分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到33条相关结果,系统用时0.033秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    近日,第八届数字中国建设峰会在福州召开,“智能地质调查系统”相关技术与软件产品在自然资源部展区展出。

    智能地质调查系统由中国地质调查局自然资源综合调查指挥中心地质调查主流程信息化团队自主研发,历经二十余年的迭代与升级,实现了从数字地质填图到数字地质调查,再到智能地质调查的跨越,形成了一套覆盖中大比例尺地质调查全流程的数智化技术和专业软件体系。

    智能地质调查系统基于云计算、大数据、人工智能等新一代信息技术,为地质调查项目提供了定制化的“数字”工作平台,实现了野外数据采集、汇聚、存储、管理、处理、分析、建模及成果表达与应用服务。涵盖了数字地质填图系统RGMap、探矿工程数据编录系统PEData、数字地质调查信息综合平台DGSInfo、资源储量估算与矿体三维建模信息系统REInfo、人工智能地质图成图软件、物探数据在线综合处理软件,以及云端基础支撑平台——地质调查智能空间平台(GSSP)、地质调查GIS基础软件(DGSGIS)等。

    目前,该系统广泛应用于区域地质调查、地质填图三维建模、矿产地质调查、矿产资源勘查及矿山开采系统优化等相关场景,并已扩展至地表基质调查等业务领域,相关技术已被纳入新一轮找矿突破战略行动先进适用勘查技术清单。

     

    指挥中心“智能地质调查系统”在第八届数字中国建设...

    历经20余载,我国已实现管辖海域1:100万海洋区域地质调查全覆盖,并正在加快推进1:25万海洋区域地质调查——精细探查海洋地质家底。

    三点定位现场

    海洋兴则国兴,海洋强则国强。习近平总书记强调,建设海洋强国,必须进一步关心海洋、认识海洋、经略海洋,加快海洋科技创新步伐。

    如今,认识海洋又迈出坚实一步。5月28日,在山东青岛召开的第一届海洋区域地质调查大会上,全面反映我国管辖海域地质资源环境全貌的1∶100万海洋区域地质调查系统性成果正式面向社会发布。这套覆盖我国约300万平方千米管辖海域、集综合性和原创性于一体的系列成果,不仅填补了我国管辖海域海洋区域地质国情调查的空白,而且有效提升了我国在国际海洋地学领域的话语权。

    足迹遍布中国海,1∶100万海洋区调实现管辖海域全覆盖

    海洋区域地质调查,是海洋地质调查工作的“开路先锋”,1∶100万比例尺是其最基本的精度。

    我国海洋区域地质调查工作起步晚、起点低。随着1999年国土资源大调查专项的启动,我国开展1∶100万海洋区域地质调查试点,自此拉开了对管辖海域海洋区域地质调查的序幕。

    “按照国际标准分幅,可将我国300万平方千米的管辖海域分为20个1∶100万标准图幅。”中国地质调查局海洋基础地质调查工程首席专家、青岛海洋地质研究所副总工程师张勇介绍,1999年启动1∶100万南通幅示范图幅调查工作,采用先进的地质地球物理调查设备、测试手段和分析仪器,获取了大量海上地质地球物理实测数据和室内分析数据及综合研究成果。

    更重要的是,通过示范图幅,探索了统一的外业调查、资料处理、样品测试分析、成果图件编制和报告编写的标准,形成了《1∶100万海洋区域地质调查规范》,为后续全面展开图幅调查奠定了坚实基础。

    从2006年到2015年的10年间,我国管辖海域1∶100万区域地质调查全面展开。中国地质调查局组织60余家单位、千余名海洋地质工作者,调集调查船40余艘、飞机10余架、调查设备700余套,足迹遍布中国海。

    多波束、地震、重力、磁力、地质取样、海底浅地层钻探、航空物探等先进调查手段齐发力,浅—中—深部一体化调查。基于采集获取的海量基础地质数据,项目团队对海底地形地貌、地球化学场、地球物理场、断裂构造及岩浆活动、深部地壳结构、环境地质因素以及矿产资源等开展了进一步研究,编制了20个国际标准分幅的地质图、构造图、地形图、地貌图、环境地质因素图和矿产图等基础性图件120幅,地球物理系列图、地球化学系列图等专业性图件300余幅,形成约2000万字的海洋区调报告。

    成果总结再提升,全面反映我国管辖海域基础地质国情信息

    走进深蓝,认识海洋。海洋区域地质调查获取的海量实测地质数据中,蕴藏着认识海洋世界的资源、环境、生态“密码”。

    在20个国际标准分幅1∶100万海洋区域地质调查全部完成后,调查团队开始了对调查获取的海量海洋地质、地球物理、地球化学、遥感等资料的集成研究,使之系统化、规律化、理论化,并最终形成首套基于实测资料、全面反映我国管辖海域地质国情信息的系列成果,包括中国管辖海域第一代1∶100万海洋区域地质系列图件、第一个1∶100万海洋区域地质数据库和第一部1∶100万海洋区域地质报告。在本届海洋区域地质调查大会上,这些成果正式向社会发布。

    张勇介绍,基于1∶100万海洋区域地质调查工作的开展,取得了一系列原创性科学认识。比如:创新提出的“东亚洋—陆汇聚带多圈层作用”和“南海弧后扩张与左旋剪切”理论模式,重塑了东亚大陆边缘构造格局;建立了中国边缘海构造单元划分新方案,统一了中国海域中—新生代地层格架,完善了中国海域地貌分类体系。这些新认识推动了西太平洋边缘海重大基础科学问题的研究。

    1∶100万海洋区域地质调查,还为新一轮找矿突破战略行动提供了基础资料和找矿靶区。据了解,这次调查圈定8个深水油气远景区、5个深层油气远景区、40个天然气水合物资源远景区;新发现10处铁锰结核(壳)站位,通过岩矿分析发现极富稀土元素;发现多种类型的海砂资源,为海砂勘查提供了重要的基础地质数据支撑。

    “中国管辖海域1∶100万区域地质调查新发现并命名780个地理实体,388个获国务院批准,在海洋自然资源管理等方面发挥了重要作用;编制了10余套国家重大发展战略区自然资源与环境图集,为环渤海经济带、粤港澳大湾区、海南自贸港等区域协同发展提供了支撑服务。”张勇介绍,作为一切海洋地质工作的基础,海洋区域地质调查将为支撑能源资源安全保障、服务生态文明建设与自然资源管理等提供更多重要的基础资料。

    相较于陆地,由于有海水的覆盖,在海上开展调查和进行探测的难度更大,需要更加先进的调查技术手段。通过1∶100万海洋区域地质调查的实施,形成15项海洋地质调查技术规范,初步构建起“星空地海井”调查技术体系,调查能力整体达到国际先进水平。“尤其是在海陆过渡地带,我们应用了航空物探调查,取得了显著成效。”张勇说。

    在1∶100万海洋区调工作推进的同时,项目团队还在重点海域完成了35个国际标准图幅的1∶25万海洋区调,约占我国管辖海域面积的15.2%,并探索启动了1∶5万海洋区调试点,拉开了管辖海域大比例尺调查序幕。

    立足时代求变革,推动海洋区域地质调查高质量发展

    区域地质调查是地质调查事业的立业之本和永恒主题,工作部署必须保持长期性、系统性和稳定性,通过持续调查和逐轮更新,不断提升对地球系统和资源环境国情的认知水平。

    新时代在召唤。当前,海洋已成为世界各国竞相博弈、国际社会广泛关注的战略新空间,竞争的核心是革命性、颠覆性的科技创新能力,竞争的路径从水面到水下、从浅海到深海、从近海到大洋、从大尺度到多尺度乃至微尺度、从区域到地球系统、从机械化到智能化和网络化快速拓展。新一轮科技革命深刻影响地质调查发展方向和工作方式,要求海洋区域地质调查以地球系统科学为指导,实现调查研究“范式革命”,尤其是聚焦中国边缘海形成演化及其资源环境效应这一主题主线,形成创新性的边缘海多圈层相互作用理论,推动我国海洋科学技术水平的提升。

    而目前我国中大比例尺海洋区域地质调查程度依然较低,制约了对海洋的开发利用。加快海洋强国建设,需要海洋区域地质调查加快脚步。为此,2023年中国地质调查局工作会议明确,海洋区域地质调查要聚焦南海、东海等重点海域,至2025年1∶25万海洋区域地质调查覆盖率达28%,2030年达50%。

    在第一届海洋区域地质调查大会上,中国地质调查局再次发出“全力推动海洋区域地质调查高质量发展”的号令:

    ——优化工作布局。以“陆块聚散与资源环境效应”为主线,以“中国边缘海形成与演化”为核心,在重要盆地区、权益攸关区、岛礁建设区重点布局,在重要经济区、重大工程区、生态保护区等优先布局开展1∶25万、1∶5万海洋区域地质调查及专题填图。

    ——回归基础本源。以解决重大海洋基础地质问题为目标,查清重点海域基础地质特征,提升地质构造、地层沉积、岩石矿物、地形地貌等基础地质认知,深化成矿、成藏、致灾、生态等地质背景、地质过程、控制因素等认识。

    ——强化陆海统筹。以实现陆海构造单元、地层格架、圈层作用等重大地质问题衔接为目标,加强海岸带地质调查,创新海陆过渡带航空物探等先进调查技术方法,充分利用智能化、无人化设备,解决陆海一体化调查研究难题。

    ——加强预研究。改变以往的“网格式填图”,转变为以解决关键基础地质问题和重点需求为核心,在重点目标和关键区域,开展更有针对性和更加精细的调查研究,做到有的放矢。

    号角声声催征人,牢记使命在担当。新时代,向海而兴、向海图强。我国海洋区域地质调查历经20余载从无到有、由小及大,如今站在转型升级的新起点再次扬帆启程,持续推进服务、理论、动力、结构、质量、效率“六大变革”,不断提高调查的广度、深度、精度、速度,为推动我国从海洋大国迈向海洋强国提供坚实地质力量,让浩瀚海洋更好地造福于人民。

     
    精细探查海洋地质家底

    受台风“格美”影响,湖南省郴州市资兴市近日遭遇特大暴雨,局部地区受灾严重,居民的生命财产安全受到严重威胁。中国地质调查局长沙自然资源综合调查中心(简称“长沙中心”)党委迅速响应自然资源部、中国地质调查局关于做好资兴市地质灾害防御部署安排,抽调16名技术人员组建应急小分队,与自然资源部、中国地质调查局和湖南省有关单位的专家一道,第一时间赶赴资兴市,全面展开地质灾害应急调查核查工作。

    以人为本 迅速响应

    8月2日中午,调查人员抵达资兴市后,立即与当地自然资源管理部门和相关地质灾害防御技术支撑单位进行会商研讨,共同研判灾情形势,制定了详细的工作方案,并明确了任务分工。

    灾区人民的困境时刻牵动着每个人的心。8月3日,天刚蒙蒙亮,调查人员便早早出发,挺进州门司镇和八面山瑶族乡等重灾区。沿途,救援车辆和物资输送车辆络绎不绝;各方救援力量和当地居民合力清淤,全力做好人员搜救、电力恢复和道路抢修等工作,现场气氛紧张而又凝重。

    守护生命 责任如山

    在燕窝村宝坑组,调查人员深入灾民家中,详细了解受灾情况。一位村民用手比画着激动地说道:“从没见过这么大的雨,3分钟水面涨了3米,农田全被淹了,我那房子也被淹了。”在问及目前生产生活情况时,一位60岁左右的村民表示,虽然天灾无情,但我们有信心重建家园。

    在州门司镇燕窝村上边冲组,调查人员穿着雨鞋,踉踉跄跄地行走在田间地头。由于道路被冲毁,挡住去受灾点的路,加上河水湍急,虽然危险,但他们来不及多想,为了尽快摸清灾情,他们捡来两根杉木搭建起一座简易木桥,义无反顾地走了上去。

    在州门司镇杨公塘村塘尾组,调查人员只能徒步前往受灾点。他们顶烈日、冒酷暑,浅一脚深一脚地在淤泥中艰难前行,3公里的路程走了将近3个小时。当他们风尘仆仆地赶到受灾点时,两人衣服全部湿透了,又累又渴又饿,但他们忍饥挨饿,抓紧投入应急调查核查工作当中。

     

    攀悬崖赶赴受灾点

    8月4日,调查人员来到州门司镇鸡公垅村车下垅组一处受灾点开展应急调查核查,村民热情地给大家端茶倒水。“这间土坯房全冲垮了,是哪天发生的事?”调查人员询问道,村民一五一十地向调查人员介绍灾害发生的情形、家中受损情况等。在州门司镇烟坪村郭塘坪组,一位成功从滑坡中紧急避险的退伍老兵激动地说道:“7月27日5时40分左右,当时天气很不好,我就感觉不对劲,赶紧起床往外面跑,没一会‘轰’的一声巨响,身后的房子全塌了。”

    简单地吃点面包和八宝粥后,调查人员驱车前往位于羊史坑组的受灾点。

     

    复盘灾害发生情形

     

    无人机航拍圈定受灾区域

    在州门司镇烟坪村老屋头组一处受灾点,调查人员向村民详细了解灾情信息,复盘灾害发生情形,将受灾情况等数据一一登记。负责数据记录的长沙中心调查人员详细询问灾害发生时的情况,并逐项填写数据。调查人员反复查看滑坡周边地形,并抓起一把土揉搓,确定土壤松散程度,还拿出卷尺测量粒径大小。此外,调查人员还通过实地踏勘和无人机航拍等方式划定受灾点区域,调查受灾点的地质环境背景,估算滑坡方量,并从时间、空间尺度上,对比分析地形条件、切坡活动以及降雨因素对灾害的影响,分析致灾成因机理和发展趋势,提出应急防治措施,为灾后重建提供基础数据支撑。

    心中大爱 温暖人心

    在即将离开受灾点时,调查人员鼓励村民:“困难只是暂时的,明天一定会更好。”同时,也不忘叮嘱村民做好灾害防御:“千万不能掉以轻心,要密切关注天气预报,分析研判当地汛情发展变化,及时做好自身安全防范,想方设法避免二次灾害发生。”村民坚持要把家里种的西瓜拿出来分给大家吃,在被调查人员拒绝后,他深情地说道:“有你们,有各方人员帮助我们共渡难关,有这么好的政府,我们有信心战胜灾难。”

    截至8月15日,调查人员已完成56处受灾点调查核查工作。目前,此项工作仍在进行中。

    心中有大爱,脚下有力量。长沙中心牢记“为国找矿、为民造福”的铮铮誓言。连日来,长沙中心白天奋战在灾区开展调查核查,晚上加班加点处理数据,以实际行动和专业技术,为保障灾区人民生命财产安全贡献着地质人的一份力量。 

     
     
     
     
    心中有大爱 脚下有力量
    土壤是人类的衣食之源和生存之本,是最基本的生产要素。土壤的健康质量直接影响动植物和人类健康。为了更好地保护我们的生存之本,今天我们就来认识了解土壤环境问题中较突出的重金属污染。

    土壤重金属污染指的是什么 

    重金属通常是指密度大于5克/立方厘米的所有金属元素,包括汞、镉、砷、铅、铬、镍、铜、锌、钒、锰、锑等,其中前5种元素因其毒性大被称为“五毒元素”。

    顾名思义,土壤重金属污染就是重金属或其化合物通过各种途径进入土壤造成的污染。土壤遭受重金属污染的典型事例最早可追溯到19世纪发生在日本足尾铜矿山的公害事件,由于铜矿山废水排入农田,使土壤中铜含量高达200毫克/千克,不仅造成水稻严重减产,而且使矿山周围农田变为不毛之地。进入20世纪五六十年代,相继发生了举世瞩目的“八大公害事件”,其中发生在日本的“痛痛病”和“水俣病”公害事件就是土壤受到重金属镉和汞污染的两个典型。

    土壤重金属污染的危害 

    重金属可以污染水体、大气、土壤、作物等,但重金属不会像有机污染物那样被降解,因此通过食物链被生物体吸收后,会在体内积累,对人类健康造成巨大的威胁。有毒有害的重金属元素,例如砷、镉、铬、汞和铅,会对人体造成严重的危害,可能导致高血压、语言障碍、疲劳、睡眠障碍、提高攻击性倾向、注意力不集中、易怒、过敏反应、自身免疫疾病、血管闭塞以及记忆力下降等疾病和症状。重金属元素还会对人体细胞酶产生毒害作用。

    土壤重金属污染来源 

    土壤中重金属的来源可分为地质过程内源和人为活动外源两部分。地质过程内源又可分为继承型和次生富集型两类。继承型是指母岩中镉、汞、铅等有害重金属含量本底高,在后期的风化成土过程中,这些有害重金属继续保留在土壤中。资料显示,我国土壤大面积的重金属高异常主要是由成土母岩引起的,这些成土母岩多是富含铜、铅、锌、砷、镉等有害元素的硫化物矿床、黑色岩系、煤系地层等地质体,以及含锰、铬、镍的基性岩等。

    次生富集型是指成土母质中重金属元素含量并不高,但是在母岩风化成土过程中,化学性质活跃的元素,如钾、钠、钙、镁等易进入水体流失。而化学性质不活跃的元素,如汞、铅、砷等有害元素在原地的风化残留物中反而富集了。

    人为活动外源主要是指大量重金属通过人为活动进入到土壤环境中,其中主要是现代化工业,例如电镀、电池、化肥、矿业、造纸、杀虫剂、制革、塑料制品、冶金、采矿、化石燃料等制造、使用、活动过程中产生的含重金属的废水、废渣和废气。

    土壤中重金属的活性 

    土壤中重金属的含量和存在形态,很大程度上决定了其对环境、人体的风险高低。目前,土壤重金属的形态分级可分为离子态(水溶态)、可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态。不同形态的重金属,其毒性、迁移性和生物有效性均有不同差异。

    一般来说,离子态的重金属移动性强,易被植物吸收,多存在于土壤溶液中或土壤黏粒表面,有着较高的生物有效性;而某些重金属离子会与土壤中的盐类(如磷酸盐、碳酸盐、硫化物、铁锰氧化物等)、有机质形成沉淀物、复合物或螯合物,移动性有所降低,生物有效性也随之下降;最为稳定的则是残渣态,一般存在于硅酸盐、原生和次生矿物等晶格中。

    影响土壤重金属形态分布的因素有很多,归纳起来可分为两大类:一类是土壤内因,即土壤理化性质,如pH值、土壤有机质、土壤质地、胶体含量、离子含量、Eh值、营养元素等;另一类是人类活动,如输入到城市土壤中的重金属的数量、种类的影响。

    土壤重金属污染修复的方法 

    根据修复方式以及处理后土壤位置是否改变,土壤重金属污染治理方法分为原位治理和异位治理。异位治理环境风险低,见效快,成本高,环境扰动大,如客土法、换土法、土壤淋洗法等。原位治理中主要包括物理修复、化学修复、生物修复以及农业生态修复。

    物理修复主要包括电动修复、电热修复等。电动修复主要通过电流的作用,土壤中重金属离子和无机离子以电渗透和电迁移方式向电极运输,然后进行集中收集处理。

    化学修复就是向土壤中投入改良剂,通过对重金属的吸附、氧化还原等作用,降低重金属的生物有效性,常用的土壤改良剂有石灰、沸石、碳酸钙、磷酸盐、有机质等。

    生物修复利用生物削减、净化土壤中重金属或降低重金属毒性。1983年美国科学家Chaney提出了利用超富集植物清除土壤中重金属污染的思想,即利用植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理后可将该重金属移出土壤,达到污染治理与生态修复的目的。

    农业生态修复主要包括两个方面:一是农艺修复措施,包括改变耕作制度,调整作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等措施,来降低土壤重金属污染;二是生态修复,通过调节诸如土壤水分、土壤养分、土壤pH值和土壤氧化还原状况及气温、湿度等生态因子,实现对污染物所处环境介质的调控。

    钨尾矿资源,待挖掘的宝藏 

    □郝小非

    钨矿是重要的矿产资源,已发现钨矿物和含钨矿物20余种,最具有开采价值的是白钨矿和黑钨矿,主要分布于江西和湖南。钨矿品位一般在0.1%~0.5%,对钨矿选别后,91%以上的固体废弃物被作为尾矿丢弃。我国每年约有1000多万吨钨尾矿被排放到尾矿库中,未被有效开发利用,不仅占用大量土地,还存在安全隐患。但尾矿不是没有任何利用价值的废物,在技术经济条件达到的情况下也是待挖掘的宝藏。

    随着人们对尾矿资源综合利用认识的提高,人们也越来越注意到尾矿也是一种资源,可以被开发利用。钨尾矿中一般含铜、钼、铋等重要金属矿物及石英、萤石、绿柱石和石榴子石等非金属矿物,随着选矿技术的提高,我们不但可以再次回收利用钨,也可以回收铜、钼、铋、铷、锂和钾等有价元素,还可以回收萤石、石英、石榴子石等非金属矿物。另外,我们还可以利用钨尾矿制备地聚物、微晶玻璃、陶瓷原料、免烧砖、透水砖等环保建筑材料。

    总之,只要我们结合钨尾矿资源特点,因地制宜地寻求钨尾矿资源化利用途径,一定可使钨尾矿变废为宝,实现经济效益、生态效益、社会效益的有效统一。

    “锆”诉 

    □雷晴宇

    对普通大众来说,单纯提到化学元素锆,可能相对比较陌生,但它却与我们的生活密切相关。比如,我们最常用到的卫生洁具、瓷砖等陶瓷产品,就是因为其中含有一定量的锆才让它的外表变得那么艳丽和富于光泽,也让它具有了极强的抗腐蚀和耐磨等性能。

    在工业实践中,由于提炼和加工困难、产量不多,锆被列为稀有金属。

    锆的应用领域非常广泛。其中,63%以上的锆以硅酸锆、氧化锆的形式应用于陶瓷、耐火材料领域,约有13%用在锆化学品领域,仅有3%~4%的锆矿石被加工成金属锆。因其具有惊人的抗腐蚀性能、极高的熔点、超高的硬度和强度等特性,锆还被广泛应用在航空航天等领域。

    锆的元素符号为Zr,锆元素在地壳中的含量仅约为0.025%。

    地壳中大部分锆呈分散状态存在于许多矿物中,已知含锆的独立矿物有38种,锆英石(ZrSiO4)和斜锆石(ZrO2)是主要的具有工业价值的含锆矿物。锆英石主要赋存于海滨砂矿中,是世界冶炼金属锆的主要来源。斜锆石主要产于碱性火成岩中,与霞石、霓石、磷灰石、萤石、钙钛矿、锆石、烧绿石等共生。

    含锆的天然硅酸盐ZrSiO4被称为锆石或风信子石,广泛分布于自然界中,具有从橙到红的各种美丽的颜色,自古以来被认为是宝石,印度洋中的岛国斯里兰卡盛产锆石。

    1789年,德国人M.H.Klaproth对锆石进行研究时发现,将它与氢氧化钠共熔,用盐酸溶解冷却物,在溶液中添加碳酸钾,沉淀、过滤并清洗沉淀物,再将沉淀物与硫酸共煮,然后滤去硅的氧化物,在滤液中检查钙、镁、铝的氧化物均未发现,在溶液中添加碳酸钾后出现沉淀,这个沉淀物不像氧化铝那样溶于碱液,也不像镁的氧化物那样和酸作用,Klaproth认为这个沉淀物和以前所知的氧化物都不一样,是由Zirkonerde(锆土,德文)构成的。不久,法国化学家de Morueau和Vauquelin两人都证实M.H.Klaproth的分析是正确的,该元素拉丁名为Zirconium,符号认为Zr,中国译成锆。

    1808年,英国的H.Davy利用电流分解锆的化合物,没有成功;1824年,瑞典的J.J.Berzelius用钾还原K2ZrF6时制得金属锆,但不够纯。直到1914年,荷兰一家金属白热电灯制造厂的两位研究人员Lely和Hambruger用无水四氯化锆和过量金属钠同盛入一空球中,利用电流加热500℃,取得了纯金属锆。

    锆矿资源是稀有金属矿产资源之一。世界各大洲均发现有锆资源,主要分布在大洋洲和非洲,美洲、亚洲、欧洲也有发现。锆矿床按其成因可分为脉型岩矿和砂矿两种类型,但由于岩矿结构形态复杂,分离共生矿物成本高及开采难度较大等原因,导致目前全球工业开采多以砂矿型为主 。砂矿主要包括滨海砂矿、冲积砂矿以及残积砂矿,其中滨海砂矿最具工业开采价值,规模和产量远大于冲积砂矿及残积砂矿。

    据美国地质调查局数据显示,2012年~2018年,全球锆资源储量维持在7500万吨左右,澳大利亚、南非、肯尼亚及莫桑比克4个国家锆矿储量合计6140 万吨,占全球的84.11%,矿床类型多以滨海砂矿为主; 印度、马达加斯加、巴西、中国、美国、乌克兰、印度尼西亚及俄罗斯等国家锆矿储量1160万吨,占全球的15.89%。

    我国的锆储量和美国基本一致,约有50万吨,仅占全球储量的0.68%。相较于其他国家,我国锆资源非常缺乏,所以,我国的锆资源主要靠进口获得。随着需求量不断增大,近年来进口以每年6%的速度增长,国内每年锆进口需求量达到90%以上。

    锆英砂主要用于生产化学锆、电熔锆、硅酸锆、金属锆等。2019年,我国锆英砂市场需求量为62.02万吨,而我国自有资源产量不足1万吨,近3年的进口量均超过100万吨。

    中国和欧洲是锆的主要消费市场,中国对锆的需求在全球占比高达52%。

    锆矿按照主要用途分为金属锆和工业锆两类。金属核级锆处于锆产业链最顶端,工业锆主要用在化工耐酸碱设备、电子行业等领域。中国是世界陶瓷工业生产和出口大国,硅酸锆则是陶瓷行业的直接和主要原料,陶瓷制品离不开装饰,好的装饰使制品身价百倍,装饰材料是装饰的物质基础,陶瓷色料是最重要的陶瓷装饰材料。由此可见,陶瓷色料在陶瓷装饰中的地位,也可知氧化锆在陶瓷装饰中的地位。同时,随着中国陶瓷产业的迅速发展,锆需求也随之猛增。

    矿山废水变废为宝的秘诀 

    □胡四春

    在矿山开采、矿物富集分离过程中,会产生大量的矿山废水,其中包括矿坑水、露采厂废水、选厂废水、尾矿库和废石场的淋滤水,这些废水不仅被白白浪费掉,而且还污染了地表水和地下水,危害环境。

    根据产生的途径不同,矿山废水性质相差很大。例如,矿坑废水pH值要么是强酸性,要么是碱性;选厂废水可能含有大量的重金属离子和有机药剂,这些都给废水处理及回用造成了巨大的麻烦。因此,根据废水产生的途径和废水处理后的性质进行分类处理和分质利用就成了把矿山废水变废为宝的关键。

    矿山采选废水常见处理方法 

    一般来说,矿山采选废水常见处理方法主要包括七方面:

    自然净化法。自然净化法作为最廉价、最简单的废水治理方法,被我国的选矿厂普遍采用。自然净化法常以尾矿库为构筑物,废水通过管道运输至尾矿库,在库内发生沉淀、水解、氧化、挥发、光照降解甚至生物分解等作用,使悬浮颗粒和残余药剂浓度降低,甚至基本去除。

    自然净化的效果与曝晒时间、光照强度、水体温度、初始pH值、溶解氧等因素有关。通常曝晒时间越长、光照强度越强、温度越高,自然净化效果越好。

    特点:自然净化法具有成本低、管理方便、无二次污染等特点,但存在净化不彻底、耗时长、气候等自然因素干扰大等问题,特别在高寒地区,往往会因为净化效率低下而影响废水的回用。因此,自然净化法通常可作为选矿废水的预处理方法,或用于成分相对简单的重、磁选废水的处理。

    酸碱中和法。酸碱中和法是一种传统的废水治理方法,因简单实用而被广泛采用。这其中既包括酸性废水中的H+(或碱性废水的OH-)与中和剂中的OH-(或H+)发生反应,生成中性水分子,同时矿浆的合适碱度也有利于重金属离子与氢氧根离子反应生成难溶的氢氧化物沉淀,从而消除重金属污染。

    生产实践中,常用的中和剂有石灰、消石灰、硫酸、碱性废水废渣(电石渣等)、酸性废水废气等。在选择中和剂时,应优先考虑厂区周边的废料,以达到“以废治废”的目的。理论上各重金属在一定pH范围内均能沉淀,因此控制好pH值是中和法的关键。

    特点:酸碱中和法具有管理方便、费用较低、操作简便、处理量大、适应性强和运行稳定等优点,但也存在一些问题,如在用石灰中和时,设备及管壁结垢严重、污泥增量较大、易产生二次污染等。

    混凝沉淀法。混凝沉淀法是目前治理选矿废水较成熟的一种方法,常与活性炭吸附或氧化法组成混凝沉淀——活性炭吸附法和混凝沉淀——氧化法。

    混凝沉淀法使用的药剂主要包括凝聚剂和絮凝剂两大类。凝聚剂主要有氯化铁、硫酸铁、硫酸铝、氯化铝、聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合硫酸铁(PFS)等,使用最普遍的絮凝剂是聚丙烯酰胺(PAM)。混凝剂的选择至关重要,它直接关系到净化效果的好坏。

    特点:混凝沉淀法可以有效去除废水中的悬浮颗粒和一些重金属离子,是一种成熟、稳定、高效的废水治理方法,但也存在对有机化学药剂净化不彻底,因药剂用量过大易产生二次污染等问题。

    化学氧化法。化学氧化法是深度治理废水中残留浮选药剂的有效方法,特别是近年发展起来的高级氧化技术(AOP)能彻底去除废水中持久性难降解有机污染物。

    化学氧化法的实质是,氧化剂通过夺取废水中有机污染物中的H原子等途径,将有机污染物氧化成无毒或低毒的小分子物质,或转化为容易从水中分离的物质,从而降低废水的COD、BOD。常见的氧化剂有臭氧、Fenton试剂、双氧水、次氯酸钠等。

    特点:化学氧化法治理废水具有操作稳定、反应彻底、处理效率高并能提高废水的可生化性等特点,特别对于处理高COD的有机废水具有显著优势,但也存在运行费用较高等问题。

    人工湿地法。人工湿地是仿照自然湿地人工修建并参与监督控制的具有流动或静止水体的浅水水域,是以基质-植物-微生物为核心的综合生态系统,可通过基质截留、过滤、吸附,植物吸收、拦截,微生物摄食、分解等途径去除废水中的污染物,充分发挥了物理、化学和生物的协同作用。

    特点:人工湿地法为治理废水提供了一条绿色化、生态化的技术路线,但也存在基质易堵塞、占地面积大、受气候等因素干扰大等局限性。

    微生物处理法。微生物处理法对于矿山酸性废水具有显著的优势。其净化原理是利用微生物的新陈代谢作用降解水体中的污染物,从而达到净化废水的目的。

    特点:微生物法治理废水拥有巨大的发展潜力,具有环境友好、选择性好、二次污染少等特点,甚至还可以回收某些重金属原料,但如何筛选出适应性强的菌种是个难题。

    矿山废水的分步处理和分质利用 

    一般来说,铅锌矿矿山废水的分步处理和分质利用分4步来进行:

    一是将铅精矿和锌精矿的浓密溢流水直接回用到各自的选别流程。

    二是向尾矿水加入一定量的钾明矾和阴离子PAM进行混凝反应和絮凝沉降,将尾矿废水中影响选矿指标的铜、铅、锌、镉、铬等重金属离子去除掉。然后,再加入一定量的椰壳型粉末活性炭,并通过纤维球过滤塔来去除掉影响选矿指标的部分有机残留药剂,适度处理后的废水大部分回用到选矿流程。

    三是采场废水一部分用于厂区绿化用水和尾矿干堆库区降尘喷淋用水。

    四是加入一定量的纯碱来降低水的硬度,通过砂滤和膜滤工艺来降低水的浊度等,然后将深度处理后的水分别用于陶瓷过滤机的槽洗水、酸洗水及浮选药剂的配制溶解用水。

    根据其性质及成分存在差异,选用合适的废水处理技术及回用方法,可提高选矿废水循环利用率,实现废水的清洁排放,真正做到变废为宝。

    生态画卷 资源综合利用有新突破

    “锂”从山中来,仗剑走天涯

     邓伟 李成秀 冀成庆 徐莺 周雄

    1.“锂”的家族群

    1)锂(Li)

    锂的克拉克值为30ppm,是较分散而又广泛分布的元素,主要在岩浆结晶作用的晚期阶段富集在伟晶岩中;花岗岩中含量最高,其次是碱性岩。矿床中经常与铍、铷、铯、钽等有益元素共生。

    目前,已知含锂的矿物有150多种,呈独立矿物形式的有30多种,主要工业锂矿物有锂辉石、锂云母、透锂长石、磷锂铝石、铁锂云母等。川西稀有金属矿集区中的锂资源基本以锂辉石形式产出。

    锂辉石,化学成分LiAl[Si2O6]。一般Li2O含量7%左右;晶体呈柱状、板状、针状,颜色可呈无色、灰白、淡紫、淡绿、淡黄、宝石绿色;条痕白色;摩式硬度6.5-7;比重3.03-3.22。

    含锂矿物特征

    2)铍(Be)

    铍的克拉克值为6ppm,为显著的亲石元素。在花岗岩及霞石正长岩中的含量较高,在岩浆分异过程中富集于岩浆残液中,经常固结集中在岩石圈最上部,在地壳深部含量减少。

    世界上已发现的铍矿物和含铍矿物有60多种,常见的矿物约有40多种,主要的工业矿物有绿柱石、硅铍石(似晶石)、羟硅铍石、金绿宝石(铍尖晶石)和日光榴石。

    绿柱石,化学成分Be3Al2[Si6O18],一般BeO含量13%左右;晶体一般呈柱状,呈绿色、黄色、浅蓝色、红色;条痕白色;玻璃光泽或树脂光泽;性脆;硬度7.5-8;比重2.65-2.91。

    含铍矿物

    3)铌(Nb)和钽(Ta)

    铌和钽的原子构造类似,因此,两者在物理化学性质、地球化学性质及矿物学性质方面都很相近。铌、钽经常共生,在岩石和绝大多数矿物中铌和钽的含量此消彼长。在成因上与碱性岩有关的矿物中铌相对富集,与花岗岩有关的矿物中钽相对富集。

    铌在地壳中的丰度为3.2ppm,钽的丰度为2.4ppm。由于铌、钽的地球化学迁移行为不同,铌开始早、收敛晚,钽主要富集于晚期。所以铌矿物种类多,分布广;而钽的变种少,分布不广。目前,已知的铌、钽矿物和含铌、钽矿物有130多种,常见的有30多种。如铌铁矿-钽铁矿、钽铁矿、铋铁矿、褐钇铌矿、易解石、铌易解石、铌铁金红石、烧绿石、锰钽矿、重钽铁矿、黄钇钽矿、细晶石等。铌钽矿物基本呈黑-棕红色,半金属光泽、油脂光泽,少数为金刚光泽;比重大,因此可用重选方式得以富集;化学成分极为复杂。

    含铌钽矿物

    4)铷(Rb)和铯(Cs)

    铷在地壳中的丰度为90ppm。目前没有发现铷的独立矿物,呈分散状态,常以类质同象混入物出现在含钾矿物中。工业来源主要从富含铷的锂、铍、钾的矿物中提取。如锂云母中含Rb2O3%、微斜长石(天河石)中含Rb2O0.3%、铯榴石中含微量铷等。

    铯在地壳中的含量为20ppm。含铯的矿物有10多种,但铯的主要来源还是稀有金属伟晶岩中的铯榴石和锂云母。除此之外,铯还分散在其他矿物中,如绿柱石、黑云母、天河石和堇青石等。

    含铷铯矿物

    铯榴石,化学式Cs[AlSi2O6] nH2O。一般含Cs2O30%左右,晶体往往呈立方体、粒状及致密块状,无解理;颜色为无色、白色,有时带灰、粉红、浅紫等色颜色;性脆,硬度6.5-7;比重2.67-3.03。

    2.“锂”从哪里来

    1)传统矿山

    在您印象中矿山是什么样的?答案也许是偏远、荒凉、破旧的厂房,艰苦的条件,又或许是漫天尘土、泥浆满地、污水四溢,像这样又或许是那样……

    2)绿色矿山

    随着时代的发展和绿色矿山建设的推进,如今的矿山早已不再是从前的样子。先进的设备、一流的技术、现代化的厂房,一座座“花园式”的矿山正拔地而起。清洁生产,循环用水,大家再也不用担心环境污染了!

    3)“石头”变“电池”

    石头是如何变为电池的呢?锂辉石矿经过采矿进入选矿厂,选矿厂采用物理方法分选出含锂矿物,含锂矿物经过冶金处理成为碳酸锂产品,再由产业部门深加工,最终脱胎换骨成为电池。

    3.崭新“锂”程

    1) 锂之应用——走入寻常百姓家,健康美好新生活

    随着科技的快速迭代升级,锂在日常生活中的应用越来越常见。含丁基锂的橡胶轮胎更加耐用,寿命比原来提高了4倍以上,让驾车出行更加安心;锂动力电池驱动的新能源汽车逐渐进入普通家庭,成为城市代步、环保出行的首选之一;锂电池和其他锂产品在娱乐设备上也得到广泛应用,为我们的休闲娱乐生活开启了无限可能性;锂的应用在家中随处可见,它为我们提供了便捷舒适的智能生活。

    厨房里,添加了锂的电磁炉面板等玻璃制品,可以使其变得更轻、更结实、更耐溶。锂盐可为蔬果进行“健康护理”,防止西红柿腐烂和小麦锈穗病,让人们吃得放心、吃得安心。锂在医学保健方面也有新的应用,不仅可以强身健体,还能防治疾病,是人体健康的“守护者”。国外研究发现,锂与阿尔茨海默病存在关联,一款为中老年市场打造的天然矿泉水“锂水”就此诞生。而锂的用途还在不断拓展中,从交通工具到健康护理,锂的应用遍布我们生活的每个角落,改写了每一个人的生活方式。

    新世纪崭新的“锂”程指日可待。

    2) 铍之应用——让医疗成像、诊断和激光医学走到科技前端的金属材料

    铍,是仅次于锂的轻金属,主要是以铍铜合金和铍金属的形式广泛应用于航空、医学等领域,是新兴产业发展必需的战略性矿产资源。目前,世界上只有美国、中国、俄罗斯等国具有工业规模的从铍矿石开采、提取冶金,到铍金属及合金加工的完整铍工业体系。

    ①提高X射线成像效果

    因为铍金属既可以稳定地处理高温阻抗,又可以实现对X射线的高度透明,铍箔在医疗和科研X射线设备当中已经使用了很长时间。铍箔作为窗口来穿透聚焦的X射线,同时可以保持X射线发生管那一侧的真空环境。

    ②使低辐射成为可能

    铍箔仍是CT扫描和乳腺X射线成像等高分辨率医学成像设备中必不可少的材料。在新一代乳腺癌X射线成像设备中使用低辐射扫描可以得到更精细的肿瘤分辨率,使许多早期可治疗阶段的乳腺癌被及时发现,治愈乳腺癌成为可能。

    ③改善X射线光管强度和稳定性

    作为成像技术的前端科技,铍持续为满足X射线光管高强度、稳定性、抗高温、X射线穿透率等性能要求。

    ④光学激光器的小型化

    使用氧化铍的医学激光器可以帮助眼科医生为数百万患者恢复或改善视力。具有高导热、高强度、介电性能的氧化铍是唯一能控制微小高功率气体激光器的材料。

    ⑤简化外科手术

    铜铍连接器将精确的电信号传送到精密手术器械和最新的非侵入性外科技术的监测装置当中。这种技术减少了对病人的创伤和感染风险,同时加快了愈合和恢复的过程。

    ⑥分析血液

    铍还用于分析HIV和其他疾病的血液分析设备部件当中,给医生和病人提供所需的精确性和可靠性数据。

    3) 铌之新应用——冉冉升起的电子材料之星

    铌行业全球市场集中度非常高,目前全球最大的铌矿企业是巴西矿冶公司(CBMN),占据全球市场80%-85%的产量,主要从事铌产品的开发、工业化和商业化运营,是世界上唯一一家可以生产全系列铌产品(包括标准铌铁、特殊牌号铌铁、真空铌铁、真空镍铌、铌金属和五氧化二铌)的企业,对铌价格的走势具有较强的影响力,控制着全球铌产品扩产计划的进度。

    具有超导性能的元素不少,铌是其中临界温度最高的一种。而用铌制造的合金,临界温度高达绝对温度十八点五到二十一度,是目前最重要的超导材料之一。

    2019年,材料领域国际顶级期刊《自然材料》发表了复旦大学修发贤团队的最新研究论文《外尔半金属砷化铌纳米带中的超高电导率》。文章显示制备出二维体系中具有目前已知最高导电率的外尔半金属材料——砷化铌纳米带,电导率是铜薄膜的100倍,石墨烯的1000倍。此次制备出的材料砷化铌纳米带的电导率是铜薄膜的100倍,石墨烯的1000倍。业内表示,导电材料是电子工业的基础,现在最主要的材料是铜,已经大规模运用于晶体管的互连导线。

    4)钽之新应用——人体“亲金属”的神奇医学材料

    钽作为一种金属材料,具有优异的力学性能和抗疲劳特性,因此被广泛应用于医学领域,尤其是在骨科领域。它可以替代人体骨组织,起到承重作用,目前已在临床取得显著疗效。钽金属材料在与人体组织结合时,具有强度、生物相容性和稳定性等优点。因此,它比传统金属材料的人工置入物更具有优势,在医学领域的发展前景十分广泛。

    研究和临床应用表明,多孔钽金属具有比金属钛和钛合金更好的骨融合和骨传导性能,运用钽金属材料制作的仿生骨骨组织长入良好,骨性生物固定优良。未来,利用3D打印高致密度和高力学性能钽金属核心技术,将为我国在高端骨科植入物、医疗器械和难熔金属工业部件发展领域做出积极的贡献。

    不仅如此,将钽金属与其他金属材料结合应用在临床医学中也取得了十分重要的突破。很多金属材料因其独特的性能可用于医学领域,但是由于缺乏生物相容性,不能将其优点很好地应用在临床。为此,科研人员想到将耐腐蚀性强且稳定的钽金属涂覆在这些金属材料的表面,使那些有独特性能但原先忌于低生物相容性而不能用于临床的金属材料重新用于临床,并取得显著疗效。

    5)铷之应用——超视距精确授时,极佳光电传感器件制造

    全球独立铷矿床非常少,下游应用供应链受限,已成为全球对该元素发展的约束要素。铷是自然界一种最大光电效应的稀有分散元素,其合成材料在智能制造中逐渐开始发力。

    铷因其极佳的光电效应,在光电管、红外辐射仪表、太阳能光电池等器件制造方面均实现了重大革命性变革。据外媒报道,太阳能电池在通往最高效率的道路上正在不断改进中。德国国家可再生能源实验室研究人员开发了一种新的太阳能电池,为了改善用于吸收可见光的钙钛矿与用于吸收红外线的铜、铟、镓和硒的混合物两层之间的接触,研究小组在它们之间添加了一层铷原子,团队让电池的峰值效率达到24.16%。

    铷基设备材料精准计时功能助力集群医用设备同步获取精确时间信号。近年来,基于星载铷钟开发的网络同步时间服务器在国内卫生部门得到良好的推广,为医院提供标准的网络时间统计信息服务,也为局部辐射区域近万台网络客户端提供精度小于5毫秒的时间同步服务器,较大程度地改善了全区医疗机构网络系统,包括:医护人员的办公PC及医疗设备、走廊、大堂子钟系统等授时操作的统一性,充分实现了大数量集群精确医疗设备同步作业中时间的精准性保障。

    铷基量子传感器有望用于诊断房颤。心房颤动(AF)是一种导致心率异常的疾病,发作时心脏中传导的电生理信号易出现紊乱行为。目前,常规用于检测房颤的心电图受到灵敏度、时间等诸多限制。据一项发表于《应用物理学快报》的研究,科学家利用原子磁强计,通过基于铷的量子传感器接受信号,成功对导电率与生物组织相近的溶液进行电磁感应成像,可测出高导电性的区域。这项技术实现了非屏蔽环境下的小体积成像,且灵敏度较传统技术提高了50倍,为房颤的快速临床诊断带来了希望。

    固体废弃物如何变身宝藏?

    邓杰 邓善芝

    几个世纪以来,人类社会的快速发展基于对自然资源的使用与消耗。尤其是第三次工业革命以后,生物科技与产业革命的迅速发展,使人们对能源和矿石的需求量激增。同时,为满足迅速增长的社会需求,各行各业纷纷扩能扩产。2012年,国际民间组织“全球足迹网络”(GFN)及英国智库“新经济基金会”提出“地球生态超载日”的概念。“地球生态超载日”是指地球当天进入了本年度生态赤字状态,已用完了地球本年度可再生的自然资源总量。据测算,约从1970年起,人类对自然的索取开始超越地球生态的临界点。从过去数十年来看,几乎每隔10年这一天的到来就会提前1个月。

    资源过度开采和废弃物的无节制排放,造成越来越严重的生态环境问题。人类用碧海蓝天换来了现代社会的方便快捷和科技的快速发展。随着人们经济水平的提高以及对自身健康的重视,环境的重要性被越来越多的人认识。如何在保障人类需求的前提下,尽可能保护和改善环境,寻求资源环境和谐发展的解决方案,成为时下人们关注的重点。为节约资源、提高现有资源的利用率,资源综合利用的概念逐渐被人们所熟知。

    在资源开发利用及使用消费过程中,不可避免会产生伴生矿石、围岩及选矿尾矿等,比如钨矿中伴生的铜、铅、锌等含有稀有分散元素的矿物,氧化矿中的碳酸盐和硅酸盐类脉石、有机物生产中产生的废水、生活中的废旧金属和电池等,这些生产和生活废弃物中含有大量的有价金属、有机及无机盐类矿物质资源,将其直接排放到环境中,不仅会造成大量的宝贵资源白白流失,还会影响耕地质量、污染空气和水源,破坏生态环境。在资源开发利用和消费过程中,针对这些伴生矿物资源和生产生活中的废弃物开展回收利用,使其重新资源化,从而最大限度地实现现有资源的高效利用,可以称之为资源的综合利用。

    如何实现资源的综合利用?现阶段,资源的综合利用主要从三方面开展:

    一、在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用。

    煤炭被人们誉为“黑色的金子”“工业的粮食”,它是18世纪以来人类世界使用的主要能源之一。煤矸石是与煤伴生的一种含煤高岭土,过去采煤过程中产生的大量煤矸石一直被作为大宗固体废弃物堆放在煤矿周围。正如犹太经典《塔木德》中所说:“世上没有废物,只是放错了地方。”煤的伴生矿——煤矸石也是如此。煤矸石综合利用的途径很多,除了传统的利用途径,如回填煤矿采空区、铺路、土壤改良、做建筑材料和发电等。最新研究表明,煤矸石还可以作为下游精细加工业的原料。如,煤矸石经处理后可以作为橡胶填料,获得与炭黑相当的补强效果;还可以制备聚硅酸铝铁,用于处理造纸综合废水等;此外,煤矸石可以用于陶瓷、耐火材料、橡胶工业、涂料、塑料、4A分子筛、铝硅铁合金等十多个行业。

    二、对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用。

    除矿石中的伴生资源外,矿石资源生产加工过程中还会产生大量的废弃物资源。以铜矿尾矿为例,研究表明,铜尾矿中除了可以回收有价金属元素铜之外,还可以回收非金属组分石榴子石、硅灰石等,并将剩余部分作为植物培养基等原料进行利用,实现铜尾矿的减量化和资源化。部分有色金属尾矿的主要成分为SiO2,且包含大量钙、镁等元素的氧化物,和市场上普遍运用的建筑材料的化学组成非常相似。尾矿用作建筑材料时加工方式比较简洁,能够有效解决成本和能耗问题。

    三、对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    除开展矿山资源的综合利用之外,再生资源回收利用也是开展资源综合利用的重要方面。发展再生资源回收行业可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。中国是全球公认的制造业大国,然而近些年随着人口红利日益消失,以及环保成本的不断抬升,我国资源的对外依存度逐渐走高。在此背景下,大力发展再生资源回收利用产业,具有积极重要的战略性意义。

    现阶段,资源环境和谐发展之路仍然崎岖且漫长,人类需要开展更多的探索与实践。相信在不久的未来,资源综合利用方法和途径会越来越多,资源环境和谐发展之路必将越来越顺利。

    带你了解这朵“云”——地质云

    戴新宇

    “地质云1.0”闪亮登场,魅力初现

    “地质云”是自然资源部中国地质调查局主持研发的一套综合性地质信息服务系统,集地质调查、管理、共享、服务四大功能于一身,面向社会公众、地质调查技术人员、地学科研机构、政府部门提供丰富的各类地质信息服务。经过“地质云”研究开发团队艰辛付出,2017年11月6日,“地质云1.0”闪亮登场,迈出了“地质云”建设三步走的第一步。

    “地质云1.0”刚上线运行,就受到地质调查科技工作者的青睐,局系统内外正式用户达4000多人,日均访问量突破6000次,在地质调查管理和应急事件服务上体现出精准、快捷的特点。例如,在2017年11月18日西藏林芝市米林县发生6.9级地震后,“地质云”首次启动了应急服务工作机制,在2小时内线下完成震区地质图数据制作,仅用10小时就为应急救灾在线提供了震区区域地质图、国家地质资料馆藏涉及震区的地质资料,以及林芝地区卫星遥感影像图、震中300公里范围地质钻孔、林芝专题地质文献库等系列地质信息产品。毫无疑问,“地质云1.0”实现了地质调查数据共享破冰,为75个国家核心地质数据库的互联共享和2382个信息产品提供社会化服务。

    “地质云2.0”华丽转身,飒爽英姿

    在2018年10月18日召开的中国国际矿业大会上,“地质云2.0”宣布正式上线,完成“地质云1.0”云上数据资源和系统功能的全面升级,完成手机版地质云APP国家地质大数据共享服务平台研发,通过数据资源整合和信息系统集成,全面提升地质调查数据采集、汇聚、处理、分析、共享与服务能力,为新时代地质调查工作转型升级提供核心动力,及时、有效地满足政府部门、行业用户、社会公众等各类用户对地质信息的多元需求,以信息化带动地质调查现代化。

    “地质云3.0”鲲鹏展翅,大展宏图

    “地质云”建设三步走设想2020年上线运行“地质云3.0”。为此,地质云研发团队的科研人员做足了功课,全力以赴助推云平台、大数据、智能化“三位一体”建设应用迈上新台阶,为新时代地质调查工作转型升级提供核心动力支撑,建成分布式地质大数据中心,并在以下九个方面提供全方位综合地质服务:

    一是升级完善“在线化”调查系统、研发升级重要专业应用系统,初步实现在线化调查,构建立体式地质信息感知体系。二是显著扩大中大比例尺实体数据共享资源,精准开发地质信息系列产品,提供地质信息专题服务,提升“地质云”服务门户访问便捷性,加快构建地质信息共建共享云生态,基本实现在线化服务,显著扩大地质信息线上共享服务规模。三是升级地质调查业务管理系统,完善地质调查业务管理大数据辅助决策系统,强化在线化管理,支撑地质调查业务管理高效运行。四是推行地质调查在线化办公,支撑远程办公、便捷办公。五是通过攻关实现智能区调矿调、智能识别、智能管理、智能数据搜索引擎等智能地质调查技术突破,示范构建智能化工作模式。六是建立完善地球科学“一张图”大数据体系,更新维护国家核心地质数据库。七是采取优化地质调查网络、规范化运维“地质云”节点体系、加强网络安全建设等措施,建实地质调查基础设施与网络安全体系,保障安全稳定运行。八是完善地质调查信息化制度标准体系,支撑自然资源信息化建设。九是加强信息化人才队伍建设与国际合作,提升中国地质调查局在国内外的影响力。

    这就是中国地质调查局功能强大的地质云(Geocloud)!神奇的地质云(Geocloud)!

     

     

    用好这些珍贵的矿产资源

    珍惜矿产资源 科学规划开发路线图

    ——谈矿业产业发展规划的作用、意义及编制

    郭 敏 赵军伟 赵恒勤

    对资源型地区来说,矿业在地方国民经济中占有重要地位,矿产资源的开采开发、矿产品加工以及延伸产业对地方经济发展发挥了重要的支柱作用。但随着生态文明建设的不断推进、世界矿业经济增长放缓,社会发展对资源开发提出了新的更高要求。矿业产业发展规划可以统筹协调好地方资源、环境、经济社会发展等各方面问题。

    矿业在经济社会的基础地位

    矿业是国民经济的基础产业,人类的衣、食、住、行、用、医等以及国家经济、社会建设与发展都离不开矿产资源。能源和原材料矿产是工业必不可少的“血液”和“粮食”。当今世界上,95%以上的能源、80%以上的工业原材料、70%以上的农业生产资料均来自矿产资源。

    矿业支撑了我国经济社会全面发展,为经济建设提供了巨大的物质财富。我国是煤炭、铁矿石、铅矿、水泥用灰岩、建筑石料用灰岩等20多种矿产品的全球最大生产国和消费国,一些战略性新兴产业矿产品产量全球占比已从1990年的20%~30%增长到当前的70%~90%以上。目前,我国年矿石开采总量超过300亿吨,在全球矿产品生产和消费中占有关键性的地位。

    矿业产业发展规划的作用与意义

    矿业产业是依托矿产资源勘查、开采、选冶、加工、贸易等环节的全产业链经济活动,对区域经济社会发展发挥着巨大的带动作用。

    矿业产业发展规划是对区域矿业产业发展进行细致而全面的专项规划。它依托区域优势矿产资源,在综合考虑区域经济基础和发展潜力的前提下,从区域特色资源、优势产业出发,因地制宜对矿产业布局做出合理安排,带动其他相关产业协调发展。矿业产业发展规划对加快区域矿业产业发展,将资源优势转化为经济优势,促进矿业产业结构转型升级,提升产业聚集度及辐射力,推进区域经济高质量发展等具有重要意义。

    矿业产业发展规划的组成和编制

    矿业产业发展规划的内容主要包括规划编制背景(产业发展环境)、区域矿产资源现状及发展基础、产业发展任务与思路、产业链设计、产业布局、规划保障措施等部分。

    矿业产业发展规划编制的一般方法和过程为:首先对区域优势特色矿产资源开发、矿产品加工现状、产业发展环境进行广泛深入的调研,根据区域产业基础、特点及发展环境,分析产业发展面临的机遇、挑战及优劣势,预测产业发展方向;其次针对产业发展现状及发展条件,明确矿业产业发展定位,提出发展的总体战略和目标任务;再次提出总体产业布局,主导产业及相关产业类型及规模,细化拟落实的规划重点项目;最后,提出组织管理、资金、技术、人才等方面的措施、建议,以保障规划实施。

    矿业产业发展规划编制要点

    1.明确产业规划的定位

    产业定位是产业发展规划的核心。产业规划编制前,一定要明确规划的定位,依据资源基础,确定产业发展方向。

    同时,在规划编制过程中协调好矿业与其他相关产业的关系,如矿产品加工产业与材料产业的发展,以实现产业链融合发展。

    2.设计好产业总体布局

    产业规划布局是产业发展规划的重要内容,包括产业体系、产业结构、产业链、空间布局等,总体上要做到因地制宜、统筹兼顾、扬长避短、突出重点、综合发展,综合考虑生态环境保护、环境承载力、文物和动植物保护、水源地保护、土地利用等因素。同时在产业规划编制中,需要设置一批规划重点项目,明确项目实施的主要内容、建设空间布局、矿产品结构及方向、投资进度、预期效益等,以保证项目的可行性。

    3.重视规划前期调研

    矿业不同于其他产业,矿业开发涉及资源、安全、环保等领域,面广且形势复杂。规划编制过程中必须对产业发展现状进行广泛深入调研,研判产业发展形势和潜力,查询了解各种信息,搜集相关资料,需要到当地发改委、工信委、环保局等管理部门了解当地产业政策、招商引资情况、环保要求等,还需要到典型矿山企业调研资源开发现状,为合理安排规划任务、设计产业布局提供切实可行的保证。

    4.提出针对性的保障措施

    为了保证产业规划实施并达到预期效果,需要一系列可行的、有针对性的保障措施,主要包括规划实施主体的设置与组织管理、政策扶持、投(融)资方案、招商引资、技术改造与研发、人才培养等。结合当地实际情况,规划编制中要落实好如何实施,以获得理想的预期效果。

    钨矿的开发利用

    张红新 赵恒勤

    世界钨矿资源储量比较丰富,地壳中钨的含量为0.001%,具有开采价值的只有黑钨矿和白钨矿。世界钨矿资源主要集中在阿尔卑斯-喜马拉雅山脉和环太平洋地质带。中国钨储量居世界第一,主要分布在中国南岭山地两侧的广东东部沿海一带,江西南部的储量最多。据中国矿产资源报告(2019)的数据,截至2018年底,我国钨矿查明资源储量为1071.57万吨(WO3含量),约占全球总量的60%。其次为加拿大(29万吨)、俄罗斯(25万吨)和美国(14万吨) 。

    我国钨矿地下开采矿山数量和产量都居主要地位,在112座钨矿山中,地下开采钨矿105座、露天-地下联合开采钨矿4座、露天开采钨矿3座。钨矿资源的选矿工艺根据资源类型的不同,存在较大差异。总体而言主要有三种工艺。一是黑钨矿选矿工艺。目前,黑钨矿选矿工艺一般可分四阶段进行回收,即粗选、重选、精选和细泥处理阶段。二是白钨矿选矿工艺。白钨矿资源常与多种钼、铋等有色金属伴生或共生,有用矿物嵌布粒度较细,白钨矿选矿工艺流程以浮选为主。三是黑白钨混合矿选矿工艺。黑白钨矿混合矿属难选矿石,其特点是钨品位低、嵌布粒度细、黑白钨与多种有用矿物密切共生,脉石矿物组成复杂。目前,黑白钨混合矿的选别采用硫化矿浮选-黑白钨混浮-白钨粗精矿加温精选-黑钨细泥浮选的主干全浮流程。

    选矿后的钨精矿经冶金工艺制备出高纯的钨锭或钨粉。钨是高熔点稀有金属,具有优异的物理、力学和化学性能,主要用于制备金属加工、石油天然气及其他矿石的开采及建筑领域中各种硬质合金切削工具及钻头,也用于切割用的碳化钨和耐磨材料中,还用于制造重金属合金、电极、电子工业、钢材、特种合金等化学制品。

    钨在高技术领域也得到较为重要的应用,高纯硅化钨由于其电阻仅为多晶硅的1/10,在超大规模集成电路中取代多晶硅作为栅电极材料,取代铝合金作为接线材料。高纯钨可取代铅和铝化合物作为集成电路陶瓷零件的线路材料、半导体的电接线和内部连线。钨和钨铜合金可用作硅晶片的散热材料。

    钨矿也和我们的生活息息相关的,是制造灯用金属材料中最重要的一种材料。

    虽然中国钨矿资源储量丰富,但是由于黑钨矿富矿多、易开采,资源被大量消耗。所以,加强钨矿节约和保护刻不容缓。

    加强磷石膏综合利用 促进长江经济带高质量发展

    张利珍 张永兴

    磷石膏是硫酸与磷矿反应萃取磷酸生产过程中产生的副产物。目前,全国磷石膏累计堆存量达5亿吨,每年新产生近8000万吨,综合利用率不到40%。在“共抓大保护、不搞大开发”的新形势下,应加快磷石膏固废资源化利用,以降低大量堆存带来的环境和安全风险,促进长江经济带高质量发展。

    磷石膏“堆”不是办法,“用”才是出路。目前,其“用”的主要途径有五个方面——

    一是用于水泥工业,制水泥缓凝剂、硫酸联产水泥。水泥缓凝剂是水泥生产中的添加剂,磷石膏使用量为水泥量的3%~5%。用磷石膏替代天然石膏生产水泥缓凝剂,可有效提高磷石膏的综合利用率。而磷石膏制硫酸联产水泥工艺,在实际生产中难以推广应用。

    二是生产石膏建材制品,其中用磷石膏生产建筑石膏是目前磷石膏应用中最为成熟的方法。将预处理后的磷石膏经过干燥、煅烧、陈化等流程制成建筑石膏,以建筑石膏为原料生产纸面石膏板、纤维石膏板等。

    三是生产化肥,如硫酸铵、硫酸钾。磷石膏制硫酸铵的原理是磷石膏与碳酸铵反应生成硫酸铵,副产碳酸钙,该工艺技术成熟,生产设备通用,工艺条件易于控制,但是生产费用比单独生产尿素和硝酸铵高很多,工业推广价值不高。硫酸钾是一种重要的无氯钾肥,已工业化的方法是两步法,该工艺反应条件温和、能耗低、投资少、产品质量稳定,但是反应过程中钾的转化率不高。

    四是筑路或采空区回填。磷石膏作为一种品质优良的路基填料,在工程建设中使用可不同程度地改善半刚性基层的性能。磷石膏还可用作充填骨料,和黄磷渣胶结重新回填到磷矿山采空区,减少地质灾害。

    五是在农业上用作土壤改良剂。将磷石膏加入氮肥中,可减少氮挥发,提高氮肥利用率;磷石膏中含有钙、磷、硫、镁及有机质等农作物生长所需的营养成分,可用作土壤调理剂来调节土壤酸碱平衡,消除碳酸盐对农作物的毒害,解决土壤盐渍化、土壤缺磷等问题,促进农业高质量发展。

    磷石膏当前以低值化利用为主,制得的磷石膏产品不仅受有限销售半径内的市场容量限制,而且产品的可替代性大,缺乏市场竞争力,导致应用率相对较低。因此,磷石膏的资源化利用,一方面要在磷石膏规模化消纳技术和高值化利用技术的研发上发力,提高消纳能力和产品价值;另一方面要在磷石膏综合利用产品的推广应用上发力,提高大众认可度。这就需要国家相关部委、地方、科研院所联手行动,共同推动磷石膏的综合利用,实现磷化工产业绿色转型发展,为生态文明建设助力。

    全球“钴”事

    王威

    钴是重要的新能源材料,在现代工业发展中有许多不可替代的用途。钴被美国和欧盟列入影响国家和地区安全及未来经济发展的关键矿物和材料清单,也被我国列入战略性矿产目录。那么钴为何如此重要?它在全球的分布情况如何?

    什么是钴

    钴,元素符号Co,银白色铁磁性金属,熔点1493℃,沸点3100℃,密度8.9g/cm3,莫氏硬度5.0~5.5。钴比较硬而脆,是生产耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料。自然界中含钴的矿物种类超过百种,钴作为基本元素的矿物种类超过了59种,工业上常见的钴矿物有辉钴矿、硫钴矿、辉砷钴矿、方硫镍钴矿、钴镍黄铁矿以及表生矿物中的水钴矿和杂水钴矿等。我国是世界上最主要的精炼钴生产国和钴消费国之一,但钴矿储量仅占全球总储量的1.1%,钴原料大量依靠进口,2017年钴资源对外依存度高达90%。

    钴矿开采历史

    钴被用于陶瓷和玻璃至少有2600年的历史,古埃及和古罗马及中国唐朝的陶瓷釉料和玻璃制品中就已开始使用钴矿物作为蓝色颜料。钴矿开采从16世纪开始,当时钴矿山主要集中在欧洲,钴矿主要用于生产钴蓝颜料和钴蓝颜料玻璃粉用于陶瓷、玻璃和和绘画。1864年,在法属新喀里多尼亚发现了钴矿,欧洲钴的开采也随之减少。1904年,在加拿大安大略省发现了银钴矿和砷钴矿,并投入生产,使全球钴矿产量大增。1914年在刚果加丹加发现了巨大的铜钴成矿带,1920年其铜钴矿投入生产,从此刚果的钴产量一直居世界首位。

    钴的应用领域

    钴在众多领域得到广泛应用,钴产品主要以化学品和金属的形式应用于电池材料、催化剂、颜料、高温合金、硬质合金、磁性材料等领域。目前,电池行业是消耗钴最多的行业,钴主要用于制备锂离子电池的正极材料。近30年,高温合金、硬质合金、催化剂、颜料、磁性材料等传统行业对钴的需求平稳增长。近年来,钴在电动汽车动力电池的需求迅速增长。基准矿物咨询公司认为,2026年全球电池材料钴用量也将比2017年电池材料用钴量增长4倍以上,达19.5万吨。国际能源署推测,2030年电动车钴需求量将达到29.1万吨 /年。

    全球钴矿资源概述

    钴在地壳中的平均丰度仅为0.0025%,地球上已发现的钴矿物多数为共伴生矿,全球钴产量仅有2%左右产自独立钴矿。根据USGS 2019年统计,全球已探明的陆地钴矿资源量为2500万吨,储量为688万吨。在大西洋、印度洋和太平洋底部发现的超过12000万吨的钴矿资源存在于大洋锰结核和大洋富钴结壳中,目前尚未得到开发利用。全球陆地钴矿资源分布广泛,主要赋存于刚果和赞比亚的沉积型层状铜钴矿床,澳大利亚、古巴、菲律宾、马达加斯加等国的含红土型镍钴矿床,及澳大利亚、加拿大、俄罗斯等国的岩浆型镍-铜硫化物矿床中。尽管钴矿分布广泛,但除了摩洛哥Bou Azzer钴矿是以砷钴矿为主矿产的独立钴矿外,世界其他钴矿均作为铜矿、镍矿等矿产的共伴生矿产出,目前只有刚果、澳大利亚、古巴、加拿大、俄罗斯等少数几个国家的钴矿能在经济上加以利用。

    全球钴矿资源储量和产量

    2018年全球探明的钴矿资源储量为687.5万吨,钴矿产量为13.57万吨。其中刚果金是全球钴矿资源储量最多的国家,也是钴矿产量最高的国家,2018年刚果金的钴矿储量占到全球储量的49.45%,产量占到全球钴矿产量的66.32%,集中度非常高。储量排名第二和第三的国家分别为澳大利亚和古巴,储量占到全球储量的17.45%和7.27%,其他国家的储量都小于5%。钴矿产量排名靠前的国家还有俄罗斯、澳大利亚、古巴,分别仅占全球产量的4.35%、3.61%和3.46%,除了刚果外其他国家的产量占比都很低。

    结语

    钴是重要的新能源材料,也是重要的战略性矿产,美国和欧盟都将钴列入了影响国家和地区安全及未来经济发展的关键矿物和材料清单。独特的物理化学性质使钴成为航空航天、石油化工、玻璃制造及医药领域的重要原材料,在战略性新兴产业发展中发挥着重要作用。并且,按照全球各国新能源汽车发展规划,全球钴矿长期供给面临短缺的可能。

    滨海“宝藏”

    雷晴宇

    椰林、树影、水清、沙白、海滩,几乎是所有人最喜欢的休闲旅行景观。但很少有人知道,世界上很多滨海区域蕴藏着很多宝贵的矿产资源,比如锆、钛、砂资源。

    砂矿,主要来源于陆上的岩矿碎屑,经河流、海水(包括海流与潮汐)、冰川和风的搬运与分选,最后在海滨或陆架区的最宜地段沉积富集而成。锆钛砂就是钛铁矿石与锆英石、金红石与独居石等共生复合型砂矿。

    锆钛矿属于稀缺资源,由于锆、钛特殊的金属特性,被广泛应用于精益铸造、高级耐火材料、航空航天等行业,许多国家将其列为战略资源。

    地壳中大部分锆呈分散状态存在于许多矿物中,已知含锆的独立矿物有38种,锆英石(ZrSiO4)和斜锆石(ZrO2)是主要的具有工业价值的含锆矿物。锆英石主要赋存于海滨砂矿中,是世界冶炼金属锆的主要来源。斜锆石主要产于碱性火成岩中,与霞石、霓石、磷灰石、萤石等共生。

    全球锆资源储量约7400万吨(ZrSiO4),主要分布在澳大利亚和南非,分别占全球储量的63%和19%,此外,印度、莫桑比克、中国和美国等国家也有部分储量。

    中国锆资源储量50万吨,占全球储量不足1%,能够开发利用的锆石砂矿主要集中在以海南文昌为代表的东南沿海地区,其中海南的锆石砂矿储量占全国砂矿总储量的67%,占全国锆资源储量的19%,是国内目前惟一能被开采利用的滨海砂矿。中国作为全球第一大锆资源消费国,对锆的需求占比高达52%。然而,中国锆资源十分有限,锆英砂对外依存度长期维持在90%以上,进口最大来源国是澳大利亚。

    金属钛作为重要工业战略资源,广泛应用于航空、航天、石油、化工、电力等领域,被称为“现代金属”“太空金属”“战略金属”,是现代工业和尖端科技不可或缺的金属原料。钛工业产业链有两条不同的分支,第一条是钛白粉工业,即钛铁矿→钛白粉,用于涂料、塑料和造纸等行业;第二条是钛材工业,即钛铁矿→海绵钛→钛锭→钛材,用于航空航天等领域。

    中国钛矿资源丰富,但多为伴生矿,品位不高,钛精矿进口量呈逐年上升趋势,目前钛精矿对外依存度超过了30%。

    目前,全球开发利用的钛矿资源主要为钛铁矿、金红石,以钛铁矿为主。澳大利亚在全球钛铁矿和金红石储量分布中占比均居首位,中国钛资源总量丰富,但钛铁矿多,金红石矿少。

    澳大利亚是世界最大的钛生产国和出口国,储量居世界首位。由于澳大利亚的钛矿资源主要位于或靠近海岸,国家土地分配的其他用途导致澳大利亚约有19%的钛铁矿和26%的金红石资源是不可用的。

    综合来讲,中国国内锆钛资源有限,而需求量在不断增大,以每年6%的速度增长,国内每年锆、钛矿进口需求量分别达到90%和70%。

    在高端化工、航空航天、船舶和电力等行业需求带动下,近年来我国钛行业需求总体呈现上升趋势。因此,实施钛矿资源全球配置战略是保证中国钛矿资源可持续供给的重要途径。

    近年来,中资企业持续加大对澳大利亚、莫桑比克等境外锆钛资源勘查开发力度,这对我国实施资源保障多元化战略,积极参与全球矿产资源配置,拓展境外资源利用的空间和能力,同时加强矿产资源储备意义重大。

     

    助力生态文明 做好资源综合利用文章

    2018年10月18-20日,自然资源部中国地质调查局武汉地质调查中心组织专家,在湖南省吉首市对“武陵山区湘西北城镇地质灾害调查”二级项目及2018年下设的三个子项目进行了野外验收。

    验收会上,二级项目负责人详细汇报了2016-2018年二级项目基本概况、总体目标任务、工作量完成情况、工作方法和质量管理等方面的内容,并对2018年度子项目设置情况进行了简要介绍。随后,各子项目负责人汇报了子项目工作量完成情况及取得的初步成果。汇报结束后,专家分组对各子项目野外原始资料进行了现场抽检,仔细审阅了实际材料图、各类调查卡片、工程地质勘查资料、实测剖面等原始地质资料及物探、遥感等相关工作小结。

    专家组充分肯定了各子项目野外地质调查工作质量和取得的阶段性成果,对原始地质资料抽查中发现的问题提出了整改意见,为项目组下一步开展成果报告编制奠定了基础。专家组一致认为“武陵山区湘西北城镇地质灾害调查”二级项目完成了野外阶段工作任务,提交野外验收的各类资料符合相关规范、规定的要求,同意验收通过。同时,给予三个子项目野外验收结论分别为“麻阳县高村镇地质灾害调查项目”为优秀,“凤凰县沱江镇地质灾害调查项目”和“泸溪县武溪镇地质灾害调查项目”均为良好。

    二级项目取得的主要成果有:一是根据地面调查、工程地质测绘及勘查资料,进一步查明了区内地质环境背景条件、地质灾害及隐患点特征,区内易崩易滑地层为志留系砂页岩、神皇山组及东井组红层,分析总结了地质灾害发育规律及成灾模式;二是完成1∶5万灾害地质图、地质灾害分布图标准图幅模板的编制,总结了编图经验和技术方法;三是根据城镇建设规划,对9个重要城镇规划建设区斜坡带进行了1∶2000-1∶10000中大比例尺勘查测绘,查明了斜坡工程地质条件,评估了斜坡带中地质灾害及隐患点的稳定性和危险性等,为后续风险评估提供了基础数据;四是编制了《重点区隐患点防灾预案》、《地质灾害预防措施手册》、《群测群防、避灾自救》等地质灾害防范知识科普读物和科普扑克共3套,分别开展科普活动7次,将服务地方防灾减灾工作做到了实处;五是在科学理论创新和技术方法取得了进步,主要表现在开展了降雨型滑坡成灾机理及预测预报研究,总结了降雨型滑坡成灾机理,探索了考虑城镇建设、降雨阈值以及概率模型评价滑坡易发性的技术方法,引入了DAN3D软件技术方法,对单体滑坡进行风险评价,初步提出了地质灾害早期识别标志,为区内隐患斜坡的识别和划分提供了技术依据等。

    来自中国地质大学(北京)、湖南省地质矿产勘查开发局、湖南省地质调查院、湖南省地质矿产勘查开发局四〇五队、四〇七队、四一三队及武汉地调中心等相关单位的领导、专家及技术人员参加了验收会议。

    专家听取项目工作汇报 

     野外质量检查

     

    野外质量检查 

     
     
    武陵山区湘西北城镇地质灾害调查项目通过野外验收

    46亿年前,地球诞生了,它内部有地核、地幔、地壳结构(图1),外部有水圈、大气圈和磁场。其内部蕴藏的丰富资源是人类赖以生存的物质基础。然而,地球有它自己的“怪脾气”,如地震、火山和泥石流等。这些“怪脾气”让我们人类损失巨大,也让我们人类望而生畏。从人类诞生之初到今天,科学家们都在尝试各种方法找到地球产生这些“怪脾气”的原因及应对方法,从地球表面到地球深部都在做各种探索和测量工作,特别是对地球内部的探索从来没有停止过,意图解开其中的奥秘。但是由于地球内部岩层、水层、温度、压力等的千变万化,迄今为止,我们人类对地球内部的了解仍知之甚少。2013年,我们国家实施了“松科二井”重大地调科研项目,通过向地下钻进深孔获取地壳岩石实物资料,从地壳内部“挖石”来打开探秘地球深部的通道。“松科二井”科学团队披荆斩棘,书写着我国深部探测的新篇章……

    那么,靠什么探秘地球深部的秘密呢?让我们一同来看看“松科二井”科学团队的“十八般兵器”和“独门绝技”。本文从取心钻探工具、取心技术创新、“泥浆”以及取心技术探索等四方面论述“松科二井”是如何打开地球深部秘密的。

    图1 地球圈层结构示意图

    挖石利器——取心钻探工具

    地球内部是一个极不均匀和极复杂的球体,从地壳到地核的岩层、水层、温度、压力等千差万别,想要在它上面钻眼“挖石”并非易事。而对于超过7000米的超深井——“松科二井”来说,难度更大。这是因为“松科二井”在向下钻进的过程中,一要保证钻的井眼不能坍塌和崩裂,二要保证取出的深部岩心完好无缺。要想达到这两个目标,不但需要有先进的钻进方法,而且必须有适合地下各种复杂多变地层的“挖石利器”——取心钻探工具。这种取心钻探工具和匹配的钻头是向地下钻进并抓取岩石的保障(图2)。“松科二井”在钻进过程中,其工作过程为:钻头在最底部通过高速转动不断“咬碎”周围的岩石,把中间的柱状岩石样本送入取心钻具里抓取、携带岩心的内筒,而取心钻具外筒源源不断的将钻进中需要的压力和转速传递给钻头,同时在转动过程中修整井壁,保护内筒。

    图2 KT 系列大口径取心钻具

    独辟蹊径——取心技术创新

    传统的科学钻探中大直径井段是先取心钻进一个小井眼,再用扩孔钻头重新钻进去扩大井眼至设计井眼直径。然而,在科学超深井钻探中面临的挑战是如何在大直径井眼中高效钻进,并且完整地抓取岩心。“松科二井”在钻探过程中取得一系列技术创新,如大直径同径取心、长钻程技术和大直径岩心原状出筒技术等,都为我们国家科学超深井钻探取得了技术上的突破。

    先来说说大直径同径取心技术。“松科二井”攻克了大直径取心钻头破碎岩石和粗大岩心抓取、携带出井等关键技术,并用国内首创的Φ311mm的大直径同径取心钻探工具直接钻进一个大井眼(图3),一次钻进至设计井眼直径,这样不但省去了传统的“小径取心,大径扩孔”过程中的很多工序,避免了“小井眼到大井眼”钻进中的很多风险,而且节约了大量生产物资,获取的岩心样品实物量是设计的5倍,为地学家们提供了更多极其珍贵的岩心。

    图3 Φ311mm大直径取心钻具组装与出井

    再来说说长钻程技术。“松科二井”在钻进过程中每次取心钻具装满岩心后需要把井中所有钻具提出,岩心被取出后再把所有钻具下到井里继续钻进。科学家们通过多次试验和技术攻关,实现了长钻程技术的突破,把每次可连续钻进深度(钻程)从10m、20m扩展到30m。在Φ311mm井段一次取心钻进长度(钻程)超过了30m,创造了该领域的世界纪录;而在Φ216mm井段、井深4700m以下一次连续取心钻进长度(钻程)更是达到了41.69m,在更难的Φ152mm超深井段一次连续取心钻进长度(钻程)超过33m,又连续两次刷新了世界纪录(图4)。“松科二井”科学团队所研发的这种长钻程技术大大减少了从井内提出钻杆、下入钻杆的次数,尤其是在井深超过7000m的时候,从井内提出钻杆、下入钻杆一次需要工人36个小时的长时间连续操作,实用价值巨大。因此,长钻程技术的应用不仅减小了工人的劳动强度,压缩了钻井施工周期,而且极大地节约了综合成本,更为以后更深的超深井工程开辟了新技术支撑。

    图4 四筒超长取心钻具与单次钻进获取的40m岩心

    最后说说大直径岩心原状出筒技术。为了保证大直径岩心出井后能够完整、原状从岩心筒取出,“松科二井”科学团队利用水力出岩心技术与工程现场的液压拆装台架辅助的机械出心技术,保证了4100多米岩心完整、原状出筒,为地学研究提供了一套优质、丰富的岩心实物资料(图5)。

    图5 获取的大直径岩心实物

    钻井血液——取心钻进中的泥浆

    “松科二井”完钻井深达7018m,在超深井向下连续钻进过程中,既要防止上部井眼完好且不坍塌,也要让钻头“咬碎”的岩渣从井底顺利排出,还要保证高速转动的钻头不会因为发热而提前报废,这些都得依靠“泥浆”即钻井液来实现。它就像人的血液一样,在钻眼过程中从地面到井眼最底部不停地循环、净化,传递水动力、冷却并润滑钻具,携带和悬浮岩屑,维护井眼周围井壁的稳定。而且钻井越深,温度越高,钻井液技术难度越大。“松科二井”每往下钻进100米,温度升高3℃~4℃,钻到孔底的时候温度已超过240℃,科学家们通过反复的研究和实验,研发出的新型钻井液配方经受住了井底240℃以上温度的考验,刷新了我国水基钻井液应用最高温度记录(图6)。

    图6 钻进过程中泥浆循环流动示意图(黄色箭头表示泥浆流向)

    寻找新大陆——取心技术探索

    超深井在钻到一定深度的时候会遇到各种困难,比如地球内部温度高、压力大、岩石硬度大、钻眼速度慢等,要想继续向更深的地球内部探索,就必须克服重重困难。科学家们已预想到了这些问题,如在大直径井眼取心钻进中怎么能不把钻杆全部从孔里提出来就可以把岩心全部取上来?在高温地层、坚硬的岩石中怎么能让钻头更高转速去“咬碎”岩石?怎么能在钻眼同时把井眼底下的各种数据直接输送到地面?“松科二井”在实施过程中,科学家们已对大口径绳索取心、涡轮钻取心、井底随钻数据采集与传输等技术做了大量的可行性试验,得到的技术和数据,为今后的万米超深井科学钻探储备了技术力量。

    “上天入地”揭开宇宙的神秘面纱,探索地心深处的奥秘,科学钻探“路漫漫其修远兮”,尽管现在我们只钻穿了地球的“皮毛”,但我们相信在科学家们不懈的努力和探索下,通过将来实施的万米科学钻探、超万米科学钻探,定会打开探秘地球深部的通道,那时我们距离地心会越来越近。

    中国矿业报:钻探挖石,打开探秘地球深部的通道

    各有关单位:

    根据“地质大数据与信息服务”工程及“地质大数据支撑平台建设(物化探所)”二级项目的部署和要求,定于2018年1月18日-20日,在安徽省合肥市召开“地球化学勘查数据一体化处理系统” (Geochem Studio3.0)推广培训班,具体事项通知如下:

    一、会议内容

    面向全国的新老用户,推广基于MapGIS平台的“地球化学勘查数据一体化处理系统(Geochem Studio 3.0)”,该系统具有地球化学找矿和土地质量调查两个子系统。地球化学找矿子系统即原有的中大比例尺化探数据一体化处理系统,新版本对原有的功能进行了完善和扩充。土地质量调查子系统是为了满足土地质量调查需要而开发的新系统,具有图斑自动赋值、自动分级、自动分析等功能,实现了土地质量调查数据处理的自动化和可视化。

    二、时间、地点

    时间:2018年1月18日-20日,1月18日报到。

    地点:安徽省合肥市

    地址:安徽省合肥辰茂和平酒店

    三、参加人员

    1.全国各行业从事矿产地球化学调查、土地质量调查或相关地质调查的科研生产工作者;

    2. 特邀专家;

    3. 项目组成员。

    四、其他事项

    1、本次推广研讨会由中国地质科学院物化探研究所主办,将免费提供带加密狗的系统软件及相关资料一套。

    2.本次推广不收取会议费、资料费,会议期间统一安排食宿。

    3.参加人员须自带笔记本电脑,电脑配置环境推荐:操作系统: Win7、Win8;应用平台:MapGIS6.7;办公软件:Office系列。硬件配置:内存4G以上,硬盘250G以上,

    4.本次推广会,拟定人数100人以内,请参会单位尽快填写会议回执表(见附件1),1月15日前以电子邮件反馈至liuqingqing@igge.cn。

    五、联系人

    柳青青: 15930615199 李瑞红 :13581901939

    附件1、会议回执表

    2、会场地点交通图

    2018年1月8日

      

    附件1 

    会议回执表

    姓名

     

    性别

     

    单位

     

    电话

     

    邮箱

     

    职务

     

    专业

     

    住房

    单间    □ 合住 

     

    附件2:会场地点交通位置图 

      

    关于召开“地球化学勘查数据一体化处理系统”推广培...

    近日,地调局物化探所“化探数据一体化处理系统”和“电法工作站”研发人员应邀到宁夏地质局下属单位物勘院,为宁夏地质局全体物化探工作者进行物化探软件应用培训。

    4天的培训期间,研发人员利用实测数据,就一体化处理系统和电法工作站软件系统的功能使用进行了培训,并现场演示操作应用。结合地质局各单位正在从事的项目及设定的工作目标,同时针对当前转型升级面临农业化探土地质量调查和深部探测工作相关方面遇到的难题,双方在课堂上进行了技术应用探讨,提出了许多有效建议。

    到中国地质调查局物化探所挂职锻炼的宁夏地质局选派干部,为双方学习交流搭建了桥梁。双方表示,今后要持续加强业务合作,共同推动物化探技术更好的服务于宁夏经济社会发展和生态文明建设。

    培训期间,物化探所为宁夏地质局赠送了60套中大比例尺化探数据一体化处理系统(Geochem Studio 1.5.8)和电法工作站软件系统(WEM 2.5)。

    物化探所应邀举办物化探软件应用推广培训班

    近日,我国自主研制的4500米级作业型深海遥控机器人(ROV)“海马”号在西太平洋富钴结壳矿区的6次下潜作业中大显身手,取得了包括海底微地形、结壳类型、原位结壳厚度、水文动力学和生物多样性等多领域探查的丰硕成果,累计获取结壳样品336公斤,并创造了中国第一个ROV搭载钻机作业,第一个富钴结壳厚度在线声学原位探测等多项新纪录。

    据首席科学家姚会强介绍,本航段“海马”号在维嘉海山结壳矿区的6个重要目标点进行了下潜作业,海底作业时长累计超过20小时,最大下潜深度1994米,共拍摄了1145分钟的有效海底高清视频。这次“海马”号肩负海底地形,结壳类型、厚度和分布特征,沉积物分布、海底水文和海底生态环境调查等多方面使命。为此,“海马”号团队为执行本次调查任务进行了充分的准备,“海马”号搭载了结壳矿层声学测厚仪、强力取样爪及ROV钻机等多种针对性作业设备。结果证明这些新搭载设备非常有效,不仅获取了可喜的样品总量,而且创造了单潜次采集样品过百公斤,最大单体样品62公斤等记录,再一次体现了国产遥控潜水器“海马”号的作业能力和功能拓展方面的特长。“海马”号抓取的这些结壳样品具有精确的位置信息和原位环境参数,是成矿机制、成矿过程和成矿规律研究所必须。

    “海马”号首次搭载了自主研制的ROV钻机,在3个站位成功打穿了结壳矿层,这是我国深海ROV作业中首次搭载钻机并获得成功。钻取的岩芯样品揭示了探查站位点富钴结壳的真实厚度,“海马”号搭载的另一套国产高科技设备——富钴结壳厚度原位声学在线探测仪提供了宝贵的比对数据,证明了海底结壳厚度声学实测数据的精准有效。“海马”号搭载的这套声学测厚设备是我国今年最新研发成功的科研成果,该设备通过聚焦高频声波实现对基底浅表层的精细探测,垂向分辨率达到毫米级,能够在线识别富钴结壳的厚度,处于国际先进水平。该高新技术手段的应用成功,是“海马”号搭载平台具有灵活的设备扩展接口和“海马”团队具有过硬的深海潜水器运作技术能力的又一次证明。

    此外,本航段还使用“海马”号开展了水文动力学和生物多样性调查,进行了5次全水层CTD剖面测量和6次海底流场实地测量,为海山流场结构特征、高频混合作用以及底流对结壳小尺度分布控制作用的研究提供了实测数据;“海马”号还获取了大量形态完整的巨型底栖动物样品,包括海绵、海蛇尾、海百合和珊瑚等,以及底层鱼类合鳃鳗,为进一步研究海山生物多样性提供了宝贵的生物标本。

    本次“海马”号在维嘉平顶海山富钴结壳矿区的调查应用,发挥了深海遥控潜水器精确、精准、精细的功能特长,取得了多任务、多手段、多学科的丰硕效果,开创了我国在海山区富钴结壳调查领域的新时代,使我国在该领域的技术水平迈入了国际先进行列。

    背景材料:“海马”号是中国地质调查局广州海洋地质调查局牵头承担的国家“863”计划海洋技术领域“4500米级深海作业系统”重点项目的科研成果,是迄今为止我国自主研制的工作水深最深、系统规模最大、国产化率最高的深海无人遥控潜水器系统,已成功应用于水合物资源和大洋矿产资源调查,成为我国深海探测的重要装备。其母船是中国地质调查局广州海洋地质调查局所属的“海洋六号”船。

    “海马”号下潜

    出水瞬间

    “海马”号回收

    “海马”号操作室

    “海马”号创造我国深海作业多项记录

    为增添世界地球日宣传周展览展示亮点,中国地质调查局实物资料中心向河南省地质博物馆征集与恐龙相关的实物标本,河南省地质博物馆积极响应,捐赠了“栾川盗龙”模型一具。

    “栾川盗龙”是国内外著名的“栾川动物群”的第一个成员,发现于河南栾川县,属于小型兽脚类恐龙中的手盗龙类。此次河南省地质博物馆赠送的“栾川盗龙”模型具有较高的科普价值和观赏价值,在实物资料中心举办的展览中大放异彩,深受中小学生的喜爱,激发了学生们了解恐龙相关知识的热情。在实物资料中心工作人员的悉心讲解下,孩子们了解了“恐龙灭绝的原因”等相关知识,掌握了与恐龙有关的地学科普知识。

    此次河南省地质博物馆捐赠的“栾川盗龙”模型为国家实物地质资料馆的馆藏资源增添了一抹趣味性,有力地提高了实物地质资料中心的科普服务能力。下一步,实物地质中心将进一步强化和其他科普基地之间的实物展品交流,使各科普基地的实物展品“活”起来,更好地为社会大众服务,为我国的科普事业做出我们的贡献。

     

    学生们参观“栾川盗龙”模型

    河南省地质博物馆捐赠“栾川盗龙”模型,助力实物资...