优先保护类的清洁土壤。土壤全磷、全钾含量以中等—较丰富为主。基于土壤养分丰缺程度,划定优质耕地90.81万亩、绿色食品产地土壤适宜区210.27万亩,主要分布在焉耆盆地、库拜盆地、阿克苏河沿线和喀什西部等地区。

    人民日报:沿天山南麓,有条千公里“硒腰带”

    水资源是人类生存的基础性资源,地下水是水资源的重要构成,尤其在我国北方是主要的供水水源,是维持生态环境的关键因素,对确保民众饮水安全、粮食安全和生态安全等具有非常重要的作用。非常遗憾的是,我国并不是地下水资源丰富的国家,许多地区多年平均地下水开采量超过多年平均地下水可开采量,造成地下水超采。

    从已查明的情况看,全国地下水资源状况不容乐观。全国地下水开采总量已逾1100亿立方米,北方部分地区供水总量中逾七成为地下水;21省(自治区、直辖市)平原区分布有地下水超采区,其中19省(自治区、直辖市)分布有严重超采区。地下水超采区在我国平原区的分布面积总共约30万平方公里。

    地下水超采造成的地下水水位连续降低、含水层疏干、地面沉降、水质变差、海(咸)水入侵等一系列生态与环境问题,危及供水安全、粮食安全和生态安全,严重制约经济社会的良性发展。

    一是降落漏斗不断扩大,含水层不再含水。华北平原太行山前平原区的浅层地下水水位连续多年降低,南以石家庄石德铁路为界、北以邢台市为界、东部至宁晋泊-大陆泽地带的地下水水位埋深一般为30.0m左右,部分区域大于40.0m,第一含水组已基本处于疏干状态。深层地下水水头变化受开采影响很大,华北平原在开采强烈的中部和东部平原区下降幅度较大。

    二是地面沉降撼动我国大地。由于地下水超采,地面沉降迅速发展并逐步蔓延,在沿海地区尤为突出。地面沉降可造成水库大坝、河堤、楼房等建筑物裂缝、坍塌,成为重要的地质灾害,经济损失巨大、社会影响深远。

    三是海(咸)水入侵毁万亩良田。在滨海地区,人类过量开发利用地下水资源引起的地下水水位大幅降低,破坏海水与地下淡水界面间原有的动态平衡,致使咸淡水界面向靠近大陆方向移动。海水入侵的特征是隐蔽性、多样性和周期性,灾害一旦发生,将引起地下水水质恶化,影响区域内的地表植被生长,致使生态退化;使部分农田遭到不同程度的盐渍化,导致土地生产力下降、作物减产,灌溉机井报废,农田沦为荒地;还会造成工业生产和人民生活用水困难等多种问题。此外,深层地下水长期超采还有可能导致浅层咸水入侵深层淡水。

    四是平原河道断流甚至干涸,整体生态环境趋于干化。20世纪60年代,太行山前平原区包气带厚度为3~5m,由于浅层地下水位降低,致使包气带厚度增大至如今的10~40m,中部平原区由2m增大至5~10m,引发了土壤干化、植被枯萎、生态恶化等问题。地下水位降低也会加速湖泊湿地范围的萎缩进程,不仅加剧了气候环境干化,还导致一些水生及滨水生物群落的减少或者消失。

    面对地下水超采,我们应该怎么办呢?

    首先要建立水资源的统一管理体制,加强地下水保护。加强地下水管理工作,必须建立取水许可制度,实现开采量控制,达到地下水采补平衡。地下水开发利用与保护具有复杂性,需全局统筹,在现有水资源管理制度上进行必要改革。随着社会发展对水资源需求的日益增加,实行水务工作统一部署管理迫在眉睫。

    其次要加强水土保持工作,涵养水源。地下水补给是水循环的重要组成,水土保持工作是实现地下水补给的重要措施之一。工程措施与生物措施并重,层层拦蓄,充分涵养水源,减少地表水土流失,实现对地下水的补给,进而保障水资源的可持续利用。

    水土保持与边坡防护

    再次要节约用水,科学用水,降低对地下水需求与依赖。对于工业用水需大幅提高水的重复利用率,推广先进节水技术;推进清洁生产战略,加快污水资源化步伐,实行排污收费制度;通过价格和政策调控,鼓励工业使用再生水。对于农业用水,实施节水优先战略,积极调整种植模式,适度发展旱作农业和种养结合等模式;推广节水灌溉技术,择优发展喷灌、微灌、水肥一体化等规模化高效节水灌溉。针对民众生活,要提高城镇供水效率,杜绝“跑、冒、滴、漏”;全面推广使用节水器具和设备;加强节水的宣传工作,提高全民节约用水的自觉性和自主意识;实行计划用水和定额管理,以经济手段为杠杆促进节水工作的开展。

    第四是完善地下水监测网络,为科学开采地下水提供数据支撑。地下水动态监测是一项长期的水文地质工作,为实现水资源的科学管理,要求监测数据真实、准确、完整,这对于识别区域水文地质条件,实现社会经济的可持续发展具有重要作用。

    最后要因地制宜建造拦蓄工程,加强地下水回灌。除了在有条件的地区修建地表水库进行拦蓄之外,在没有合适的地形条件或是工程造价太高、蒸发损失大而不适合建地表水库的地方,选择地下含水层条件较好的地区,利用人工回灌储存地下水以备后用,是值得重视的手段。

    面对不容乐观的地下水超采现状和已经造成的危害,我们应当警醒。地下水不是“取之不尽,用之不竭”的,改善和保护地下水资源刻不容缓,不要让一时的发展透支子孙后代的幸福。

    (作者单位:中国地调局水环所)

    超采地下水给我们带来了什么

    地调局航空物探遥感中心近期完成了“大范围高陡斜坡活动性InSAR监测”数据的外业核查,对四川省岷江与小金川流域的20余处InSAR集成处理所发现的典型高陡斜坡,从坡体边界、活动范围和变形强度上予以实地查证。

    该工作是四川茂县大型滑坡灾后大范围隐患排查的延续,是在利用InSAR技术提取山区坡体形变信息,识别典型活动坡体的基础上进行的。在此之前,大规模的InSAR监测采用Sentinel-1卫星SAR数据,综合InSAR时序分析技术与基于GACOS的大气校正方法提取山区坡体形变信息,完成了包含四川阿坝、绵阳、德阳和甘肃陇南在内的4万平方公里范围调查,识别出岷江流域的典型活动坡体50余处。

    本次实地勘查的20余处坡体主要集中在汶川县、茂县、理县与小金县等地,整体滑移以及局部滑移幅度明显,海拔普遍达到3000-3500米,垂直距离达1500-2500米,河谷地带村镇密集,坡顶活动区多为零散分布的自然村,一些大型坡体上作物种植密集,为古滑坡和泥石流冲沟形成。实地调查发现了坡体上建筑物拉裂破坏、盘山道路剪切破坏和狭窄河谷地带桥梁挤压破坏等现象。

    调查表明,通过InSAR技术可有效提取植被稀少地区,村庄、道路和裸露岩体分布条件下高陡边坡的变形信息,用于滑坡灾害的早期识别与活动状态表征。大范围InSAR数据整体处理突破了以往针对单体滑坡监测范围有限的瓶颈,可实现数万平方公里内不同边坡活动状态的有效识别,用于指导地方开展实地监测与群防群策,为大型滑坡体的预警与防治提供技术支撑。

    理县杂谷脑河沿岸典型滑坡分布

    理县杂谷脑河沿岸典型滑坡分布

    小金县波萝村坡体下移引发谷底拱桥挤压破坏

    小金县波萝村坡体下移引发谷底拱桥挤压破坏

    航空物探遥感中心完成四川茂县周边地区大型滑坡InSA...

    近日,中国地质调查局昆明自然资源综合调查中心(以下简称“昆明中心”)依托川滇生态屏障重点地区生态修复综合调查项目和滇西北高山峡谷区生态修复综合调查项目,在金沙江中游干旱河谷区建成“光伏+生态修复”试验场,目前已投入使用。

    试验场主要针对西南山区光伏电站覆盖区域水土资源不匹配、农业种植模式缺乏可持续性、生态环境修复治理与农业发展难以实现平衡等问题,围绕西南山地生态脆弱区生态系统保护与修复研究、西南干旱河谷区光伏生态产业技术研发、农光互补可持续发展等方向,结合光伏发电、生态修复、现代农业种植等技术,建设光伏生态产业科研示范基地。

    下一步,昆明中心将践行绿色发展理念,围绕试验场持续开展光伏板集水、光伏区生态修复、经济作物种植等相关工作,集成金沙江中游干旱河谷区生态治理先进技术和模式,提升生态环境质量,助推区域乡村绿色经济振兴,为西南地区光伏项目开发建设、现代农业种植及生态修复等领域的发展和创新作出贡献。

    金沙江干旱河谷区“光伏+生态修复”试验场建成并投入...

    近日,中国地质调查局青岛海洋地质研究所在二氧化碳水合物农业应用方面取得新进展,“二氧化碳水合物微肥制备装置与制备方法”获得国家知识产权局授权(专利号:202010276863.7)。

    在“双碳”目标的大背景下,各行业都在积极探索碳减排及碳中和路径,其中海底二氧化碳封存被认为是一种有效的碳中和路径。然而,人们不应忽视二氧化碳是植物进行光合作用制造有机物质的重要原料,是一种奇特的肥料——气肥,在农业领域扮演着关键的角色。据估算,如果现在全国30亿亩农田(含复耕)都使用二氧化碳气肥,最高可消耗20亿吨二氧化碳。因此,大田作物可能成为工业二氧化碳重要的消费市场。由农业生产承担部分碳中和是一项重大创新。

    目前,农业生产使用的二氧化碳气肥中,固体气肥的生产工艺复杂,液体气肥的运输与使用不安全,气体燃烧法易产生氮氧化物和硫化氢等有害气体。针对上述问题,该发明提出了一种二氧化碳水合物微肥制备装置及制备方法,合成原料简单,合成流程短且不涉及化学反应,安全性好;合成的二氧化碳水合物微肥含二氧化碳储气量高,自保护效应好,便于储存和运输,微肥分解后无污染、无残渣,施用后不会改变土壤的性质。

    该发明专利具有良好的应用前景,将工业排放的二氧化碳与含微量元素的水溶液制备成固态二氧化碳微肥,既能给作物通过光合作用必需的二氧化碳,又能提供作物生长必需的微量元素,同时还达到了碳中和的目的,有利于高效农业与国民经济可持续发展。

      

     
     
    二氧化碳水合物农业应用助力“双碳”工作

    党的二十大报告提出,必须牢固树立和践行绿水青山就是金山银山的理念,站在人与自然和谐共生的高度谋划发展。近期召开的全国生态环境保护大会提出,以高品质生态环境支撑高品质发展,加快推进人与自然和谐共生的现代化。

    如何实现人与自然和谐共生的现代化?在守护绿水青山的N种方式中,科技创新的力量最不可或缺。

    为深入贯彻落实习近平生态文明思想,践行“山水林田湖草沙生命共同体”理念,近年来,国家地质实验测试中心充分发挥自身优势,立足于地学,针对矿山、农田、场地等水土污染与生态环境损毁,创建地球化学工程生态修复技术体系,建立一系列应用示范,取得了重要进展和成果。

    以地学方案解决赣南稀土矿山生态问题

    江西赣州是我国优势矿种离子吸附型稀土矿床的发源地,素有“稀土王国”之称。经历50余年的开发,赣南稀土矿山在为新中国建设立下汗马功劳的同时,对生态环境造成了破坏。

    据了解,赣南稀土开采经历了池浸、堆浸、原地浸提全过程,具有稀土矿区生态问题的典型代表性。江西赣州离子型稀土矿集区位于“南岭丘陵山地带”,有多条重要水系的源头,生态破坏可能影响周边乃至华东、华中、华南地区,生态安全战略意义重大。

    矿山生态修复是生态保护修复的重要内容。科研人员深刻地认识到,矿山生态修复绝不仅仅是复原受损地形、简单绿化,而是必须因地制宜、治标更治本。

    以形成典型生态问题的绿色解决方案为目标,2012年以来,研究团队依托“全国矿山地质环境综合调查与评价(国家地质实验测试中心)”项目以及“矿区土壤生态功能恢复技术”课题,分别在世界离子型稀土矿首发地及开采地赣南足洞废弃矿山及定南岭北矿区进行调查评价、修复技术研发与应用示范。

    针对离子型稀土矿开采后存在的典型生态问题,研究团队建立了障碍度评价模型,分析功能恢复障碍因子;研发了天然黏土矿物材料、复合生物炭材料、生物地毯材料、微生物菌剂材料等一系列土壤改良材料;提供了一套复配型保水保肥材料及三类分区植物配置模式;系统梳理总结了矿山生态修复经验技术,创新研发了稀土矿区土壤原位改良的“天然黏土矿物土壤重构-植被配置技术”“稀土矿区蓝莓修复技术”和“地球化学工程+生态袋柔性结构技术”等系列技术,形成了一套土壤改良、植被配置与土地增值开发为一体的综合修复技术;提出了适用于花岗岩发育区的废弃稀土矿山土壤-植被生态修复的地学综合解决方案。

    研究团队2014年在足洞废弃稀土矿山原地浸矿场建立了废弃稀土矿山生态修复综合示范基地,长期进行修复技术应用和科学研究。2021年,研究团队在定南县岭北废弃稀土矿山堆浸场地开展植被复绿,以及中草药和经果林种植示范,植被覆盖度达到75%以上,经果林亩均收入超过3000元。目前,足洞废弃稀土矿山生态修复综合示范基地已成为自然资源部助力赣州乡村振兴的一个“示范窗口”。定南岭北矿区把矿山综合治理和生态循环农业相结合,打造了废弃矿山治理的定南样板,为我国南方离子型稀土矿区构建绿色种养循环农业提供了经验参考。

    废弃稀土矿山修复前后对比图

    “修复后,矿区水土流失率从85%降至10%,氨氮污染程度平均下降10%,土壤有机质含量提高21%以上,植被覆盖率提高90%。与传统修复方法相比,修复成本降低了30%至50%。修复后,矿区土壤肥力由最低肥力提高至中等肥力水平,示范基地种植的高附加值的经济作物蓝莓亩产1500斤,每亩经济收入约3.5万元至5.0万元。经多年跟踪检测,蓝莓果实中有害元素含量远低于国家标准,且富含有益人体健康的多种营养元素。”科研人员用数字证明,相关成果在实现生态效益的同时,为当地生态修复产业发展和乡村振兴带来了新希望。

    对于下一步工作,科研人员表示,将开展不同类型稀土矿山生态修复技术攻关,建设南方离子型稀土矿生态修复示范区的“赣州样板”,进一步加强废弃稀土矿山增值利用技术在江西、广东、广西等地的推广应用。

    以改良技术助力张北盐碱地增产增收

    盐碱化被称为土地的“顽疾”。“春天白茫茫,夏天雨汪汪,十年九不收,糠菜半年粮”,一首民谣道出了盐碱地上种粮之难。我国盐碱地多,开发潜力大。破解盐碱地综合利用这个战略问题必须发挥科技创新的关键作用。

    2020年至2022年,国家地质实验测试中心在北京市西城区政府对口帮扶县——张北县组织开展了700平方千米的生态地质调查,取得明显成效。调查发现,张北地处北方干旱半干旱气候区,区内年均降水量300毫米,年均蒸发量1850毫米,蒸发量是降水量的6倍左右,加之季节性河流的多次丰枯,快速交替,表层土壤的水盐迁移运动以上运行为主,使得浅层土壤中盐碱离子无法随水淋滤进入深层土壤而富集于地表,是区域土壤盐渍化形成的重要诱因。

    针对张北地区土壤盐碱化特点,科研团队研究提出“根系微障-生物质炭”生态保护修复方案,在保水保肥、提高地力、“以肥代药”等方面效果显著。

    改良耕地与周边盐渍化耕地对比

    改良后作物

    所谓“根系微障-生物质炭”生态保护修复方案,是研究团队运用2018年自主研发的在重金属污染稻田改善土壤微环境取得显著效果的“根系微地球化学障”技术理念,针对张北盐碱地高盐、高碱、有机质与养分含量较低、质地疏松等问题,研发具有高有机质含量、高比表面积等特征的生物炭-天然矿物复合材料,在播种时期随种子和种肥施入作物根系土壤,通过构建“微型屏障”有效降低土壤pH值、提升土壤肥力、限制盐分在土壤-作物系统中的迁移转化、为微生物扩展生存空间,实现盐碱地“重茬”问题低成本、高效治理。

    据介绍,通过调查、研究和应用,实验测试中心与北京市西城区政府、河北省张北县人民政府和张北厚道养生盐碱地种植公司联合建立了张北盐碱地改良应用示范基地——生态修复示范基地,示范面积1100余亩,成功实现了盐碱土地改良。通过种植藜麦、甜菜、油莎豆等高附加值作物,产量产值均有明显提升,每亩增收均超过千元。张北县人民政府认为“系列成果为该县构筑现代农业体系、打赢脱贫攻坚战、推动乡村振兴战略实施等提供了强大助力。”2023年5月27日,河北省委书记、省人大常委会主任倪岳峰在该基地视察调研时强调,要进一步扩大盐碱地改造规模,提高盐碱地综合利用效率,把开展盐碱地综合利用摆上重要位置,充分发挥科技创新的关键作用,加大盐碱地改造提升力度。据了解,下一步,研究团队将在扩大张北地区盐碱地改造提升规模的同时,加大不同类型盐碱地改良和综合利用科技攻关力度,提出“品种-农艺-工程-产业”一体化盐碱地综合利用解决方案,为我国开展大面积盐碱地改造提供可借鉴的示范样板,服务国家粮食安全战略。

    以初心和使命做美丽中国建设者

    除了上述两处亮点,国家地质实验测试中心从20世纪90年代初即开始环境地球化学与生态保护修复研究,主持相关项目20余项,积累了丰富的经验。特别是在我国全面推进生态文明建设以来,国家地质实验测试中心承担了一系列有关生态环境修复的项目,开展生态修复技术研发与示范,并获得了令人瞩目的成绩:

    ——在江西德兴铜矿源头开展工作,将微生物技术应用到酸性矿山废水治理工作中,在保证处理效果的同时,考虑修复治理成本为企业增加收入,改善修复工艺,研发修复装置,取得了良好的效果;

    ——在江西赣州市,开展在产农田重金属污染修复工作,首创性提出“根系地球化学障”修复模式和技术,使稻米中镉去除率超过80%,显著降低修复参与人员的劳动强度和修复成本;

    ——在湖南湘潭,针对化工场地多重金属-有机污染物的复合污染土壤问题,提出了电动化-稳定化修复技术,为复合污染场地修复和复垦提供了经济高效的新型技术方法;

    ——在云南安宁,采用多层次植被搭配技术建立生态恢复示范区,实现矿山采空区植被快速恢复,实时监测生态参数,调整植被养护方案……

    纤纤不绝林薄成,涓涓不止江河生。

    随着一个个项目的实施、一项项新技术和材料的研发和应用,越来越多的成果从实验变成示范,把“白茫茫”变成“绿油油”,把满目疮痍变成绿意融融,把寸草不生变成姹紫嫣红。

    “其实,除了我们的技术支撑,这些成绩的取得也来自各方的支持和配合。”研究团队成员举例说,2020年“全国矿山地质环境综合调查评价”项目野外工作任务重、时间紧,项目组临时党支部积极与当地党支部对接,通过党建活动建立了良好的互助合作关系。赣南地质调查大队(现更名为:江西省地质局第七地质大队)第一时间派出10余名专业技术人员支援项目开展野外调查、取样等工作,并提供样品存放和加工场地。在赣州红色热土工作期间,项目组成员在不断提升业务水平的同时,收获了更多的精神财富,秉持理想信念、坚守初心使命、敢于担当作为。

    生态修复工作常常要面对恶劣的环境、艰苦的条件、棘手的问题,但当被问及如何面对与克服这些困难时,团队成员用朴素的话语道出了他们十足的信心和决心——“乐在其中,我们就是想把生态修复的文章写在祖国大地上。”

    生态修复,非一日之功。期待,在新时代新征程上,他们继续以科技创新为笔,为建设美丽中国书写高质量发展的“绿色答卷”。

    把生态修复文章写在祖国大地上

    2019年7月6日-7日,自然资源部中国地质调查局岩溶地质研究所召开岩溶生态系统碳氮循环学术研讨会,来自南京师范大学、中国科学院、浙江大学、海南大学和岩溶所的7位专家、研究人员进行了学术报告。

    会上,南京师范大学地理科学学院蔡祖聪教授做了题为“气候-土壤-植物氮形态契合的生产和生态环境意义”报告,深入阐述了土壤氮循环与气候和植物之间的关系,提出应根据土壤氮转化特点和作物氮素吸收特性合理施用氮肥。中国科学院华南植物园莫江明研究员做了“南亚热带森林生态系统对氮沉降的响应与适应”报告,系统阐述了氮沉降对南亚热带森林生态系统植物多样性、固氮效应和水分的影响。浙江大学浙江大学环境与资源学院马斌研究员做了“基于网络视角的土壤微生物生态过程”报告,分析了不同气候区森林生态系统土壤微生物的地理分布模式以及微生物间相互作用对土壤功能的影响。中国科学院南京土壤研究所颜晓元研究员做了“农田氮肥去向的影响因素与高效利用原理”报告,分析了我国氮肥施用的农学价值和环境影响,提出了降低氮肥损失和提高氮肥利用效率管理措施。海南大学热带作物学院伍延正博士作了“不同施肥模式对热区稻菜轮作系统氧化亚氮和甲烷排放的影响”报告,阐述了热区水稻种植条件下如何合理施肥以及温室气体减排。岩溶所李强研究员做了“喀斯特断陷盆地盆-山结构的土壤微生物群落特征”报告,分析了断陷盆地不同海拔高度土壤微生物的分布特征及其影响因素。岩溶所朱同彬副研究员做了“岩溶区石灰性土壤氮转化特点”报告,评估了岩溶区不同土地利用方式下土壤氮转化过程变化及其影响因素。

    研讨会期间,部分参会专家和老师参观了中国岩溶地质馆和毛村野外试验基地,并就野外试验设计、采样等进行了交流与讨论。

    来自南京师范大学、中国科学院南京土壤研究所、中国科学院华南植物园、中国科学院亚热带农业生态研究所、浙江大学资环学院、海南大学、广西师范大学、桂林医学院、湖北省农业科学院植保土肥研究所、岩溶所等高校院所50余人参加会议。

     

     

    岩溶所召开岩溶生态系统碳氮循环学术研讨会
      硒是世界卫生组织和国际营养组织确认的人体必须营养元素,摄入不足或过多均会危害人体健康。通常将土壤硒含量介于0.4毫克/千克到3.0毫克/千克间的耕地定义为富硒耕地。根据《绿色食品 产地环境质量》(NY/T 391-2013)中重金属评价标准和调查区的土壤硒含量,调查新发现5244万亩绿色富硒耕地,主要分布在闽粤琼区、西南区、湘鄂皖赣区、苏浙沪区、晋豫区及西北区。富硒耕地主要受硫化物矿床、黑色岩系、煤系地层等地质体和特定的土壤类型控制,土壤中硒元素来源稳定,有利于长期开发利用。另外在山西、辽宁、福建、天津、青海等地还发现了一批富硼、钼、锌等有益微量元素的特色耕地。

      目前,绿色富硒耕地已经成为发展特色农业和生态农业新的增长点。湖北、广西、青海、浙江、福建、四川、江西、海南、湖南等省(区)人民政府已将开发富硒耕地作为实施农业强省战略的一项重要工作,大力开发富硒、富锌等特色耕地,形成特色农产品产业链,取得了显著的经济效益和社会效益。湖南新田县充分利用富硒耕地,发展富硒农产品种植示范基地面积达27万亩,建成了三大富硒产业园,培育了省内外知名的富硒农产品品牌,形成了46家规模较大的富硒农产品生产企业(或合作社)。2014年全县富硒产业生产总值达20多亿元,比上年增长40%,实现利润超过10亿元,比上年增长35%,从事富硒产业的人员突破10万人。

      全国绿色富硒耕地分布

    地区

    绿色富硒耕地面积

    (万亩)

    占调查耕地面积的比例

    %

    全国

    5244

    3.8

    东北区

    184

    3.5

    晋豫区

    970

    18.5

    京津冀鲁区

    446

    8.5

    闽粤琼区

    916

    17.5

    青藏区

    2

    0.1

    西北区

    133

    2.5

    西南区

    961

    18.3

    湘鄂皖赣区

    1145

    21.8

    苏浙沪区

    487

    9.3


      在富硒地区已发现种植的水稻、小麦等大宗农作物及黄豆、蔬菜、水果等经济作物达到富硒农作物标准,对人体健康十分有益,弥足珍贵。建议科学编制实施富硒耕地开发利用规划,健全开发利用与保护的制度体系,强化数量和质量动态监控管理,促进富硒耕地可持续利用。


    中国耕地地球化学调查发现5244万亩富硒耕地

    2021年9月8日-10日,中国地质调查局国家地质实验测试中心相关负责人带队,赴张北野外现场调查指导党建和业务工作。

    张北县地处京北要塞,自古以来就是北方的军事战略重地,当前更是首都水源涵养功能区和生态环境支撑区的建设重地,也是国家乡村振兴的重点区域。2019年以来,实验测试中心依托地质调查二级项目在张北地区开展了生态地质调查和生态修复工作,帮助当地农民实现了增收,有力支撑当地实现了脱贫攻坚,全力支持张北的乡村振兴工作,此举得到了张北县委县政府的高度肯定,获得了当地百姓的高度赞扬。

    为发挥党组织的政治引领作用,调研组一行与项目野外工作人员在张北野外开展了党史学习教育,座谈了解,并指导督促野外项目组党建工作,在野狐岭要塞军事基地参观了“802演习”纪念馆,重温了“802演习”的恢宏气势,深入学习我国国防建设的历史,深深体会到了建设军事强国的重大意义;随后参观学习小二台镇德胜村建设经验,学习习近平总书记在小二台视察时的重要指示精神。通过现场所见与村民交流,感受着脱贫攻坚战带来的村容村貌和村民生活的巨变,深深体会到了我们党始终为人民谋幸福的初心使命。项目组及调研组全体党员在德胜村面向党旗重温入党誓词,铿锵的誓言中昭示着项目组人员科技富农、科技强国,为人民谋幸福、为民族谋复兴的拳拳决心。

    调研组一行赴中心2021年建立的生态修复千亩技术应用基地进行调研,现场听取了生态地质调查工作情况介绍。在田间地头,考察组仔细观察藜麦和甜菜两种作物的长势,详细询问了关键核心技术创新情况,对技术应用的效果表示高度肯定。针对技术落地推广,从实验设计、成果应用,到产品加工销售、秸秆综合利用等方面,提出了实现整个技术产业闭环的可行性路径,为生态修复类项目开展以及成果推广提出了有益思路。

    实验测试中心调研指导地调项目野外工作
    土壤是人类的衣食之源和生存之本,是最基本的生产要素。土壤的健康质量直接影响动植物和人类健康。为了更好地保护我们的生存之本,今天我们就来认识了解土壤环境问题中较突出的重金属污染。

    土壤重金属污染指的是什么 

    重金属通常是指密度大于5克/立方厘米的所有金属元素,包括汞、镉、砷、铅、铬、镍、铜、锌、钒、锰、锑等,其中前5种元素因其毒性大被称为“五毒元素”。

    顾名思义,土壤重金属污染就是重金属或其化合物通过各种途径进入土壤造成的污染。土壤遭受重金属污染的典型事例最早可追溯到19世纪发生在日本足尾铜矿山的公害事件,由于铜矿山废水排入农田,使土壤中铜含量高达200毫克/千克,不仅造成水稻严重减产,而且使矿山周围农田变为不毛之地。进入20世纪五六十年代,相继发生了举世瞩目的“八大公害事件”,其中发生在日本的“痛痛病”和“水俣病”公害事件就是土壤受到重金属镉和汞污染的两个典型。

    土壤重金属污染的危害 

    重金属可以污染水体、大气、土壤、作物等,但重金属不会像有机污染物那样被降解,因此通过食物链被生物体吸收后,会在体内积累,对人类健康造成巨大的威胁。有毒有害的重金属元素,例如砷、镉、铬、汞和铅,会对人体造成严重的危害,可能导致高血压、语言障碍、疲劳、睡眠障碍、提高攻击性倾向、注意力不集中、易怒、过敏反应、自身免疫疾病、血管闭塞以及记忆力下降等疾病和症状。重金属元素还会对人体细胞酶产生毒害作用。

    土壤重金属污染来源 

    土壤中重金属的来源可分为地质过程内源和人为活动外源两部分。地质过程内源又可分为继承型和次生富集型两类。继承型是指母岩中镉、汞、铅等有害重金属含量本底高,在后期的风化成土过程中,这些有害重金属继续保留在土壤中。资料显示,我国土壤大面积的重金属高异常主要是由成土母岩引起的,这些成土母岩多是富含铜、铅、锌、砷、镉等有害元素的硫化物矿床、黑色岩系、煤系地层等地质体,以及含锰、铬、镍的基性岩等。

    次生富集型是指成土母质中重金属元素含量并不高,但是在母岩风化成土过程中,化学性质活跃的元素,如钾、钠、钙、镁等易进入水体流失。而化学性质不活跃的元素,如汞、铅、砷等有害元素在原地的风化残留物中反而富集了。

    人为活动外源主要是指大量重金属通过人为活动进入到土壤环境中,其中主要是现代化工业,例如电镀、电池、化肥、矿业、造纸、杀虫剂、制革、塑料制品、冶金、采矿、化石燃料等制造、使用、活动过程中产生的含重金属的废水、废渣和废气。

    土壤中重金属的活性 

    土壤中重金属的含量和存在形态,很大程度上决定了其对环境、人体的风险高低。目前,土壤重金属的形态分级可分为离子态(水溶态)、可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态。不同形态的重金属,其毒性、迁移性和生物有效性均有不同差异。

    一般来说,离子态的重金属移动性强,易被植物吸收,多存在于土壤溶液中或土壤黏粒表面,有着较高的生物有效性;而某些重金属离子会与土壤中的盐类(如磷酸盐、碳酸盐、硫化物、铁锰氧化物等)、有机质形成沉淀物、复合物或螯合物,移动性有所降低,生物有效性也随之下降;最为稳定的则是残渣态,一般存在于硅酸盐、原生和次生矿物等晶格中。

    影响土壤重金属形态分布的因素有很多,归纳起来可分为两大类:一类是土壤内因,即土壤理化性质,如pH值、土壤有机质、土壤质地、胶体含量、离子含量、Eh值、营养元素等;另一类是人类活动,如输入到城市土壤中的重金属的数量、种类的影响。

    土壤重金属污染修复的方法 

    根据修复方式以及处理后土壤位置是否改变,土壤重金属污染治理方法分为原位治理和异位治理。异位治理环境风险低,见效快,成本高,环境扰动大,如客土法、换土法、土壤淋洗法等。原位治理中主要包括物理修复、化学修复、生物修复以及农业生态修复。

    物理修复主要包括电动修复、电热修复等。电动修复主要通过电流的作用,土壤中重金属离子和无机离子以电渗透和电迁移方式向电极运输,然后进行集中收集处理。

    化学修复就是向土壤中投入改良剂,通过对重金属的吸附、氧化还原等作用,降低重金属的生物有效性,常用的土壤改良剂有石灰、沸石、碳酸钙、磷酸盐、有机质等。

    生物修复利用生物削减、净化土壤中重金属或降低重金属毒性。1983年美国科学家Chaney提出了利用超富集植物清除土壤中重金属污染的思想,即利用植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理后可将该重金属移出土壤,达到污染治理与生态修复的目的。

    农业生态修复主要包括两个方面:一是农艺修复措施,包括改变耕作制度,调整作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等措施,来降低土壤重金属污染;二是生态修复,通过调节诸如土壤水分、土壤养分、土壤pH值和土壤氧化还原状况及气温、湿度等生态因子,实现对污染物所处环境介质的调控。

    钨尾矿资源,待挖掘的宝藏 

    □郝小非

    钨矿是重要的矿产资源,已发现钨矿物和含钨矿物20余种,最具有开采价值的是白钨矿和黑钨矿,主要分布于江西和湖南。钨矿品位一般在0.1%~0.5%,对钨矿选别后,91%以上的固体废弃物被作为尾矿丢弃。我国每年约有1000多万吨钨尾矿被排放到尾矿库中,未被有效开发利用,不仅占用大量土地,还存在安全隐患。但尾矿不是没有任何利用价值的废物,在技术经济条件达到的情况下也是待挖掘的宝藏。

    随着人们对尾矿资源综合利用认识的提高,人们也越来越注意到尾矿也是一种资源,可以被开发利用。钨尾矿中一般含铜、钼、铋等重要金属矿物及石英、萤石、绿柱石和石榴子石等非金属矿物,随着选矿技术的提高,我们不但可以再次回收利用钨,也可以回收铜、钼、铋、铷、锂和钾等有价元素,还可以回收萤石、石英、石榴子石等非金属矿物。另外,我们还可以利用钨尾矿制备地聚物、微晶玻璃、陶瓷原料、免烧砖、透水砖等环保建筑材料。

    总之,只要我们结合钨尾矿资源特点,因地制宜地寻求钨尾矿资源化利用途径,一定可使钨尾矿变废为宝,实现经济效益、生态效益、社会效益的有效统一。

    “锆”诉 

    □雷晴宇

    对普通大众来说,单纯提到化学元素锆,可能相对比较陌生,但它却与我们的生活密切相关。比如,我们最常用到的卫生洁具、瓷砖等陶瓷产品,就是因为其中含有一定量的锆才让它的外表变得那么艳丽和富于光泽,也让它具有了极强的抗腐蚀和耐磨等性能。

    在工业实践中,由于提炼和加工困难、产量不多,锆被列为稀有金属。

    锆的应用领域非常广泛。其中,63%以上的锆以硅酸锆、氧化锆的形式应用于陶瓷、耐火材料领域,约有13%用在锆化学品领域,仅有3%~4%的锆矿石被加工成金属锆。因其具有惊人的抗腐蚀性能、极高的熔点、超高的硬度和强度等特性,锆还被广泛应用在航空航天等领域。

    锆的元素符号为Zr,锆元素在地壳中的含量仅约为0.025%。

    地壳中大部分锆呈分散状态存在于许多矿物中,已知含锆的独立矿物有38种,锆英石(ZrSiO4)和斜锆石(ZrO2)是主要的具有工业价值的含锆矿物。锆英石主要赋存于海滨砂矿中,是世界冶炼金属锆的主要来源。斜锆石主要产于碱性火成岩中,与霞石、霓石、磷灰石、萤石、钙钛矿、锆石、烧绿石等共生。

    含锆的天然硅酸盐ZrSiO4被称为锆石或风信子石,广泛分布于自然界中,具有从橙到红的各种美丽的颜色,自古以来被认为是宝石,印度洋中的岛国斯里兰卡盛产锆石。

    1789年,德国人M.H.Klaproth对锆石进行研究时发现,将它与氢氧化钠共熔,用盐酸溶解冷却物,在溶液中添加碳酸钾,沉淀、过滤并清洗沉淀物,再将沉淀物与硫酸共煮,然后滤去硅的氧化物,在滤液中检查钙、镁、铝的氧化物均未发现,在溶液中添加碳酸钾后出现沉淀,这个沉淀物不像氧化铝那样溶于碱液,也不像镁的氧化物那样和酸作用,Klaproth认为这个沉淀物和以前所知的氧化物都不一样,是由Zirkonerde(锆土,德文)构成的。不久,法国化学家de Morueau和Vauquelin两人都证实M.H.Klaproth的分析是正确的,该元素拉丁名为Zirconium,符号认为Zr,中国译成锆。

    1808年,英国的H.Davy利用电流分解锆的化合物,没有成功;1824年,瑞典的J.J.Berzelius用钾还原K2ZrF6时制得金属锆,但不够纯。直到1914年,荷兰一家金属白热电灯制造厂的两位研究人员Lely和Hambruger用无水四氯化锆和过量金属钠同盛入一空球中,利用电流加热500℃,取得了纯金属锆。

    锆矿资源是稀有金属矿产资源之一。世界各大洲均发现有锆资源,主要分布在大洋洲和非洲,美洲、亚洲、欧洲也有发现。锆矿床按其成因可分为脉型岩矿和砂矿两种类型,但由于岩矿结构形态复杂,分离共生矿物成本高及开采难度较大等原因,导致目前全球工业开采多以砂矿型为主 。砂矿主要包括滨海砂矿、冲积砂矿以及残积砂矿,其中滨海砂矿最具工业开采价值,规模和产量远大于冲积砂矿及残积砂矿。

    据美国地质调查局数据显示,2012年~2018年,全球锆资源储量维持在7500万吨左右,澳大利亚、南非、肯尼亚及莫桑比克4个国家锆矿储量合计6140 万吨,占全球的84.11%,矿床类型多以滨海砂矿为主; 印度、马达加斯加、巴西、中国、美国、乌克兰、印度尼西亚及俄罗斯等国家锆矿储量1160万吨,占全球的15.89%。

    我国的锆储量和美国基本一致,约有50万吨,仅占全球储量的0.68%。相较于其他国家,我国锆资源非常缺乏,所以,我国的锆资源主要靠进口获得。随着需求量不断增大,近年来进口以每年6%的速度增长,国内每年锆进口需求量达到90%以上。

    锆英砂主要用于生产化学锆、电熔锆、硅酸锆、金属锆等。2019年,我国锆英砂市场需求量为62.02万吨,而我国自有资源产量不足1万吨,近3年的进口量均超过100万吨。

    中国和欧洲是锆的主要消费市场,中国对锆的需求在全球占比高达52%。

    锆矿按照主要用途分为金属锆和工业锆两类。金属核级锆处于锆产业链最顶端,工业锆主要用在化工耐酸碱设备、电子行业等领域。中国是世界陶瓷工业生产和出口大国,硅酸锆则是陶瓷行业的直接和主要原料,陶瓷制品离不开装饰,好的装饰使制品身价百倍,装饰材料是装饰的物质基础,陶瓷色料是最重要的陶瓷装饰材料。由此可见,陶瓷色料在陶瓷装饰中的地位,也可知氧化锆在陶瓷装饰中的地位。同时,随着中国陶瓷产业的迅速发展,锆需求也随之猛增。

    矿山废水变废为宝的秘诀 

    □胡四春

    在矿山开采、矿物富集分离过程中,会产生大量的矿山废水,其中包括矿坑水、露采厂废水、选厂废水、尾矿库和废石场的淋滤水,这些废水不仅被白白浪费掉,而且还污染了地表水和地下水,危害环境。

    根据产生的途径不同,矿山废水性质相差很大。例如,矿坑废水pH值要么是强酸性,要么是碱性;选厂废水可能含有大量的重金属离子和有机药剂,这些都给废水处理及回用造成了巨大的麻烦。因此,根据废水产生的途径和废水处理后的性质进行分类处理和分质利用就成了把矿山废水变废为宝的关键。

    矿山采选废水常见处理方法 

    一般来说,矿山采选废水常见处理方法主要包括七方面:

    自然净化法。自然净化法作为最廉价、最简单的废水治理方法,被我国的选矿厂普遍采用。自然净化法常以尾矿库为构筑物,废水通过管道运输至尾矿库,在库内发生沉淀、水解、氧化、挥发、光照降解甚至生物分解等作用,使悬浮颗粒和残余药剂浓度降低,甚至基本去除。

    自然净化的效果与曝晒时间、光照强度、水体温度、初始pH值、溶解氧等因素有关。通常曝晒时间越长、光照强度越强、温度越高,自然净化效果越好。

    特点:自然净化法具有成本低、管理方便、无二次污染等特点,但存在净化不彻底、耗时长、气候等自然因素干扰大等问题,特别在高寒地区,往往会因为净化效率低下而影响废水的回用。因此,自然净化法通常可作为选矿废水的预处理方法,或用于成分相对简单的重、磁选废水的处理。

    酸碱中和法。酸碱中和法是一种传统的废水治理方法,因简单实用而被广泛采用。这其中既包括酸性废水中的H+(或碱性废水的OH-)与中和剂中的OH-(或H+)发生反应,生成中性水分子,同时矿浆的合适碱度也有利于重金属离子与氢氧根离子反应生成难溶的氢氧化物沉淀,从而消除重金属污染。

    生产实践中,常用的中和剂有石灰、消石灰、硫酸、碱性废水废渣(电石渣等)、酸性废水废气等。在选择中和剂时,应优先考虑厂区周边的废料,以达到“以废治废”的目的。理论上各重金属在一定pH范围内均能沉淀,因此控制好pH值是中和法的关键。

    特点:酸碱中和法具有管理方便、费用较低、操作简便、处理量大、适应性强和运行稳定等优点,但也存在一些问题,如在用石灰中和时,设备及管壁结垢严重、污泥增量较大、易产生二次污染等。

    混凝沉淀法。混凝沉淀法是目前治理选矿废水较成熟的一种方法,常与活性炭吸附或氧化法组成混凝沉淀——活性炭吸附法和混凝沉淀——氧化法。

    混凝沉淀法使用的药剂主要包括凝聚剂和絮凝剂两大类。凝聚剂主要有氯化铁、硫酸铁、硫酸铝、氯化铝、聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合硫酸铁(PFS)等,使用最普遍的絮凝剂是聚丙烯酰胺(PAM)。混凝剂的选择至关重要,它直接关系到净化效果的好坏。

    特点:混凝沉淀法可以有效去除废水中的悬浮颗粒和一些重金属离子,是一种成熟、稳定、高效的废水治理方法,但也存在对有机化学药剂净化不彻底,因药剂用量过大易产生二次污染等问题。

    化学氧化法。化学氧化法是深度治理废水中残留浮选药剂的有效方法,特别是近年发展起来的高级氧化技术(AOP)能彻底去除废水中持久性难降解有机污染物。

    化学氧化法的实质是,氧化剂通过夺取废水中有机污染物中的H原子等途径,将有机污染物氧化成无毒或低毒的小分子物质,或转化为容易从水中分离的物质,从而降低废水的COD、BOD。常见的氧化剂有臭氧、Fenton试剂、双氧水、次氯酸钠等。

    特点:化学氧化法治理废水具有操作稳定、反应彻底、处理效率高并能提高废水的可生化性等特点,特别对于处理高COD的有机废水具有显著优势,但也存在运行费用较高等问题。

    人工湿地法。人工湿地是仿照自然湿地人工修建并参与监督控制的具有流动或静止水体的浅水水域,是以基质-植物-微生物为核心的综合生态系统,可通过基质截留、过滤、吸附,植物吸收、拦截,微生物摄食、分解等途径去除废水中的污染物,充分发挥了物理、化学和生物的协同作用。

    特点:人工湿地法为治理废水提供了一条绿色化、生态化的技术路线,但也存在基质易堵塞、占地面积大、受气候等因素干扰大等局限性。

    微生物处理法。微生物处理法对于矿山酸性废水具有显著的优势。其净化原理是利用微生物的新陈代谢作用降解水体中的污染物,从而达到净化废水的目的。

    特点:微生物法治理废水拥有巨大的发展潜力,具有环境友好、选择性好、二次污染少等特点,甚至还可以回收某些重金属原料,但如何筛选出适应性强的菌种是个难题。

    矿山废水的分步处理和分质利用 

    一般来说,铅锌矿矿山废水的分步处理和分质利用分4步来进行:

    一是将铅精矿和锌精矿的浓密溢流水直接回用到各自的选别流程。

    二是向尾矿水加入一定量的钾明矾和阴离子PAM进行混凝反应和絮凝沉降,将尾矿废水中影响选矿指标的铜、铅、锌、镉、铬等重金属离子去除掉。然后,再加入一定量的椰壳型粉末活性炭,并通过纤维球过滤塔来去除掉影响选矿指标的部分有机残留药剂,适度处理后的废水大部分回用到选矿流程。

    三是采场废水一部分用于厂区绿化用水和尾矿干堆库区降尘喷淋用水。

    四是加入一定量的纯碱来降低水的硬度,通过砂滤和膜滤工艺来降低水的浊度等,然后将深度处理后的水分别用于陶瓷过滤机的槽洗水、酸洗水及浮选药剂的配制溶解用水。

    根据其性质及成分存在差异,选用合适的废水处理技术及回用方法,可提高选矿废水循环利用率,实现废水的清洁排放,真正做到变废为宝。

    生态画卷 资源综合利用有新突破
1 2 3 4 5 下一页 尾页