分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到4条相关结果,系统用时0.01秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    编者按:在服务资源、环境及生态等复杂问题的解决过程中,地质科学本身也将向前发展,形成新的学科或体系。近年来,国际上形成了两种不同的发展思路,一种是以美国等为代表的将复杂性问题置于环境或生态系统中加以研究,研究对象涵盖生态系统的生命和非生命成分;另一种是以俄罗斯为代表的将环境或生态问题置于地质范畴内探讨,突出生命组分影响下的地质客体变化等。本报今天刊俄罗斯学者V. T. 特罗费莫夫阐述生态地质学理论及其应用的文章,以飨读者。需要指出的是,尽管该文发表在多年前,但仍对思考生态文明建设下的地质工作具有重要借鉴意义。

    地质学拟解决四类问题:一是为人类提供矿产资源;二是为人类的工程活动作地质论证;三是为人类的教育、文化和美学需求提供地质知识;四是为生态系统的稳定运行作地质论证。前三类问题已被地质学家接受,并已取得了满足人类社会发展需求的成果。第四类问题的意义和开创性,在20~25年前已被地质学家察觉。解决第四类问题的发展过程,引发了地质学一个新分支的形成,称之为“生态地质学”。

    生态地质学及其对象和主题

      

      图1 岩石圈生态作用的分类

    生态地质学是地质学的新分支,致力于岩石圈上层(包括地下水和气体)的勘查,并将它看作是生态系统的主要非生物组元之一,在生态系统的组织层级(从生物群落直到生态圈)中属高层级组元。用地质学家更为熟悉的术语来说,可把生态地质学的内涵定义为地质科学的一个分支,研究的是岩石圈的生态功能,这些功能的形成规律,以及在自然及人为动因影响下这些功能发生空间和时间变化的规律,它们与生物体、首先是人类的生存和活动息息相关。

    必须指出的是,术语“生态地质学”(ecological geology)不同于“地质生态学”(geoecology)。两者存在原则性区别。无论从哪种意义上说,“地质生态学”都是一门复合性科学,研究的是地球的所有非生物壳层(圈层),也研究生物体。“地质生态学”包容“生态地质学”,后者仅触及岩石圈一个组成部分,在相同层级上的还有“生态地理学”和“生态土壤学”等,它们也是地质生态学的组成部分。

    另一方面,“生态地质学”的概念内涵由“岩石圈生态功能(属性)”的概念确定。这个概念于1994年提出,是地质学中一个原理新颖的概念。它的内涵详细解释如下:

    生态地质学的研究对象是地质科学的常规客体:从理论上说,是岩石圈及其所有组成部分;特定地说,是岩石圈的近地表部分,主要是受人为影响的地带。它可被描述为一个多组元的动态系统,包括对生物(biota)的存在和发展产生影响的岩石、地下水和气体。

    生态地质学研究的是:“岩石圈—生物”系统,“受到人为影响的岩石圈—生物区”系统或“岩石圈—工程建设—生物区”系统;生物子系统与非生物子系统之间的直接和间接联系;最终是,“死”物质对“活”物质的影响,或广义地说,是岩石圈与生物之间的相互作用。这样的系统构成,意味着通过考虑岩石圈的人为改变,也把人为影响源纳入了系统之中。

    根据其内涵,所有发生过转换的系统都是生态地质系统。这两种系统之间的主要区别,在于其中存在的是有生命组分还是非生命组分。生物区存在并活动于岩石圈中,或者就在岩石圈表面。据此便可形成“生态地质系统”的定义。生态地质系统是岩石圈的特定部分,是在其内和其上容纳着所有生物区的环境的地质组元。生态地质系统由三个子系统组成:岩石圈(无生命的)、生物区(有生命的)和天然及人为影响源。

    生态地质学的研究主题是有关岩石圈生态功能(属性)的知识(数据系统)。因此,要考虑“岩石圈—生物区”系统中的功能关系,或“岩石工艺系统—生物区”之间的功能关系。

    岩石圈的生态功能

    岩石圈的生态功能多种多样,决定和反映着岩石圈(包括产于其中的地下水、油、气、地球物理场和地质作用)对生物区,主要是对人类的重要价值。人类的独特性在于人类活动对环境的影响比所有其他生物的影响都大。研究岩石圈不能采用生物生态学、生态地理学和生态土壤学研究框架内的那类途径。

    岩石圈生态功能的科学理念,意味着对岩石圈的作用要有多方面的考虑,将之视为一个存在着有机生命(各体生物、植物群、动物群和人类)的环境。从生态观点看,岩石圈主要是给生物体提供资源和能量,并通过它的资源及其地质动力学、地球化学和地球物理功能来实现(图1)。这里不考虑人与自然相互作用功能中的社会-经济、道德和审美方面,因为它们超出了专业地质知识的范畴,事实上它们构成了一个社会生态学的关切。

    在天然及被人为改变的岩石圈与有群体结构的生物物种生物区之间,有着多种多样的关系,可把它们归结成4种功能:一是岩石圈的资源生态功能,它对生物体生存和活动所需的矿物质、有机质、有机-矿物质资源有重要意义;二是岩石圈的地球动力学生态功能,它通过自然和人为的过程和现象,决定着岩石圈对生物区状态和人类生活条件的影响;三是岩石圈的地球化学生态功能,它反映着岩石圈的自然和人为地球化学场(不均一性)对整个生物体(包括人类在内)状况的影响;四是岩石圈的地球物理生态功能,它反映着岩石圈的自然和人为地球物理场(不均一性)对生物体(包括人类在内)状况的影响。

    每种功能的内涵、它们的评价标准、信息获取方法和表述方法另有专文论述。

    岩石圈的生态属性

    岩石圈的生态功能靠具体的生态属性来实现。就“岩石圈的生态属性”这一术语而言,指的是岩石圈的特征属性,即具有特定生态重要性的属性。它取决于其物质成分、地球动力学、地球化学和地球物理学的特性,且与生物体存活的供养、生物体生存和进化条件有机关联。

    有关岩石圈生态属性的问题,是一个新问题。这里力图在岩石圈的资源及其地球动力学、地球化学和地球物理的生态功能框架内,给这些属性命名(表1)。它可能不是完整的清单,但堪作举例材料。

      表1 岩石圈的生态功能与属性

      

    生态地质情势及其状态

    用术语“生态地质情势(环境)”来表达岩石圈具体生态属性(功能)的组合,反映作为栖息地的一定岩石圈体积内生物体生存条件的现状或古状态。在一个地块或一个区域范围内,生态地质情势(situation)或许会或许不会因地而变。而且,生态地质情势也会随时间而变,在这种情况下,该情势会随时间从一种状态(state)变换成另一种状态。由于人为工艺因素和灾变性自然过程的发展,这种变换可能进行得很快,从历史观点看,有时就在瞬间。

    必须强调的是,生态地质环境(conditions)或许既取决于所有生态功能同时起作用,也会仅取决于一种生态功能,比如地球动力学功能,它会在瞬间对生物区产生较强烈的影响。在后一种情况下,这种生态地质情势应该说成是“依靠岩石圈地球动力学特征形成的特色生态地质环境”。当地球化学功能在生态地质状况形成中扮演最重要角色的情况下,就说它是依靠岩石圈块段的地球化学特色形成的特色生态地质环境。

    “生态地球动力学环境”、“生态地球化学环境”和“生态地球物理环境”等术语,在地质文献中也常常使用。这些术语是对上段文字特指含义的省略表达。另外,当只分析一种生态功能对生物群或人类的影响时,使用这些术语也是对的。

    正如已经指出的那样,生态地质环境的变化或许是足够快的。人们必须把所研究对象(生态地质系统)的阶段特色称为生态地质情势(环境)的状态(state),地质学家则往往将它称为岩石圈的生态状态。可以把“生态地质情势(环境)的状态”的实质定义为某种暂时状态,并根据当时岩石圈的一种生态属性特征,或者几种生态属性(功能)的组合把这种状态估计出来。这些生态属性决定着生物体生存的有利度(水平)和或然率。

    生态地质情势的状态要根据岩石圈某些属性的暂时状态评估出来,也要描述出这些属性对活体生物产生影响的特征。根据这种定义,当对岩石圈的生态状态做评价时,就不得不一方面评价岩石圈对活体生物的资源和能源影响,另一方面评价有关活体生物响应这些影响时的特定相互作用信息。在所有的生态系统组织层级上,此类评价准则对生物体都是适用的。

    如上所述,生态地质环境的状态可以取决于岩石圈的一种属性(功能)或几种属性(功能)的组合。在地球物理功能强烈影响生物群的特殊情况下,可以说:“生态地质环境的状态取决于地球物理功能(属性)”。地质学家常常用术语“岩石圈的生态地球物理状态”来代替上面的表述。而“岩石圈的生态资源状态”、“岩石圈的生态地球化学状态”之类的术语,常被作为同义语使用。

    生态地质学的基本科学问题和实践问题

    生态地质学有5项主要任务:(1)研究岩石圈的生态功能,它们的形成规律,及其在自然和人为作用影响下发展的动力学;(2)从岩石圈生态功能变化的观点出发,针对人为成因的影响,开发评价岩石圈近地表部分稳定性的理论和方法;(3)针对岩石圈近地表地层环境与属性的控制问题,精心研制理论和方法,以保护和改善它们的生态功能;(4)研制工业废弃物利用和选择其最佳(就地质环境而论)埋置地区和层位的理论、方法和途径,以使对区域生态属性的负面影响最小化;(5)针对国土、目标客体和大型建筑的工程保护问题,精心研制进行地质论证的理论和方法,以免发生削弱其生态功能的自然和人为地质作用。

    总的来说,生态地质学的应用性问题可以通过下述途径形成:(1)论证生态系统正常运转前提下岩石圈资源的合理利用;(2)确定岩石圈近地表部的人为污染对生物群的影响;(3)针对一些生态系统或整体生态系统生物群的管理,为制定和调整解决方案进行地质论证。

    这种一般性生态-地质课题清单,通过参考早先开列的岩石圈生态功能,还可以更详细地提出来。

    生态地质学的逻辑结构

    根据生态地质学是地质学的一个科学分支,而不是一门独立学科,它的逻辑结构应该包括地质科学逻辑结构中用于解决生态问题的既定要素,以及“它自己的逻辑基础”。两者的同化不是机械式的,要遵循相当明确的关系,即生态学方法途径的逻辑。“它自己的逻辑基础”是一种逻辑支点,也能够在其它科学的理论、思想和定律中使用。

       

      图2 生态地质学逻辑结构的全域示意图

      A-生态地质学逻辑结构的逻辑基础;B-被生态地质学利用的地质学科的逻辑结构(B1-工程地质学;B2-冰川学;B3-水文地质学;B4-地球化学;B5-地球物理学;B6-矿山地质学;B7-新构造学;B8-地震大地构造学;B9-地貌学;B10-地史学与古生物学;B11-火成岩石学与沉积岩石学;B12-矿物学);C-生态地质学逻辑结构全域的轮廓线)

     

    对此问题的处理如图2所示。该图说明了生态地质学逻辑结构的镶嵌特性,就致力于解决生态问题的地质科学,以及这些地质科学对生态地质学逻辑结构的贡献,给出了概念图。不难看出,工程地质学、水文地质学、冰川学、地球化学、地球物理学和矿山地质学提供着主要的信息量,以及可用于生态地质学的大部分研究方法。在我们看来,其它地质学科及其逻辑结构可用的较少。以上结论基于一个事实,有关岩石圈生态功能的知识才是生态地质学的基础。

    基于对岩石圈生态功能的上述认识,可以对生态地质学逻辑结构的最重要要素划分出以下几个方面:(1)原理-岩石圈近地表部的结构、空间关系、属性和生态功能,是其地质特征的历史发展及其与自然环境和人为作用圈相互作用的结果;(2)原理-岩石圈的动力学状况(运动速率和特性)和生态功能的组元与变化,皆归因于它们的自然属性,归因于它们与环境(包括人为的工艺成因环境)相互作用的模式和强度;(3)生物体与环境相互作用的一致性定律;(4)社会发展特征与环境状况间的一致性定律(基本生态定律)。

    正是这些原理和定律形成了生态学的支点,把其它地质学科的基础整合起来,构成了生态地质学自身的那部分逻辑基础。

    生态地质学的科学分支及其在地质理论知识体系中的位置

    在生态地质学的结构中,有几个旨在分析所确定的岩石生态功能的科学分支。它们是资源生态科学、生态地球动力学、生态地球化学和生态地球物理学(图3)。

    资源生态科学是生态地质学的科学分支,涉及与维持生物区存续有关的全部问题,按资源利用的观点,其中首要的是通过提供岩石圈的矿产资源和地质空间资源维持人类社会存续,在科学技术活跃发展的新时代满足人类的需求。研究的焦点不是矿产资源的勘查和储量计算,而是评价其目前消费水平与合理使用的一致性。实质上,岩石圈矿产资源消费的管理问题,应该通过关注高层级生态系统的保护和正常运行来解决。地质空间资源也要用生态学的观点来评价。很明显,一些地质科学的方法,主要是矿山地质学、水文地质学的方法(对矿产资源),工程地质学和冰川学的方法(对地质空间资源),应该适用于这些研究和调查。另外,这些研究应该由社会来定向,就是说应该与社会经济学紧密关联,在实践中,生态地质学家应该与经济学家、社会学家及管理机构和设计院所的代表接触。生态地质学这一分支的主要课题是:考虑目前文明发展需要的矿产资源评价,对矿产资源消费的管理建议进行地质论证。

    生态地球动力学是一个大领域,包括所有涉及自然和人为地质过程对生物区影响的课题,以及评估生物群栖息地可能灾变和舒适度的课题。后一点仅关切人类社会。这些研究一直采用工程地质学、冰川学、水文地质学和构造地质学的方法来执行,与项目规划者和设计者联系。在该分支框架内执行的主要任务有:针对在工艺活动影响下的地球动力学参数变更,开发评价岩石圈近表部稳定性的方法;为保护生物区和人类社会免受影响其生存及舒适度的(天然和人为)不利和灾变地质过程的危害,对相应工程保护项目进行生态地质论证。

    生态地球化学是生态地质学的科学分支,研究天然和人为成因地球化学场对生物区的影响。在生物区内有岩石地球化学、气体地球化学和水地球化学异常。调查课题是:岩石圈的物质(矿物)成分,活动态化合物的迁移问题,元素的非正常浓度及其对生物区的影响性质问题。地球化学、矿物学、岩石学和水文地质学的方法被用来解决这些问题,生物区环境的生物医学评估资料具广泛的适用性。实际上,这类研究意味着生态地质学家要与医学专业人员和卫生服务机构建立密切联系,因为这些异常要用医学-卫生的观点来评价。

    生态地球物理学也是生态地质学的科学分支,研究重力、磁、电磁、热和放射性等天然和人为地球物理场对生物区的影响。这些场与背景值的偏差及其对生物区的影响,要借助地球物理学、大地构造学、地震构造学的方法和生物医学的学科资料来研究。与生态地球化学一样,这些问题的解决必须与医疗-卫生服务机构密切联系。要在该分支框架内完成的总体任务有:天然和人为源地球物理场的分析,研制评价其医学-卫生危险的方法和准则(对生物区的影响强度,评价岩石圈对工艺性污染的稳定性)。

    图3示出了生态地质在理论地质知识中的位置。在地质学的结构中包括前5个科学分支已得到承认,无需再予证明。但是,对于后两个分支,即“关于岩石圈生态功能的科学”和“关于地球的工程地质环境的科学”,其纳入地质学的合理性尚存争辩。主要争辩依据是,在科学技术活跃发展的新时代,对于涉及地球和岩石圈问题,需要强调生态理论研究的作用。目前,人为工艺因素对岩石圈外壳的影响程度,已经提高了生态地质学说在地质学中的地位,已经使这个学说可以划分为地学中的独立科学分支,已经把上面所述的后两个分支提升到了与前5个分支相同的水平。

       

      图3 生态地质学的科学分支及其在地质科学体系中的位置

    生态地质学的实用性分支

    图4说明,可以在生态地质学的构成中列出几个实用性子分支。它们是城市、矿床和复垦影响区的生态地质学,以及线状工程、热电站和核电站等影响带的生态地质学。值得特别强调的是,各类经济活动不仅在项目建设中,而且在其运营和维护时期,都应该提供对岩石圈和生物区生态影响的评估。因此,应调查的面积要比官方土地使用许可的范围更宽更广,只要在其内确定了或造成了工程客体对岩石圈生态属性的影响。

    各种经济活动在对岩石圈影响的强度、深度和性质上是各不相同的。这涉及到岩石圈的矿产资源,地质作用的活跃程度,以及自然和人为成因的地球化学和地球物理致病区的发展。

      

      图4 供人类社会正常发展和运作的生态地质学的实用分支学科

    很明显,大的城市群、采矿工程(矿山、露天矿场等)、集中在数个盆地和油气田带中的油气产业,都会对岩石圈及其生态功能产生重大的影响。对城市群而言,这种影响取决于特定的高密度城市人口;居住区,交通-通讯,大型工业、燃料和能源企业及联合企业的自营交通,均规模巨大;还取决于城市地下的支撑工程。因此,会观测到以下现象:土壤、岩石圈近地表部和水圈被活性有毒化合物强烈污染;由于热、重、电磁和地震声波等地球物理场变化,发育起致病的地球物理异常;车辆废气导致大片土地的高度重金属污染;地下水动力学和水化学机制改变;地下水储量耗竭。矿场附近岩石圈的生态性变化与下述后果关联:矿产资源枯竭,重力场变化,产生异常的地层压力,地下水动力学参数彻底转变,出现密集的人为污染区,地质环境资源减少。对线性工程而言,不利的生态后果与负面的地质作用活跃有关,与线性的人为污染晕和诱发的异常地球物理场有关。

    在不同种类经济活动影响下发生的岩石圈生态环境特性改变的清单还可能扩展,但上述这些已足以支撑得出结论。每种经济活动都与岩石圈生态属性改变的特定复杂性关联,因此要对它们进行分析,就需要运用地质科学的各类理论和方法。城市群影响着岩石圈的所有生态功能,所以要动用地质科学的整套方法,特别要涵盖图2所示的所有学科的方法。对线性建筑而言,要运用的地质科学和方法清单将取决于研究需要,首先是岩石圈地球动力学、地球化学和地球物理学功能的研究。在矿床开采方面,研究重点要集中到岩石圈资源功能的所有方面,地球物理和地球化学异常,以及一组地质作用。 

    生态地质学的任务及其应用

    历时122天 航程近35000公里

    历时122天,今天(23日),自然资源部中国地质调查局“海洋六号”科考船圆满完成了我国2019年深海大洋科考任务,返回广州。

    “海洋六号”船自今年5月30日从广州启航,在122天的时间中先后在西太平洋及我国富钴结壳合同区维嘉海山实施了多波束地形测量、浅地层剖面深海浅钻、海洋重力测量等多种深海地质调查。

    “海洋六号”大洋55航次首席科学家 王海峰:掌握了近40个区块的富钴结壳资源量。为我们日后海洋地质基础科学的研究,以及相应的新资源测算,提供了基础数据支撑。

    “海洋六号”船是我国自主设计、建造的第一艘现代化综合地质地球物理调查船,自2009年入列以来,已连续10年赴南海、太平洋、南极海域开展了55个航次的深海地质、大洋与极地科学考察任务,总航程将近54万千米。

    “海洋六号”深海大洋航次总首席科学家 何高文:“海洋六号”是国内第一艘集多道地震和深海浅钻作业功能于一体的综合地质地球物理科考船,应该说它既能“远观”也能“近瞧”,既能“探”也能“钻”,为我们国家后续科考船的设计建造提供了非常好的示范作用。

    “海洋六号”深海调查成果显著

    此次“海洋六号”科考完成的是中国地质调查局深海地质第8航次和中国大洋第55航次两项科考任务。在科考过程中,由我国自主研发的深海装备大显身手。

    “海马”号深海遥控潜水器是“海洋六号”的常客,自2014年起,作为我国自主研制的4500米级深海遥控潜水器作业系统,“海马”就一直与“海洋六号”一道进行了一系列开创性的深海试验。

    “海洋六号”深海大洋航次总首席科学家 何高文:我们国家首次系统的开展深海稀土资源调查,南海的天然气水合物资源调查、油气资源调查和海洋区域地质调查。所以说,“海洋六号”这十年来,在我们国家的深海探测、深海科学研究方面,都发挥了非常重要的作用。

    在本次深海大洋科考任务中,利用多套我国自主研发的深海调查装备,“海洋六号”开展了深海浅钻取样、深海摄像等调查,并首次利用图像处理技术,实现了水下视频图像的分幅智能拼接,并利用高频声学探测方式对富钴结壳的厚度进行高精度探测。

    “海洋六号”大洋55航次首席科学家 王海峰:我们测量的误差已经可以控制在1厘米以内,实现了富钴结壳调查从点到线再到面的跨越,快速查清一定区域内的富钴结壳厚度,进而推算相应的资源量。

    (央视记者 张雷)

    央视新闻客户端:“海洋六号”船完成2019年深海大洋...

     

    “慧磁”钻井中靶导向系统 

     

     

    在土耳其三期实施的双通道四靶点平行对接井H007U 

     

     

    “U”形冶井对接作业原理 

     

    自古以来就有种说法叫“上天容易入地难”。人类可以借助天文望远镜观测成百上千光年远的浩瀚太空,但对地表以下——我们脚踏的这片土地深处却是一头雾水,想要探索地下深处的奥秘几乎是不可能完成的任务。

     

    如今,一种新的技术可以让我们实现在地下“穿针引线”,这便是高精度对接连通井技术——“慧磁”。这一技术也成为了钻孔的地下“导航”,可以将相距数百米或上千米的井组在地下矿层连通。据了解,该技术的核心是“慧磁”高精度中靶导向系统,源于中国地质调查局勘探所承担的“高精度定向钻进中靶系统研究”项目。该项目由中国地质调查局2008年立项,旨在通过试验研究建立起定向钻进中靶模型,引导钻进进入靶区,实现精确中靶。

     

    近年来,中国地质调查局一直全力支持、支撑该技术的研发与突破。据了解,“慧磁”高精度中靶导向系统目前所取得的成果具有完全自主的知识产权,打破了国外公司的技术垄断,也使中国地调局勘探所成为国内首家、全球继美国之后第二家拥有该项技术的单位,达到国际领先水平。而该项技术比一些国外技术更加先进的地方在于:首创低电压可充电电池供电,可用于煤矿井下等高危作业环境(美国仪器采用的是220V电源供电,不适应煤矿等使用);入井探管直径和长度分别为42毫米和1.4米,可用于穿过60毫米直径的中心管下入探管至井底(美国仪器为45毫米、1.9米,最小用于73毫米直径中心管),可完成更小曲率半径的定向井导向。

     

    讲到“慧磁”技术,也不得不说说它的发明团队——勘探所定向钻探室主任胡汉月教授的科研团队。该团队在胡汉月的带领下,多年来一直从事着定向钻探技术的研发工作,凭借着地质人的一股子不服输精神和坚定执着的热情,将实践和科研相结合,终于研制成功“慧磁”技术。该技术研发成功的消息一传出,就在圈内引起的不小的震动,原来占尽技术优势的美国的同类产品只能大幅降低产品和服务价格,奈何也只是挣扎。

     

    服务“一带一路”战略:

     

    中国技术扎根土耳其

     

    在国家“一带一路”战略中,土耳其作为一个横跨欧亚大陆的重要节点,地理位置和战略地位极其显著。

     

    2009年,“慧磁”高精度中靶导向系统第一次应用于实井测量就是在土耳其首都安卡拉西北的BEYPAZARI天然碱采集卤工程。在当地一个20平方千米的丘陵地带下储藏着近2亿吨的天然碱,2009年~2010年,勘探所与当地碱矿合作,成功完成了在该区域内23对对接井的施工任务。井组类型包括三井井组、四井井组和双通道井组等多种类型。

     

    随着第一次应用的成功,“慧磁”钻井导向系统开始大量参与到对接中靶作业中。2014年,勘探所作为独立承包商签订了BEYPAZARI天然碱矿钻井工程四、五期合同,总计145口井,施工也全部取得了预期的效果。

     

    特别值得一提的是,此次施工还完成了当时世界上规模最大的采用对接井水溶开采方法的钻井工程。2015年9月10日,由勘探所承担的土耳其卡赞天然碱地下工程开钻,标志着这一世界上最大规模的对接井水溶采集卤工程正式拉开序幕。而该工程采用的核心技术就是“慧磁”技术,该项目旨在为卡赞天然碱矿年产250万吨的纯碱厂提供卤水,计划将在2015年~2018年共施工74个采卤水平井组,单井总数达222口。

     

    “慧磁”技术在土耳其成功应用的过程中,勘探所创造性地设计并实现了多井组的连通,真正使得地下“穿针”技术成为了现实。同时,勘探所在施工中大胆创新,克服地层结构复杂、地磁场异常、地层破碎严重等困难,积累了处理复杂问题的丰富经验,为未来推动“慧磁”定向中靶引导系统等优势技术向其他国家推广、承揽国际工程打下了坚实的基础。

     

    服务新能源开采:

     

    煤层气开采拓展应用

     

    自煤层气水平对接井领域引入美国Vector公司生产的RMRS旋转磁测距系统以来,我国煤层气和水溶开采领域的定向对接井的施工技术取得了重大突破。但是,大多数应用仍局限于传统的U形井组(由一个垂直井和一个水平井组成的井组)。

     

    在勘探所实施的华晋焦煤柳林煤层气项目中,施工的DS井组是由2个水平井组成的煤层气井组,要实现两井的对接实为不易。由于“慧磁”钻井中靶导向系统具有无需外供电、体积小、中文软件界面等优点,可精确测量钻头与靶点之间的方位偏差、顶角偏差和距离,因此该煤层气井组采用“慧磁”技术使2井实现“点对点”对接。这也是国内首次采用地面施工水平井与巷道施工水平井进行连通的工程。

     

    凭借“慧磁”技术的高精度性能,山西柳林沙曲煤矿通过使用该系统,使地表钻进1500米深的定向水平孔与煤矿巷道内钻出的顶角为106度的水平孔成功实现对接,取得了“点对点”的精准连通效果。

     

    该井的联通,既保证该矿地下采煤时的安全,又提高了能源的开采与利用率。据了解,该工程共有两个主分支,四个侧分支,将两个主分支分别与井下瓦斯抽放钻孔实现对接,对接成功后进行井下瓦斯预抽采。目前,其中一分支已进入试抽采期,经抽采数据表明,该分支日产气量1万立方米以上,抽采瓦斯浓度达90%以上,瓦斯流量最高达10立方米/分钟以上。该水平井的产气量目前已超出了预期效果,据以往同类井型抽采效果表明,该井产量将会继续攀升,有望创造新的产气纪录。

     

    服务固体矿产水溶开采:

     

    天然碱矿、盐矿开采应用

     

    当水溶采矿方法与定向对接井技术相结合起来,一种低投入、高产出、高效率、绿色环保的采矿方法诞生了。特别是在盐、碱、磷、芒硝等的钻孔水溶或水力开采领域,采用定向对接井是一种事半功倍的方法,不但矿山投资小,而且占地面积最少,地表无尾矿产生,开采深度可达3000米,这无疑是一种绿色环保的矿山开采方法。

     

    2014年11月,勘探所在河南安棚天然碱矿采用该技术引导SP01水平井与其靶井实现了一次对接连通,连通点垂深达2850米,创全球薄层碱矿对接井水溶开采垂深最深纪录。该井组连通后,在注水流量达60立方米/小时的条件下,出卤浓度高达120克/升,成功实现了稳产和高产的目的。该成果也是勘探所在湖北沙隆达盐矿连通2800米深井后又一新突破,创下了水平对接井深新纪录。

     

    河南安棚天然碱矿是国内发现的大型天然碱矿之一,是世界上埋藏最深的天然碱矿床。勘探所实施的水平井开采的矿层埋深达2800米以上,该矿层是由厚度从0.1米至1米不等的矿互层及夹层组成,矿层顶、底板及夹层主要为白云岩。而且,区域内矿层极不稳定,起伏比较大,电测井时经过3次对比才最终确定矿层。勘探所实施的钻井工艺除了采用合理的钻具组合、井身结构外,在井眼轨迹控制方面采取了特殊工艺方法,包括采用无线随钻测斜仪、引入了地质导向仪引导钻头和采用该所自主研发的深孔高温磁中靶仪。实践表明,该仪器实现了一次指导中靶成功,这种工业生产与科研成果紧密结合的模式,对勘探所今后的科研工作起到了较强的示范作用。

     

    据了解,在国内,勘探所生产的“慧磁”钻井中靶导向系统已成为水溶采矿钻井设备的标配,正在发挥着越来越重要的作用。据不完全统计,自2009年“慧磁”系统首试成功以来,截至目前已成功完成了百余次对接连通指导作业,且实现了100%连通。目前,在国内的盐碱采卤井对接领域,“慧磁”的市场占有率已经以较大优势超过了美国的RMRS仪器。

     

    开辟服务新领域:

     

    避障防碰、引导巷道掘进

     

    在钻探区域,有时存在一些废弃井或其它地下管道,在钻进时需要避开它们,这时可以借助磁引导技术,引导钻进避开这些障碍物。

     

    2013年4月,从大连旅顺传来喜讯,勘探所为北京万地地质工程公司因地质原因出现埋钻事故的热水井而实施的纠斜绕障工程圆满竣工。该工程要求绕过位于井深1394米的事故头位置。由于事故地层为千枚岩,硬度达7~8级,常规钻进钻速仅为20~30厘米/小时,施工难度极大。该绕障工程的成功实施,充分展现了勘探所雄厚的技术实力和团队协作精神,为定向钻进技术开辟了一个新的应用领域。

     

    “慧磁”钻井导向系统还可用于引导钻孔与巷道之间的连通。2014年2月,勘探所“慧磁”钻井导向系统在河南省三门峡卢氏县杨家湾铁矿成功引导巷道掘进,实现其与钻孔连通。在之前该钻孔与巷道贯通的过程中,由于钻孔测斜受铁磁性金属矿干扰,连通失败。勘探所技术人员抵达工地后,经7个小时的地下巷道和地面测量作业,为业主提供了钻孔相对于巷道的偏差测量结果。该矿山按勘探所提供的测量结果掘进巷道,仅用1天多的时间就使巷道与钻孔实现了连通。

     

    服务矿山救援:

     

    “慧磁“的首次尝试

     

    在智利矿难采用钻井救援成功后,勘探所创新提出了一套利用“慧磁”系统进行井下被困人员的定位和救援孔定向引导技术方案:在矿山井下预设磁信标装置,矿难发生后可由被困人员启动,磁信标可连续30天以上向外发射磁信号,用于提示井下存活人员及所处位置,并精确引导地面救援孔钻入被困区域,提高援救效果和效率。

     

    在山东平邑玉荣石膏矿坍塌事故救援现场,勘探所技术人员提出了上述方案,作为备选方案完成了现场实施的技术准备和地面验证,得到了国家安全生产救援抢险指挥中心及工程施工单位的高度肯定,并将磁信标下入井内交到被困矿工手中。最后由于救生井的成功贯通,勘探所的救援方案未能实施,但也完成了我国“慧磁“系统在矿山救援的首次尝试,为矿山抢险救援提供了一种备选的高科技手段。

     

    “慧磁”中靶引导系统自2009年10月在土耳其工地成功连通第一对井后,其应用领域正在不断地扩展,技术水平不断提高。从国外钻井市场到国内钻井市场,从天然碱矿到盐矿,再到煤层气领域,打破了国外同类产品的技术垄断,逐步形成了本土化技术服务优势,使勘探所在定向钻井领域走在业界前列。

     

    目前,勘探所在中国地质调查局公益性行业科研专项经费项目支持下,正在开展深孔高温磁中靶系统“慧磁”的升级,其成果将在未来的页岩气勘探开发市场、地下热能开发的拓展应用、在矿山救援井的拓展应用中发挥重要作用,为我国的页岩气勘探开发、地下热能开发、矿山救援等方面提供坚实有力的技术保障。

    地下“导航”
      自古以来就有种说法叫“上天容易入地难”。人类可以借助天文望远镜观测成百上千光年远的浩瀚太空,但对地表以下、我们脚踏的这片土地深处还一头雾水,地表以下几万米甚至于几千米的深度都处处存着这挑战。所以,你能够想象在几千米深度的地下“穿针引线”吗?

      如今,我们真正实现了这种地下的“穿针引线”—“高精度对接连通井技术”,钻孔地下“导航”,是将相距数百米或上千米的井组在地下矿层连通的技术。该技术的核心是“慧磁”高精度中靶导向系统,源于勘探所承担的“高精度定向钻进中靶系统研究”项目。该项目由中国地质调查局2008年立项,旨在通过试验研究建立起定向钻进中靶模型,引导钻进进入靶区,实现精确中靶。

      近年来,中国地质调查局一直全力支持、支撑该技术的研发与突破,目前,“慧磁”高精度中靶导向系统”所取得的成果具有完全自主的知识产权,打破了国外公司的技术垄断,使勘探所成为国内首家、全球继美国之后第二家拥有该项技术的单位,达到国际领先水平。同时比美国更加先进:首创低电压可充电电池供电,可用于煤矿井下等高危作业环境(美国仪器采用220V电源供电,不适应煤矿等使用);其入井探管直径和长度分别为42mm和1.4m,可用于穿过60mm直径中心管(美国仪器为45mm、1.9m,最小用于73mm直径中心管)下入探管至井底,可完成更小曲率半径的定向井导向。

      讲到“慧磁”技术,不得不说说它的发明人—勘探所定向钻探室主任胡汉月教授及其带领的团队,多年来从事着定向钻探技术科研开发工作,凭借着地质人的一股子 不服输、坚定执着的热情将实践和科研相结合,实践中科研、科研中反复实践,终于研制开发成功“慧磁”高精度中靶导向系统,成果转化突出。“慧磁”成功的消 息一传出,就在圈内引起的不小的震动,原来占尽技术优势的美国的同类产品立即由提供技术服务到降价出售仪器,奈何也是挣扎。目前,胡汉月常年驻土耳其主持 开展对接井水溶采集卤工程,继续升级“慧磁”。



    “慧磁”钻井中靶导向系统
     
      服务“一带一路”战略——“中国技术”扎根土耳其
      在国家“一带一路”战略中,土耳其作为一个横跨欧亚大陆的重要节点具有显著的地理位置。2009年,“慧磁”高精度中靶导向系统第一次应用于实井测量就是在土耳其首都安卡拉西北的BEYPAZARI天然碱采集卤工程。在当地一个20平方公里的丘陵地带下,储藏着近2亿吨的天然碱。2009-2010年勘探所与当地碱矿合作,成功完成了23对对接井的施工任务。井组类型包括三井井组、四井井组和双通道井组等多种类型。



      随着第一次应用的成功,“慧磁”钻井导向系统开始大量参与到对接中靶作业中。2014年,勘探所作为独立承包商签订了BEYPAZARI天然碱矿钻井工程四、五期合同,总计145口井,全部取得了预期的效果。此次施工完成了当时世界上规模最大的采用对接井水溶开采方法的钻井工程。

      2015年9月10日,由勘探所承担的土耳其卡赞天然碱地下工程开钻,标志着这一世界上最大规模的对接井水溶采集卤工程正式拉开序幕。而采用的核心技术就是“慧磁”技术,该项目将在2015-2018年三年时间内共计施工74个采卤水平井组,单井总数达222口,旨在为卡赞天然碱矿年产250万吨纯碱厂提供卤水。

      “慧磁”在土耳其对接井工程中成功应用,创造性的设计并实现了多井组的连通,真正实现了地下“穿针”技术,使勘探所的地下对接连通井技术在国内外处于主导地位。同时,也是勘探所在施工中克服地层结构复杂、地磁场异常、地层破碎严重等困难的大胆创新,为未来推动“慧磁”定向中靶引导系统等优势技术向其他国家推广、承揽国际工程打下了坚实的基础。

      服务新能源开采——煤层气开采拓展应用
      自煤层气水平对接井领域引入美国Vector公司生产的RMRS旋转磁测距系统以来,我国煤层气和水溶开采领域的定向对接井的施工技术取得了重大突破。然而,大多数应用仍局限于传统的U形井组,属于由一个垂直井和一个水平井组成的井组,而华晋焦煤柳林煤层气项目DS井组是由2个水平井组成的煤层气井组,由于“慧磁”钻井中靶导向系统具有无需外供电、体积小、中文软件界面等优点,可精确测量钻头与靶点之间的方位偏差、顶角偏差和距离,因此该煤层气井组首次采用勘探所自主知识产权的“慧磁”钻井中靶引导系统使2井实现“点对点”对接。该井组也是国内首次采用地面施工水平井与巷道施工水平井进行连通的工程.

      凭借“慧磁”中靶导向系统的高精度性能,在山西柳林沙曲煤矿使用该系统,把地表钻进的1500m深定向水平孔,与煤矿巷道内钻出的顶角为106°水平孔成功实现对接,取得了“点对点”的精准连通效果。既保证地下采煤时的安全,又提高了能源的开采与利用率。该工程共有两个主分支,四个侧分支,将两个主分支分别与井下瓦斯抽放钻孔实现对接,对接成功后进行井下瓦斯预抽采。目前,其中一分支已进入试抽采期,经抽采数据表明,该分支日产气量10000m3以上,抽采瓦斯浓度达90%以上,瓦斯流量最高达10m3/min以上。该水平井的产气量目前已超出了预期效果,据已往同类井型抽采效果表明,该井产量将会继续攀升,有望创造新的产气记录。

      服务固体矿产水溶开采——天然碱矿、盐矿开采应用
      当水溶采矿方法与定向对接井技术相结合起来,一种低投入、高产出、高效率、绿色环保的采矿方法诞生了。
      
      在盐、碱、磷、芒硝等的钻孔水溶或水力开采领域,采用定向对接井是一种事半功倍的方法。不但矿山投资小,而且占地面积最少,地表无尾矿产生,可开采深度可达3000米,这无疑是一种绿化环保矿山开采方法。
      
      2014年11月,勘探所在河南安棚天然碱矿采用该技术引导SP01水平井与其靶井实现了一次对接连通,连通点垂深达2850米,创全球薄层碱矿对接井水溶开采垂深最深记录。该井组连通后,在注水流量达60m3/h的条件下, 出卤浓度高达120g/L,成功实现了稳产和高产的目的。

      该成果是勘探所继在湖北沙隆达盐矿连通2800米深井后又一新突破,创水平对接井深新记录。河南安棚天然碱矿是国内发现的大型天然碱矿之一,是世界上埋藏最深的天然碱矿床。勘探所实施的水平井开采的矿层埋深达2800米以上,该矿层是由厚度从0.1米至1米不等的矿互层及夹层组成,矿层顶、底板及夹层主要为白云岩。而且矿层极不稳定,起伏比较大,电测井时经过3次对比才确定矿层。勘探所钻井工艺除了采用合理的钻具组合、井身结构外,在井眼轨迹控制方面采取了特殊工艺方法。一是采用无线随钻测斜仪,二是引入了地质导向仪引导钻头;三是中靶仪器采用勘探所研发的深孔高温磁中靶仪。实践表明,该仪器实现了一次指导中靶成功。这种工业生产与科研成果紧密结合的模式对勘探所今后的科研工作起到了较强的示范作用。

      在国内,勘探所生产的“慧磁”钻井中靶导向系统已成为水溶采矿钻井设备的标配,正在发挥着越来越重要的作用。据不完全统计,自2009年“慧磁”系统首试成功以来,成功完成了百余次以上的对接连通指导作业,实现了100%连通。在盐碱采卤井对接领域,“慧磁”的市场占有率以较大的优势超过了美国RMRS仪器。
     

      开辟服务新领域——避障防碰、引导巷道掘进
      避障防碰:在钻探区域,有时存在一些废弃井或其它地下管道,在钻进时需要避开它们,这时可以借助磁引导技术,引导钻进避开这些障碍物。2013年月4日从大连旅顺传来喜讯,勘探所为北京万地地质工程公司因地质原因出现埋钻事故的热水井而实施的纠斜绕障工程圆满竣工。该工程要求绕过位于井深1394m的事故头位置,事故地层为千枚岩,硬度达7-8级,常规钻进钻速仅为20-30cm/h该绕障工程的成功实施充分展现了勘探所雄厚技术实力和团队协作精神,为定向钻进技术开辟了一个新的应用领域。

      “慧磁”钻井导向系统成功还可用于引导钻孔与巷道之间的连通。2014年2月,勘探所“慧磁”钻井导向系统在河南省三门峡卢氏县杨家湾铁矿成功引导巷道掘进,实现其与钻孔连通。在之前该钻孔与巷道贯通的过程中,由于钻孔测斜受铁磁性金属矿干扰,连通失败。勘探所技术人员抵达工地后,经7个小时的地下巷道和地面测量作业,为业主提供了钻孔相对于巷道的偏差测量结果。业主按提供的测量结果掘进巷道,仅用1天多的时间就使巷道与钻孔实现了连通。

      服务矿山救援—完成“慧磁“系统在矿山救援的首次尝试
      在智利矿难采用钻井救援成功后,勘探所创新提出了一套利用“慧磁”系统进行井下被困人员的定位和救援孔定向引导技术方案:在矿山井下预设磁信标装置,矿难发生后可由被困人员启动,磁信标可连续30天以上向外发射磁信号,用于提示井下存活人员及所处位置,并精确引导地面救援孔钻入被困区域,提高援救效果和效率。

      在山东平邑玉荣石膏矿坍塌事故救援现场,勘探所技术人员提出了上述方案,作为备选方案完成了现场实施的技术准备和地面验证,得到了国家安全生产救援抢险指挥中心及工程施工单位的高度肯定,并将磁信标下入井内交到被困矿工手中。最后由于救生井的成功贯通未能实施,但完成了我国“慧磁“系统在矿山救援的首次尝试,为矿山抢险救援提供了一种高科技手段。

      “慧磁”中靶引导系统自2009年10月在土耳其工地成功连通第一对井后,其应用领域正在不断地扩展,技术水平不断提高。从国外钻井市场到国内钻井市场,从天然碱矿到盐矿,再到煤层气领域,打破了国外同类产品的技术垄断,逐步形成了本土化技术服务优势,使勘探所在定向钻井领域走在业界前列。

      目前,勘探所在中国地质调查局公益性行业科研专项经费项目支持下,正在开展深孔高温磁中靶系统“慧磁”的升级,其成果将在未来的页岩气勘探开发市场、地下热能开发的拓展应用、在矿山救援井的拓展应用中发挥重要作用,为我国的页岩气勘探开发、地下热能开发、矿山救援等方面提供坚实有力的技术保障。



    高精度对接连通井技术