分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到20条相关结果,系统用时0.013秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

        科技日报讯 (记者谢宏)5月12日,在中国地质调查局举办的联合国教科文组织全球尺度地球化学国际研究中心协定签署仪式暨学术研讨会上,国土资源部总工程师、中心理事长彭齐鸣宣布,“化学地球”全球一张地球化学图平台启动。
         化学元素被称为地球的“基因”,地球化学调查目的是绘制地球化学元素图谱,为资源开发和环境保护提供科学依据。中国实施了世界上持续时间最长、覆盖面积最大、调查技术最系统的地球化学调查,在服务矿产、土地、地下水等资源开发与管理方面取得了突出成就,在调查理论技术、实验测试分析、标准物质研制、海量数据管理等方面实现了重大科技创新,在全球地球化学基准网建立、调查标准制定、技术人员培训、服务国际地球化学填图等方面为国际地质界作出了贡献。
         全球尺度地球化学国际研究中心副主任王学求研究员告诉记者,“十三五”期间中国地球化学调查有5项重点任务:一是实施“化学地球”国际大科学计划,依托“全球尺度地球化学国际研究中心”,牵头组织会员国绘制全球地球化学元素图谱,建立“化学地球”大数据平台,支撑全球自然资源与环境可持续发展;二是加强地球化学填图双边国际合作研究,服务沿线国家资源开发和生态环境保护,实现合作共赢;三是继续实施矿产资源地球化学调查,重点加大稀土和铀等战略矿种的地球化学调查,服务国家高科技产业和能源产业,为国家提供新的矿产资源基地;四是全力推进土地质量地球化学调查;五是实施全国主要含水层水质综合调查,重点部署在华北平原、长江三角洲、淮河流域、珠江三角洲等地区,深化主要含水层水质的认识,为地下水保护提供可靠依据。

     

    科技日报:全球一张地球化学图平台启动

    由中国科学院、中国工程院主办,中国科学院学部工作局、中国工程院办公厅、中国科学报社承办,中国科学院院士和中国工程院院士投票评选的2017年中国十大科技进展新闻、世界十大科技进展新闻,2017年12月31日在京揭晓。

    此项年度评选活动至今已举办了24次。评选结果经新闻媒体广泛报道后,在社会上产生了强烈反响,使公众进一步了解国内外科技发展的动态,对宣传、普及科学技术起到了积极作用。

     

    2017年中国十大科技进展新闻  

    1.我国科学家利用化学物质合成完整活性染色体

    我国科学家利用化学物质合成了4条人工设计的酿酒酵母染色体,标志着人类向“再造生命”又迈进一大步。该研究利用小分子核苷酸精准合成了活体真核染色体,首次实现人工基因组合成序列与设计序列的完全匹配,得到的酵母基因组具备完整的生命活性。该研究结果2017310日在《科学》发表,我国也成为继美国之后第二个具备真核基因组设计与构建能力的国家。自2012年开始,天津大学、清华大学和深圳华大基因研究院与美国等国家的科研机构共同推动了酵母基因组合成国际计划(Sc2.0),旨在对酿酒酵母基因组进行人工重新设计和化学再造。我国科学家此次成功合成的4条酿酒酵母染色体,占Sc2.0计划已经合成染色体的2/3 

    2.国产水下滑翔机下潜6329米刷新世界纪录

    我国自主研发的“海翼”号水下滑翔机于20173月在马里亚纳海沟挑战者深渊,完成大深度下潜观测任务并安全回收,最大下潜深度达到6329米,刷新了水下滑翔机最大下潜深度的世界纪录。“海翼”号水下滑翔机是根据中科院B类战略先导专项的部署,由中科院沈阳自动化所研制的、具有完全自主知识产权的新型水下观测平台。从原理样机的研发到深渊观测任务的圆满完成经历了13个年头,包含浅海、深海、深渊等不同型号的水下滑翔机20余台。此次“海翼”号在马里亚纳海沟共完成了12次下潜工作,总航程超过134.6公里,收集了大量高分辨率的深渊区域水体信息,为海洋科学家研究该区域的水文特性提供宝贵资料。  

    3.世界首台超越早期经典计算机的光量子计算机诞生
      

    201753日中国科技大学潘建伟院士科研团队宣布光量子计算机成功构建。潘建伟团队在多光子纠缠领域始终保持着国际领先水平,团队利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。实验测试表明,该原型机的取样速度比国际同行类似的实验加快至少24000倍,通过和经典算法比较,也比人类历史上第一台电子管计算机和第一台晶体管计算机运行速度快10倍至100倍。这台光量子计算机标志着我国在基于光子的量子计算机研究方面取得突破性进展,为最终实现超越经典计算能力的量子计算奠定了坚实基础。 

    4.国产大型客机C919首飞

     

    我国首款国际主流水准的国产大型客机C91920175514时许在上海浦东国际机场首飞。C919的全称是“COMAC919”,COMACC919的主制造商中国商飞公司的英文名称简写,“C”既是“COMAC”的第一个字母,也是中国的英文名称“CHINA”的第一个字母,体现了大型客机是国家的意志、人民的期望。第一个9寓意“天长地久”,19寓意C919大型客机最大载客量190人。C919拥有完全自主知识产权,是建设创新型国家的标志性工程,凝聚了国内最优秀的设计人才和工程人才,针对先进的气动布局、结构材料和机载系统,研制人员共规划了102项关键技术攻关,包括飞机发动机一体化设计、电传飞控系统控制律设计、主动控制技术等。  

    5.我国首次海域天然气水合物试开采

     

    2017518日,我国首次实现海域可燃冰试采成功,南海神狐海域天然气水合物(又称可燃冰)试采实现连续187个小时的稳定产气。这是“中国理论”“中国技术”“中国装备”所凝结而成的突出成就,中国人民又攀登上了世界科技的新高峰。源源不断的天然气从1200多米的深海底之下200多米的底层中开采上来,点燃了全球最大海上钻探平台“蓝鲸一号”的喷火装置。这是我国首次,也是全球首次对资源量占比90%以上、开发难度最大的泥质粉砂型储层可燃冰成功实现试采。从“蓝鲸一号”起步的可燃冰试采,不仅对我国未来的能源安全保障、优化能源结构具有重要意义,甚至可能给世界能源接替研发格局带来改变。  

    6.我国“人造太阳”装置创造世界新纪录

     

    国家大科学装置——全超导托卡马克核聚变实验装置东方超环(EAST)实现了稳定的101.2秒稳态长脉冲高约束等离子体运行,创造了新的世界纪录。这一重要突破标志着,我国磁约束聚变研究在稳态运行的物理和工程方面将继续引领国际前沿。东方超环是世界上第一个实现稳态高约束模式运行持续时间达到百秒量级的托卡马克核聚变实验装置,对国际热核聚变试验堆(ITER)计划具有重大科学意义。由于核聚变的反应原理与太阳类似,因此,东方超环也被称作“人造太阳”。该成果将为未来ITER长脉冲高约束运行提供重要的科学和实验支持,也为我国下一代聚变装置——中国聚变工程实验堆的预研、建设、运行和人才培养奠定了基础。  

    7.中国科学家首次发现突破传统分类新型费米子

     

    中国科学院物理研究所科研团队首次发现了突破传统分类的新型费米子——三重简并费米子,为固体材料中电子拓扑态研究开辟了新的方向。这一研究成果于2017619日由《自然》杂志在线发表。寻找新型费米子是近年来拓扑物态领域一个挑战性的前沿科学问题,也是该领域国际竞争的焦点之一。此次新型费米子的发现从理论预言、样品制备到实验观测的全过程,都是由我国科学家独立完成的,它是凝聚态物理中固体理论的一个重要突破。这一研究成果对促进人们认识电子拓扑物态、发现新奇物理现象、开发新型电子器件以及深入理解基本粒子性质都具有重要的意义。  

    8.量子通信“从理想王国走到现实王国”

     

    2017118日,我国研制的世界首颗量子科学实验卫星“墨子号”在圆满完成4个月的在轨测试后,正式交付使用。2017616日,中国科学技术大学潘建伟、彭承志等带领的团队宣布,利用“墨子号”在国际上率先成功实现了千公里级的星地双向量子纠缠分发,并于此基础上实现了空间尺度下严格满足“爱因斯坦定域性条件”的量子力学非定域性检验。世界首条量子保密通信干线——“京沪干线”于929日正式开通。结合“墨子号”卫星,我国科学家成功与奥地利实现了世界首次洲际量子保密通信。“墨子号”圆满实现了三大既定科学目标,用潘建伟的话说,千公里级的星地双向量子通信,终于“从理想王国走到了现实王国”。  

    9.中科院推出高产水稻新种质

     

    由中科院亚热带农业生态研究所夏新界研究员领衔的水稻育种团队于20171016日宣布,历经十余年研究,团队日前培育出超高产优质“巨型稻”:株高可达2.2米、亩产可达800千克以上、具有高产、抗倒伏、抗病虫害、耐淹涝等特点。经农业部植物新品种测试中心DNA指纹检测,以及华智水稻生物技术有限公司56k水稻SNP基因芯片指纹图谱检测,确认“巨型稻”是一种水稻新种质材料。这种“巨型稻”光合效率高,单位面积生物量比现有水稻品种高出50%,平均有效分蘖40个,单穂最高实粒数达500多粒,单季产量可超过800千克/亩。它是运用突变体诱导、野生稻远缘杂交、分子标记定向选育等一系列育种新技术,获得的水稻新种质材料。  

    10.“悟空”发现疑似暗物质踪迹

     

    20171130日,中国暗物质粒子探测卫星“悟空”的首批探测成果在《自然》杂志上刊发。“悟空”测量到电子宇宙射线能谱在1.4万亿电子伏特(TeV)能量处的异常波动。这一神秘讯号首次为人类所观测,意味着中国科学家取得了一项开创性发现。如果后续研究证实这一发现与暗物质相关,将是一项具有划时代意义的科学成果,人类就可以跟随着“悟空”的脚步去找寻宇宙中5%以外的广袤未知,这将是一个超出想象的成就。即便与暗物质无关,也可能带来对现有科学理论的突破。“悟空”投入相对小,在“高能电子、伽马射线的能量测量准确度”和“区分不同种类粒子的本领”两项关键技术指标方面世界领先。 

     

    2017年世界十大科技进展新闻 

    1.新传感器技术可实现意念操控机械假肢

     

    一个国际团队在《自然—生物医学工程》上发表论文表示,在他们研发的传感器技术助力下,机械假肢能探测到使用者脊髓运动神经元发出的电信号,使假肢的控制更加灵活,这相当于用意念控制假肢。有关技术有望帮助截肢人士恢复更多活动功能。这种新传感器能让机械假肢直接探测到来自脊髓运动神经元发出的电信号,比起单纯依靠肌肉抽动来控制的方式,这样的操控可做到更精确,可完成的动作也更复杂,机械假肢的实用性随之提高。团队下一步将对这一新型机械假肢进行更大范围的临床测试,经过不断改进后,这类产品有望在未来三年进入市场。  

    2.DNA数据存储新法问世

     

    美国科学家在201732日出版的《科学》杂志上报告说,他们想出了一种新的方式将数据编码进脱氧核糖核酸(DNA),从而创造出迄今最高密度大规模数据存储方案。在这套系统中,1DNA具有存储215拍字节(2.15亿千兆字节)的能力。原则上,它可以将人类有史以来的所有数据存储在一个大小和重量相当于两辆小货车的容器中。然而这项技术能否起飞主要取决于成本。用DNA存储数据有很多优势。它是超级压缩的,并且在寒冷干燥的地方可以保存数十万年。同时只要人类社会还在读取和书写DNA,他们就能够解码这些信息。科学家还可以为这些文件制作几乎不受数量限制的无差错文件副本。  

    3.“二手”火箭,成功发射回收

     

    美国太空探索技术公司于2017330日利用翻新的“二手”火箭把一颗商业通信卫星发射上天,这是人类太空史上的第一次。此次发射的主要任务是把欧洲卫星公司的SES-10卫星送至地球同步静止轨道,但特殊之处在于这枚“猎鹰9”火箭的第一级曾于20164月为国际空间站运送过货物,此后降落在太平洋的一艘无人船上,是人类从海上成功回收的第一个火箭第一级。经翻新并加上第二级后,火箭第一级被运回肯尼迪航天中心再次承担轨道级发射任务。火箭第一级回收的目的是研制可重复使用的运载火箭。传统火箭都是一次性使用,一旦能够回收重复使用,将有望降低发射成本。  

    4.3D打印卵巢具有生育能力

     

    2017516日出版的《自然—通讯》杂志报道称,美国科学家通过3D打印技术,由凝胶制成的人工卵巢能够使老鼠受孕并产下健康的后代。在这项研究中,科学家使用了一个具有发射凝胶喷嘴的3D打印机,而其所使用的凝胶来源于动物卵巢中天然存在的胶原蛋白。研究人员通过在载玻片上打印各种重叠的凝胶纤维图案来构建卵巢。随后,他们利用外科手术摘除了7只小鼠的卵巢,并在其位置上缝合了人工卵巢。小鼠交配后,其中3只雌鼠分别产下了健康幼崽。这些产崽的雌鼠同时还能自然泌乳,这表明嵌入支架的卵泡产生了正常水平的激素。该成果或能帮助因放疗或化疗导致不育的癌症幸存者恢复生育能力。  

    5.科学家成功用引力为星球测重

     

    《科学》杂志于201767日发文称,爱因斯坦的广义相对论提出100年后,科学家成功地运用该理论确定了一颗白矮星的质量,使当初在爱因斯坦看来“不可能的希望”成为现实。科学家在5000多颗恒星中寻找具有这种直线排列形式的星球,发现白矮星STEIN 2051 B恰好有着这种完美的定位——它在20143月正好位于一颗背景星球之前。他们利用哈勃望远镜对此现象进行观察,测量背景星球表观位置的微移动,这一作用被称作天体测量的微引力透镜效应。根据所测得的数据,他们估计,该星球的质量约为太阳质量的0.675倍。直接测量STEIN 2051 B的质量对理解白矮星的进化具有重要意义。  

    6.全球首次发现双粲重子

     

    欧洲核子研究中心于201776日宣布,经多国科学家共同努力,在世界上首次发现了一种被称为双粲重子的新粒子,这将有助于人类深入理解物质的构成和强相互作用的本质。中国团队对这一发现功不可没。这一最新发现来自欧洲核子研究中心的大型强子对撞机(LHC)上的底夸克探测器(LHCb)合作组。据介绍,这种双粲重子含有两个质量较大的粲夸克和一个上夸克,质量约3621兆电子伏,几乎是质子质量的4倍,理论预期其内部结构迥异于普通重子。底夸克探测器是欧洲核子研究中心大型强子对撞机上的粒子物理实验装置之一,专门研究重夸克粒子的产生和衰变。  

    7.华人科学家宣布发现“天使粒子”

     

    美国斯坦福大学华人科学家张首晟等人于2017720日在《科学》杂志上报告说,他们首次发现了马约拉纳费米子存在的证据。这一重大发现解决了困扰量子物理学80年的难题,对量子计算也具有重要意义。张首晟领导的理论团队预言了通过怎样的实验平台能够找到马约拉纳费米子,哪些实验信号能够作为证据;加利福尼亚大学洛杉矶分校的何庆林、王康隆以及欧文分校的夏晶领导的实验团队与理论团队密切合作,在实验中发现了被称为手性马约拉纳费米子的一类最基本马约拉纳费米子。意大利物理学家埃托雷·马约拉纳预言,自然界中可能存在一类特殊的粒子,它们的反粒子就是自身,这种粒子被称为马约拉纳费米子。  

    8.科学家用基因剪刀修复人类早期胚胎致病基因

     

    201782日出版的《自然》杂志报告,一个国际团队利用CRISPR基因编辑技术,成功修复了人类早期胚胎中一种与遗传性心脏病相关的基因突变。这是美国国内首次进行人类胚胎基因编辑。研究人员以肥厚型心肌病为研究对象。这是一种常见的单基因遗传病,由MYBPC3基因突变引起,是青壮年运动员猝死的主要原因之一。研究人员利用CRISPR基因编辑技术修复了人类早期胚胎中的这种突变,且定向非常精确,没有在非靶点位置产生突变。研究人员介绍,精确的基因编辑技术还有助获得更多健康胚胎,提高体外受精成功率。但研究团队谨慎表示,相关基因编辑方法仍需进一步优化。  

    9.世界首个分子机器人诞生

     

    《自然》杂志于2017920日报道,英国曼彻斯特大学科学家研制出世界上首个“分子机器人”,其能接收化学指令并完成组装分子等基本任务,未来可用于研发药物、设计先进制造工艺以及搭建分子组装线和分子工厂。组成分子机器人的碳、氢、氧和氮等原子总共只有150个,大小只有百万分之一毫米,将几百亿个这种机器人堆起来,也只有一粒盐那么大。但如此微小的分子机器人,却拥有机器手臂,能够根据指令操控单个分子,用机器手臂搭建分子产品。由于非常微小,这些分子机器人具有很多优势,能降低材料需求、加速药物研发、大幅减少能源消耗及推进产品微型化等。  

    10.引力波研究获重要进展

     

    全球多国科学家于20171016日宣布人类第一次直接探测到来自双中子星合并的引力波,并同时“看到”这一壮观宇宙事件发出的电磁信号。美国“激光干涉引力波天文台”(LIGO)捕捉到这个引力波信号。此后2秒,美国费米太空望远镜观测到同一来源发出的伽马射线暴。这是人类历史上第一次使用引力波天文台和电磁波望远镜同时观测到同一个天体物理事件,标志着以多种观测方式为特点的“多信使”天文学进入一个新时代。61日,科学家就称,第三次探测到了引力波。此次结果不仅再次验证了广义相对论,也为了解双黑洞系统的成因提供了线索。927日,宣布第四次探测到引力波,这是欧洲和美国的探测器首次共同发现引力波。 

    我国首次海域天然气水合物试开采入选中国十大科技进...

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港 朱夏 摄

     

    7月29日,由国土资源部中国地质调查局组织实施的南海神狐海域天然气水合物试采工程全面完成了海上作业,这标志着我国首次海域天然气水合物试采圆满结束。随后,执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港。

    我国海域天然气水合物首次试采圆满成功,取得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,创造了产气时长和总量的世界纪录。截止7月9日14时52分,我国天然气水合物试开采连续试气点火60天,累计产气30.9万立方米,平均日产5151立方米,甲烷含量最高达99.5%。获取科学试验数据647万组,为后续的科学研究积累了大量的翔实可靠的数据资料。 

    7月9日-7月18日,按照施工方案进行试采井的封井作业。 7月18日后,转入监测井作业,探测地层物性变化,确定水合物分解区域,了解储层改变的情况以及水合物分解波及的地层空间范围。监测结果显示周围地层无明显变化,海水及周边大气等甲烷浓度无异常,环境无污染,未发生地质灾害。

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海作业。中国南海神狐海域天然气水合物试采是“蓝鲸Ⅰ号”执行的首项工作任务。2017年3月6日,“蓝鲸Ⅰ号”从烟台启航,经过8天的航行于3月14日顺利到达位于珠海市东南320千米的中国南海神狐海域可燃冰试采区。截至7月29日返航,共在这一区域实施作业达137天。

    通过近四个月的试验探索和科学研究,取得了一些新的成果和认识。一是防砂技术先进,方法可靠,持续有效发挥作用,保障产气通道状态良好。二是在举升方式等多方面实现创新,提高产量效果显著。三是调控产能平稳有效,气流稳定,持续时间已达到生产性试开采要求,为产业化发展奠定了坚实的基础。四是海水及周边大气等甲烷浓度无异常,环境无污染。五是井壁和地层稳定,未发生地质灾害,实现了安全可持续生产。六是试采理论、技术、工程和装备领跑优势不断扩大。

    下一步中国地质调查局加大天然气水合物资源勘查力度,为产业化提供资源基础;加大理论、技术、工程、装备研究力度,为产业化提供技术准备;依靠科技进步保护海洋生态,为产业化提供绿色开发基础;研究勘探开发管理规范性文件和产业政策,为产业化提供相关保障。加强依靠科技进步,保护海洋生态,促进天然气水合物勘查开采产业化进程,为推进绿色发展、保障国家能源安全作出新的更大贡献。

    人民日报:我国可燃冰试采圆满结束 产气时长和总量创...

    2016年5月12日,联合国教科文组织全球尺度地球化学国际研究中心正式成立。在成立仪式上,国土资源部中国地质调查局党组成员、副局长代表部、局发布《中国地球化学调查报告(2016年)》。

    李金发指出,化学元素被称为地球的“基因”,地球化学调查目的是绘制地球基因图谱,为资源开发和环境保护提供科学依据。中国实施了世界上持续时间最长、覆盖面积最大、调查技术最系统的地球化学调查,在服务矿产、土地、地下水等资源开发与管理方面取得了突出成就,在调查理论技术、实验测试分析、标准物质研制、海量数据管理等方面实现了重大科技创新,在全球地球化学基准网建立、调查标准制定、技术人员培训、服务国际地球化学填图等方面为国际地质界做出了突出贡献。

    《中国地球化学调查报告(2016年)》显示,地球化学调查有效服务矿产、土地和地下水资源的开发与管理,取得3项突出成就。一是1978年开始,实施了以找矿为目的的地球化学调查计划。完成了调查面积700万平方千米,完全覆盖中国山区和丘陵地带,新发现各类矿床2570处,新发现金资源储量4000余吨,为国家矿产资源基地规划建设提供了重要支撑。二是1999年开始,实施了土地质量地球化学调查计划,完成平原区土地调查面积196万平方千米,依据土壤所含有益元素和有害元素含量,对耕地的地球化学状况进行了评价。调查发现12.72亿亩无重金属污染耕地,占已调查耕地面积的91.8%,发现富硒耕地资源5244万亩,为耕地管理和保护提供了重要支撑。三是2005开始,实施了全国地下水水质调查计划,调查总面积440万平方千米,发现30.2%地下水可直接饮用,34.7%地下水适当处理后可饮用,2418处地下水点具有天然矿泉水潜质,为地下水资源开发利用与保护提供了重要依据。

    地球化学调查实现4项重大科技创新,总体达到世界一流水平。一是发现了大量超微细金和纳米金,突破了金是惰性的不能在水系中长距离迁移的传统认识,超微细金可以长距离搬运,形成大规模区域异常,为金矿区域地球化学勘查奠定了理论基础。创新性发明了活性炭富集或聚胺酯泡沫塑料富集金技术,使金分析检出限降到了0.3纳克/克,为圈定低含量金异常提供了技术保障。二是研发了76种元素的高精度实验测试技术,是目前世界上测试指标最多的国家。建立了由专业研究机构辐射30个省级地质实验室的全国性地球化学样品分析和质量控制网络,为不同尺度地球化学调查提供了强大的实验能力和数据一致性保障。三是研制了234种地球化学标准物质,占世界上该类标准物质50%以上。这些标准物质被美国、加拿大、欧洲等40余个国家采用,并被全球地球化学基准委员会推荐为国际地球化学填图的标准物质。四是研发了具有自主知识产权的“化学地球”软件平台,这也是世界首个化学属性数字地球平台,可以实现对全球地球化学大数据管理、展示和查询。

    引领全球地球化学基准网建立,为国际地质界做出4项突出贡献。一是在建立全球地球化学基准网的多边国际合作中发挥了核心作用。“全球地球化学基准计划”于1994年开始实施,中国作为全球地球化学基准计划的发起国,担任该计划的核心职务,引领了该计划在全球的实施。二是对世界地球化学填图标准化做出了重要贡献。牵头制定了3项全球地球化学填图技术指南,正在制定实验室分析指南、数据管理与图件编制指南,指导和帮助有关国家和地区制定了5份地球化学填图指南。三是让世界同行共享了中国先进的地球化学调查技术。自1998年以来,中国举办了26次国际地球化学填图培训班,培训学员来自于亚洲、非洲、拉丁美洲等60余个发展中国家,培训人员达600余人次。四是以“一带一路”为重点,指导并帮助20余个国家开展了地球化学填图工作,为所在国提供了大量第一手数据,体现了中国技术援助水平和成果价值,实现了合作共赢。

    最后,李金发强调,2016年是“十三五”开局之年,“十三五”期间中国地球化学调查任务重大、意义深远。一是实施“化学地球”国际大科学计划。依托“全球尺度地球化学国际研究中心”,牵头组织会员国绘制全球地球化学基因图谱,建立“化学地球”大数据平台,支撑全球自然资源与环境可持续发展。二是加强地球化学填图双边国际合作研究,服务沿线国家资源开发和生态环境保护,实现合作共赢。三是继续实施矿产资源地球化学调查。重点加大稀土和铀等战略矿种的地球化学调查,服务国家高科技产业和能源产业,为国家提供新的矿产资源基地。四是全力推进土地质量地球化学调查。全面完成全国1:25万比例尺耕地质量地球化学调查,在重点地区开展1:5万耕地质量地球化学调查,建立国家土地地球化学监测网络和预警体系,持续更新土地地球化学数据库,支撑服务国家土地开发与保护管理。五是实施全国主要含水层水质综合调查。重点部署在华北平原、长江三角洲、淮河流域、珠江三角洲等地区,深化主要含水层水质的认识,为地下水保护提供可靠依据。


    李金发发布《中国地球化学调查报告(2016年)》

    国家卫生健康委2月3日下午召开新闻发布会,介绍新型冠状病毒感染的肺炎疫情防控工作中的网络在线、电话热线等社会心理服务有关情况。我们总结了一份心理健康指南,送给有需要的你!

    @确诊病例和疑似病例 

    确诊的担心病情严重,无法治愈,疑似的担心自己会被确诊,怎么办? 

    增加对自身状态的理解度。现在很多的反应是对突发事件的正常反应,要认识到每个人在经历重大负性事件后都会有一些焦虑、担心等负性情绪,这些是正常反应,接纳并允许自己有这些情绪,并适度宣泄情绪。

    保持稳定状态。维持稳定的心理状态有助于减轻压力。稳定的心理状态可以通过一些稳定化技术实现,比如深呼吸放松、音乐放松、冥想等训练。

    采纳积极的应对措施。根据国际心理援助准则,采取积极的应对方式,包括获取良好的社会支持,与信任的人如家人、朋友电话、网络交流和沟通,做一些自己感兴趣或者能有愉悦感的事情。

     

    @密切接触者 

    担心自己受到感染,怎么办? 

    关注积极信息,特别是疫情防控进展的积极信息。

    关注自我防护和应对压力的科学知识,掌握调整情绪状态和行为的科学方法。

    增强信心,让积极信息和科学知识发挥作用,认真配合社区和疾控部门的工作。

     

    @一线工作人员 

    如果心理负荷达到极限,怎么办? 

    合理设置班值,设置工作持续时间,适当轮休,在他们工作之余的休息场所,能够播放一些轻音乐,让他们能够在休息时得到最快的、最好的放松。

    掌握一些宣泄负面情绪的方式方法,比如痛痛快快地找一个没人的地方,自己好好哭一场。比如花几分钟的时间做一些拳击性的运动。还可以去做一些语音聊天,找自己特别想聊的人说说话。

    积极地做一些方便的运动,比如室内的运动,打太极拳、举重、仰卧起坐等等。

    第一时间或者定期与家人沟通交流。要知道,对一个人的精神支持和心理支持,最重要的是来自于家人,来自于亲人,所以这时候我们多忙多累都需要和家人积极保持联系。

     

    @宅在家中的人 

    如果出现烦燥恐慌等情绪怎么办? 

    制定一个计划。安排好每天要做的事情,特别是要保证规律的饮食和睡眠。

    钻研一件事情。看书、听音乐、写字、学习一项新技能等,并且享受这个过程。

    找到一种支持。来自家人和朋友的陪伴,是很重要的社会支持。认真地跟家人一起做家务和聊天。聊天的主题可以丰富一些,不要只聊疫情。没有跟家人在一起的,可以通过电话、视频聊天等方式跟家人和朋友保持联系。

    进行一项锻炼。心情烦躁时,做一遍八段锦或自己喜欢的室内运动。

    思考一些体验。思考自己可以从这段经历中获得什么有价值的人生体验。

     

    @确诊病例和疑似病例 

    总怀疑自己感染病毒怎么办? 

    三大调整原则:一是全面观察自己的情况;二是用心倾听主流的声音;三是保持与家人及外界的联系。具体做法如下:

    每天适度关注疫情和了解防护知识,最好安排在每天固定时间。

    每天固定时间测量体温。

    调整生活状态,按日常生活规律生活,注意吃好睡好作息规律。

    找到信赖的家人、朋友聊天,通过微信、电话、网络联系。

    放松训练。如果感到不能放松做一做深呼吸、跟着音乐活动身体、做一些平时可以使自己感到愉悦的事情,想一想自己可以做些什么保持身体健康,利用这次待在家中的空闲时间做自己原来没时间做的事情:如读本小说、追部好剧等。

    如发现自己发热应及时就医。

     

    请!注!意! 

    根据国务院应对新型冠状病毒感染的肺炎疫情联防联控机制要求:各地在原有心理援助热线的基础上设立应对疫情心理援助热线,每条热线至少开通2个坐席,结合本地公众需求提供24小时免费心理服务。

    全国心理援助热线查询↓

     

     

    疫情当前,心理健康也不容忽视!(附全国心理援助热...

    大洋磁条带是什么?它是如何产生的?它的存在与发现又有什么意义?那就让我们来共同探索一下吧。

    大洋磁条带存在于大洋底部,看不见摸不着,20世纪50年代,人们通过磁测资料发现,在广阔的大洋底部存在着一条条带状磁异常,这些磁异常的走向与大洋底部称为“洋脊”的巨大山脉平行,以洋脊为中心,磁异常条带对称排列,呈周期性正负交替变化,每一条磁条带宽度不超过数十千米,长度可达数千千米,这些带状磁异常就是我们所谓的大洋磁条带。

    大洋磁条带又是如何产生的呢?说起大洋磁条带的成因,我们不得不提到另一个有名的假说——海底扩张说。20世纪60年代罗伯特•迪茨(Robert Dietz)和哈雷•赫斯(Harry Hess)提出了海底扩张说,即高热流的地幔岩浆沿洋中脊的裂谷上涌冷却形成新的洋壳,以洋中脊为界,新生洋壳扩张,把两边老的洋壳向两旁推挤,然后在海沟处洋壳潜入地幔消亡。但假说毕竟还是假说,得到广泛的认可,还需要确凿的证据。而大洋磁条带的发现为这一假说提供了最为有力的证据。

    1963年1月,加拿大地球物理学家劳伦斯•莫里(Lawrence Morley)提出:洋中脊处不断喷涌出来新岩浆,在冷却形成新洋壳的过程中,当其温度下降到居里点(500—450℃)以下,玄武岩、橄榄岩等洋壳岩石内的磁铁矿被磁化,记录下当时的地磁场。随着洋中脊处不断形成新洋壳把两边老的洋壳向两侧挤,于是地磁场就在洋中脊两侧被岩石对称记录了下来。在过去亿万年的地球发展过程中,地球磁场南北极曾多次发生倒转,新生洋壳岩石会按新的方向被磁化,从而形成了我们现在所看到的磁条带正负交替变化的现象,记载了沧海桑田变化的奥秘(图1)。这一经典理论现在被写入每本地质教材,但当时却遭到Nature及Journal of Geophysical Research的拒绝,直到1967年才被刊登在文学杂志Saturday Review上。同年,英国地质学家弗雷德里克•范恩(Frederick Vine)、德拉蒙德•马修斯(Drummond Matthews)根据海底扩张学说也提出相似的简单解释。三位科学家的研究成果,最终为人们广泛认同。

    大洋磁条带的存在与发现又有什么意义?现代磁测研究表明,垂直于洋中脊对称式分布的各磁异常条带的宽度和地磁场倒转事件的持续时间长短成正比关系:将磁异常条带宽度所代表的距离除以该条带的时间跨度就能够计算出海底扩张的速度,大约每年数厘米。因此,大洋磁条带不仅证明了海底扩张的存在,而且根据海底扩张的速度和海底的宽度就可以计算出整个洋底不同部分的年龄,最老的海底为侏罗纪,大约2.2亿年左右,它和实测的年龄数据十分吻合。

    大洋磁条带为研究大洋构造演化历史提供了依据。通过对大洋磁条带的探测,可以对大洋构造等进行深入研究。其中,洋底构造对解决地壳起源、演化等地质学根本问题关系极大。

    大洋磁条带

    大洋磁条带

    大洋磁条带的奥秘

    2017年11月26日,国土资源部科合司会同中国地质调查局科外部,对依托物化探所建设的国土资源部地球化学探测重点实验室进行了验收。专家组在听取汇报、审阅材料、实地考察、质询讨论的基础上,认为实验室高质量完成了建设期任务,一致同意通过验收并正式挂牌。这为落实姜大明部长提出的“建成国际领先水平的地球化学创新中心,将国际研究中心、国家重点实验室和大科学计划一体化运行”要求和目标奠定了良好的基础,也为落实国土资源部“三深一土”战略提供了技术支撑。

    国土资源部高平副司长在讲话中指出,实验室建设凝聚了一大批高端科技人才的心血,在基础研究、技术创新、野外观测等方面开展了有重要意义的工作,紧跟国家科技创新步伐,体现了部科技创新项目与国家科技创新项目的相互对接。要求实验室优化建设,进一步激发科研人员创新能力,着力瞄准国家级科技创新平台建设方向,不断实现新突破。

    彭轩明所长简要回顾了实验室建设过程和取得成果。他表示,实验室顺利通过验收是物化探所科技创新平台建设的一件大事,标志着物化探所在服务国土资源战略需求、支撑科技创新的进程中掀开了新的一页。

    中国科学院院士李廷栋、中国工程院院士毛景文及与会专家听取了实验室主任王学求关于实验室建设情况的汇报并进行现场考察核实。

    实验室自2012年经批准建设以来,在地球化学探测理论技术和应用领域取得了一系列创新性成果和突破性进展,先后承担了国家重点研发计划、国家973计划、国家自然科学基金项目、国土资源公益性行业专项、地质矿产调查专项等各类科技项目58项,获经费支持2.87亿元,与50余个国家建立了交流合作关系,搭建了联合国教科文组织全球尺度地球化学国际研究中心合作平台,发表学术论文102篇,获国家科技进步二等奖一项、省部级科技奖4项、发明专利1项、实用新型专利4项、软件著作权2项,制定行业标准2项,实现科技成果转化3750万元;建成实验室办公面积8400平方;形成了优秀的以全球基准值、区域化探、穿透性地球化学为主的创新团队,团队入选国土资源科技创新团队。实验室建设期间,形成了全球地球化学基准与资源环境效应、区域尺度地球化学填图理论与技术、深部地球化学探测理论与技术三个研究方向,取得了丰硕创新成果:

    一是在全球地球化学基准与资源环境效应研究方面。完成“中国地球化学基准计划”,建立了覆盖全国960万平方公里的地球化学基准网,为评价环境污染现状和监测环境变化奠定了基础,也为全球地球化学基准网建立和应用提供了技术准备和典范,引领了该计划在全球的实施;制订全球地球化学填图技术系列指南,对世界地球化学填图标准化做出重要贡献,提升了我国的国际影响力;通过国际地球化学填图培训的方式,让世界共享中国先进技术,同时以“一带一路”为重点,指导并帮助20余个国家开展了地球化学填图工作;全球地球化学基准网建设持续推进,“化学地球”国际大科学计划成功启动,支撑了全球自然资源与环境可持续发展。

    二是区域尺度地球化学填图理论与技术研究方面。编制2016年“中国地球化学调查报告”,系统总结了我国实施的世界上持续时间最长、覆盖面积最大、调查技术最系统的区域地球化学调查及其成就,实现了重大科技创新;建立了地壳岩石和土壤样品中81个指标(含76个元素)的配套分析方案和分析质量监控系统,改进了样品加工流程,提高了分析精度;制订了从样品采集、分析与质量控制、数据管理与图件制作等系列多尺度地球化学填图指南。

    三是深部地球化学探测理论与技术方面。发展了能穿透巨厚外来覆盖层的深穿透地球化学探侧理论和技术体系,对隐伏矿的探测深度由之前的500米提高到目前的1000多米,对外来覆盖层的穿透能力则超过300米,实现了地球化学勘查从浅表矿到深部矿勘查的重大转变;总结提出了多维异常体系应用基础理论;建立了砂岩型铀矿地球化学勘查理论与方法,为盆地砂岩型铀矿地球化学勘查提供了理论依据和有效采样介质。

    以李廷栋院士为组长的专家组一致同意通过验收,认为实验室紧密围绕资源与环境领域重大地质问题需求,坚持基础理论、探测技术和评价应用并举,在全球地球化学基准与资源环境效应、区域尺度地球化学填图理论与技术、深部地球化学探测理论与技术三个研究方向开展了基础性、前沿性、创新性研究工作,取得了系列创新成果,建立了一支既具有高水平学术研究能力又富有奉献精神的中青年骨干队伍,为国土资源中心工作有效开展、高水平建设创新型国家提供了较好的支撑和服务,圆满完成既定任务目标。

    专家组听取实验室建设情况汇报

    实验室建设通过验收正式挂牌成立

    专家组实地考察标准物质研制情况

    专家组考察超净实验室

    国土资源部地球化学探测重点实验室通过验收

    7月29日,由国土资源部中国地质调查局组织实施的南海神狐海域天然气水合物试采工程全面完成了海上作业,这标志着我国首次海域天然气水合物试采圆满结束。随后,执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港。

    在党中央、国务院的坚强领导下,国土资源部、财政部、国家发改委、科技部密切配合,强力推进找矿突破战略行动,在中国石油天然气集团公司、北京大学、中集集团等单位的全力协作下,由国土资源部中国地质调查局组织实施的海域天然气水合物首次试采圆满成功,取得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,创造了产气时长和总量的世界纪录。

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号” 资料图

    本次试采作业区位于珠海市东南320千米的神狐海域。3月28日第一口试采井开钻,5月10日下午14时52分试气点火成功。截至7月9日14时52分,我国天然气水合物试开采连续试气点火60天,累计产气30.9万立方米,平均日产5151立方米,甲烷含量最高达99.5%。获取科学试验数据647万组,为后续的科学研究积累了大量翔实可靠的数据资料。

    7月9日~7月18日,按照施工方案进行试采井的封井作业。7月18日后,转入监测井作业,探测地层物性变化,确定水合物分解区域,了解储层改变的情况以及水合物分解波及的地层空间范围。监测结果显示,周围地层无明显变化,海水及周边大气等甲烷浓度无异常,环境无污染,未发生地质灾害。

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海作业。中国南海神狐海域天然气水合物试采是“蓝鲸Ⅰ号”执行的首项工作任务。2017年3月6日,“蓝鲸Ⅰ号”从烟台启航,经过8天的航行于3月14日顺利到达位于珠海市东南320千米的中国南海神狐海域可燃冰试采区。截至7月29日返航,共在这一区域实施作业达137天。

    通过近四个月的试验探索和科学研究,取得了一些新的成果和认识:一是防砂技术先进,方法可靠,持续有效发挥作用,保障产气通道状态良好。二是在举升方式等多方面实现创新,提高产量效果显著。三是调控产能平稳有效,气流稳定,持续时间已达到生产性试开采要求,为产业化发展奠定了坚实的基础。四是海水及周边大气等甲烷浓度无异常,环境无污染。五是井壁和地层稳定,未发生地质灾害,实现了安全可持续生产。六是试采理论、技术、工程和装备领跑优势不断扩大,中国实力让国际社会赞叹不已。

    这次试采成功是我国首次、也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。经过近20年不懈努力,我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新,实现了历史性突破。

    下一步,中国地质调查局将加大天然气水合物资源勘查力度,为产业化提供资源基础;加大理论、技术、工程、装备研究力度,为产业化提供技术准备;依靠科技进步保护海洋生态,为产业化提供绿色开发基础;研究勘探开发管理规范性文件和产业政策,为产业化提供相关保障。加强依靠科技进步,保护海洋生态,促进天然气水合物勘查开采产业化进程,为推进绿色发展、保障国家能源安全作出新的更大贡献。

    我国首次海域可燃冰试采圆满结束

    人民政协网北京7月31日电(记者 周丽燕)记者29日从中国地质调查局获悉,由国土资源部中国地质调查局组织实施的南海神狐海域天然气水合物试采工程全面完成了海上作业,这标志着我国首次海域天然气水合物试采圆满结束。随后,执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港。

    “蓝鲸1号”平台点火臂

    在党中央、国务院的坚强领导下,国土资源部、财政部、发展改革委、科技部密切配合,强力推进找矿突破战略行动,在中国石油天然气集团公司、北京大学、中集集团等单位的全力协作下,由国土资源部中国地质调查局组织实施的海域天然气水合物首次试采圆满成功,取得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,创造了产气时长和总量的世界纪录。

    本次试采作业区位于珠海市东南320千米的神狐海域。3月28日第一口试采井开钻,5月10日下午14时52分试气点火成功,从水深1266米海底以下203-277米的天然气水合物矿藏开采出天然气。到5月18日上午10时,连续产气近8天,平均日产超过1.6万立方米,超额完成“日产万方、持续一周”的预定目标。国土资源部部长姜大明在现场宣布我国海域天然气水合物首次试开采成功,中共中央、国务院发来贺电。

    科学家庆祝试采点火成功

    截止7月9日14时52分,我国天然气水合物试开采连续试气点火60天,累计产气30.9万立方米,平均日产5151立方米,甲烷含量最高达99.5%。获取科学试验数据647万组,为后续的科学研究积累了大量的翔实可靠的数据资料。

    7月9日-7月18日,按照施工方案进行试采井的封井作业。 7月18日后,转入监测井作业,探测地层物性变化,确定水合物分解区域,了解储层改变的情况以及水合物分解波及的地层空间范围。监测结果显示周围地层无明显变化,海水及周边大气等甲烷浓度无异常,环境无污染,未发生地质灾害。

    水合物自然产状类型图

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海作业。中国南海神狐海域天然气水合物试采是“蓝鲸Ⅰ号”执行的首项工作任务。2017年3月6日,“蓝鲸Ⅰ号”从烟台启航,经过8天的航行于3月14日顺利到达位于珠海市东南320千米的中国南海神狐海域可燃冰试采区。截至7月29日返航,共在这一区域实施作业达137天。

    通过近四个月的试验探索和科学研究,取得了一些新的成果和认识。一是防砂技术先进,方法可靠,持续有效发挥作用,保障产气通道状态良好。二是在举升方式等多方面实现创新,提高产量效果显著。三是调控产能平稳有效,气流稳定,持续时间已达到生产性试开采要求,为产业化发展奠定了坚实的基础。四是海水及周边大气等甲烷浓度无异常,环境无污染。五是井壁和地层稳定,未发生地质灾害,实现了安全可持续生产。六是试采理论、技术、工程和装备领跑优势不断扩大,中国实力让国际社会赞叹不已。

    俯瞰“蓝鲸1号”

    这次试采成功是我国首次、也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。经过近20年不懈努力,我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新,实现了历史性突破。这是在以习近平同志为核心的党中央领导下,落实新发展理念,实施创新驱动发展战略,发挥我国社会主义制度可以集中力量办大事的政治优势,在掌握深海进入、深海探测、深海开发等关键技术方面取得的重大成果,是中国人民勇攀世界科技高峰的又一标志性成就,对推动能源生产和消费革命具有重要而深远的影响。

    试采结束后的”蓝鲸1号“平台一角

    下一步我们将紧密团结在以习近平同志为核心的党中央周围,学习领会、坚决贯彻中共中央、国务院贺电精神,加大天然气水合物资源勘查力度,为产业化提供资源基础;加大理论、技术、工程、装备研究力度,为产业化提供技术准备;依靠科技进步保护海洋生态,为产业化提供绿色开发基础;研究勘探开发管理规范性文件和产业政策,为产业化提供相关保障。加强依靠科技进步,保护海洋生态,促进天然气水合物勘查开采产业化进程,为推进绿色发展、保障国家能源安全作出新的更大贡献,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦再立新功!

    人民政协网:我国首次海域天然气水合物试采圆满结束

    科学家庆祝试采点火成功

    科技日报北京7月29日电(记者谢宏)记者从中国地质调查局获悉,7月29日,由国土资源部中国地质调查局组织实施的南海神狐海域天然气水合物试采工程全面完成了海上作业,这标志着我国首次海域天然气水合物试采圆满结束。随后,执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港。

    “蓝鲸1号”平台点火臂

    国土资源部、财政部、发展改革委、科技部密切配合,强力推进找矿突破战略行动,在中国石油天然气集团公司、北京大学、中集集团等单位的全力协作下,由国土资源部中国地质调查局组织实施取得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,创造了产气时长和总量的世界纪录。

    本次试采作业区位于珠海市东南320千米的神狐海域。3月28日第一口试采井开钻,5月10日下午14时52分试气点火成功,从水深1266米海底以下203—277米的天然气水合物矿藏开采出天然气。到5月18日上午10时,连续产气近8天,平均日产超过1.6万立方米,超额完成“日产万方、持续一周”的预定目标。国土资源部部长姜大明在现场宣布我国海域天然气水合物首次试开采成功,中共中央、国务院发来贺电。

    截止7月9日14时52分,我国天然气水合物试开采连续试气点火60天,累计产气30.9万立方米,平均日产5151立方米,甲烷含量最高达99.5%。获取科学试验数据647万组,为后续的科学研究积累了大量的翔实可靠的数据资料。

    水合物自然产状类型图

    试采项目工作人员介绍,7月9日—18日,按照施工方案进行试采井的封井作业。 7月18日后,转入监测井作业,探测地层物性变化,确定水合物分解区域,了解储层改变的情况以及水合物分解波及的地层空间范围。监测结果显示周围地层无明显变化,海水及周边大气等甲烷浓度无异常,环境无污染,未发生地质灾害。

    执行本次试采技术服务的 “蓝鲸Ⅰ号”钻井平台,是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海作业。中国南海神狐海域天然气水合物试采是“蓝鲸Ⅰ号”执行的首项工作任务。2017年3月6日,“蓝鲸Ⅰ号”从烟台启航,经过8天的航行于3月14日顺利到达位于珠海市东南320千米的中国南海神狐海域可燃冰试采区。截至7月29日返航,共在这一区域实施作业达137天。

    俯瞰“蓝鲸1号”据介绍,通过近4个月的试验探索和科学研究,取得了一些新的成果。一是防砂技术先进,方法可靠,持续有效发挥作用,保障产气通道状态良好。二是在举升方式等多方面实现创新,提高产量效果显著。三是调控产能平稳有效,气流稳定,持续时间已达到生产性试开采要求,为产业化发展奠定了坚实的基础。四是海水及周边大气等甲烷浓度无异常,环境无污染。五是井壁和地层稳定,未发生地质灾害,实现了安全可持续生产。六是试采理论、技术、工程和装备领跑优势不断扩大。

    试采结束后的”蓝鲸1号“平台一角

    这次试采成功是我国首次、也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。经过近20年不懈努力,我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新,实现了历史性突破。

    试采项目工作人员介绍,下一步中国地质调查局将加大天然气水合物资源勘查力度,为产业化提供资源基础;加大理论、技术、工程、装备研究力度,为产业化提供技术准备;依靠科技进步保护海洋生态,为产业化提供绿色开发基础;研究勘探开发管理规范性文件和产业政策,为产业化提供相关保障。

    科技日报:我国首次海域天然气水合物试采圆满结束,...

    1 前言

    近年由于常规天然气资源量和产量的下降,特别是在北美洲,非常规天然气得到了高度的重视。一些估计表明,全球非常规天然气资源量(不含水合物)超过30000万亿立方英尺,大约有50%的资源来自页岩气。Julander能源公司的首席执行官Fred Julander认为页岩气(SG)是“自发现石油以来最重要的能源进展”。

    水平钻井技术的进步、水力压裂、相对高的天然气价格(相比2009年之前)和近来在巴内特页岩(Barnett Shale)和美国其他几个页岩气藏的商业成功都使页岩气在美国成为了热门能源,而且页岩气的勘探开发已开始蔓延到加拿大和世界其他几个地区。

    由于页岩气远景的复杂性和广泛性,针对页岩气的应用不能采用普遍用于常规气和煤层气的应用技术,而需专门设计开发工具和方法。多名学者包括Gray等人(2007)和Harding(2008)认为基于确定性解决方案的决议不适用于页岩气开发,因其没有考虑与复杂成藏有关的风险和不确定性,且经常导致过于乐观的结果。

    到目前为止,尽管在北美和欧洲的勘查活动活跃以及近期商品价格下降,页岩气远景分析工作也只完成了极少的部分。商品价格的下降使最高质量远景区的开发至关重要,这些区域的开发不仅最符合公司的利益,并且赋予公司与国外的低成本常规气田(即卡塔尔和沙特阿拉伯相关的天然气)竞争的最佳潜力。Williams-Kovacs和Clarkson(2011)提供了与非常规的远景分析有关的现有工作的回顾,并提供了一种专为页岩气应用而设计的综合的六阶段远景分析及开发评价方法(PADEM)。本文中,作者还展示了一个专门开发用以筛查页岩气远景区并且选择最适合详细分析远景的工具。本文以Williams-Kovacs和Clarkson的工作为基础,致力于远景评价并选择进行更深入分析的远景区的试点位置。

    当前工作的目标是:①开发一种协助页岩气勘探开发阶段的方法和配套的分析工具;②演示已开发技术在加拿大西部致密砂岩/页岩远景区的应用。这项工作的主要贡献是开发与示范一种针对页岩气远景区的严格分析方法。当考虑共存关系时,基于先导试验井输入变量的不确定性,该方法能生成其预测的分布。以前所有的工作一直专注于全域开发方案,然而无法利用勘探开发早期阶段可获取的少量数据快速形成这种全域开发方案。

    2 工具开发

    在这项工作中,开发了一种用于分析页岩气远景的工具。该工具选择使用(以Williams-Kovacs和Clarkson提出的方法(2011)为例的)预筛选的方法。本文将重点放在该工具的开发和应用,分析某一远景区的不同区域,以确定它们是否是适合的试点项目,并描述了图1所示的PADEM工作流程的勘探阶段。勘探阶段的目的是对从更多的详细资料中筛选的远景进行调查,以增加对油藏流动性和碳氢化合物生成能力的了解。在这项工作中,我们对个别类型油井采用概率范围经济学(probabilistic scoping economics)作为勘探标准,以确定该远景区是否适合实行试点项目。表1中完整提供了Williams-Kovacs和Clarkson(2011)详细讨论整体勘探开发方法的总结。

    表1  勘探开发方法概况

    发展阶段

    概述

    靶区筛选

    评估所有潜在的远景区,并选择能提供最好的商业成功机会的远景区

    勘探

    对远景区进行更详细地调查,提高对油藏流体特性和相应碳氢化合物生产能力认识。确定有代表性的试点项目适合的地区

    试采

    继续提高对远景区的认识,集中验证试采区单井的供给能力,评估完井方法

    商业示范

    在项目提交全部资金预算之前,完成开发部分(30%)针对错误的试验结果的测试

    全域开发

    完成全域开发计划,开始制定退出战略

    新的远景/退出

    完成项目详细回顾,评估区域及具体化开发过程中新的远景相关区域。调整和实施退出战略以及任何所需的补充措施

    在这项应用中解析模型比数值模拟更适用,其原因在于应用程序自设置和初始化的时间很短,整合的蒙特卡罗模拟法简单易行,并且在勘探早期阶段不容易获得形成精准的数值模拟所需的详细数据。尽管数值模拟技术已得到改进,但解析方法在工业和文献中依然被大量使用。下文给出了开发工具的关键部分的概要。

    2.1 属性图

    勘查方法最关键的组成部分可能是关键储层、地质力学、岩石物理和地球化学特性的精确属性图的开发。从地质模型、产量不稳定分析(RTA)、压力不稳定分析(PTA)、岩石物理调查等组合中可以推导出这些属性图。这些属性图用于远景的可视化、区块选区以及单一区块的分析。天然气原始地质储量图(OGIP)、Km-h图、压裂脆性图等有助于选择代表性区块以及具备更大开发潜力的区块,甚至高度非均质性区块。区块作为一种评价不同区块远景生产特性的方法,基于地质和岩石物理的观察,比较简单易于操作。采用区块方法不需要针对每个勘探网区块开发一种标准井进行分析,然而通过应用蒙特卡罗法依然解释了其变化性和不确定性。Clarkson和McGovern(2005)采用区块方法评价了煤层气(CBM)远景。通过输入X-Y坐标值以及PetrelTM软件的储层属性Z值可以在Excel中创建储层属性图。随后,数据透视表程序被用于对数据排序,并利用二维绘图应用软件创建属性图。由于早期的岩石物理模型通常利用有限的数据集开发,单一区块在蒙特卡罗模拟中选择不确定的输入数据和参数范围可以解释模型参数的不确定性。这种解释不确定性的方法将在本文所示实例中进行演示。

    2.2 水力压裂模型

    该项工作中,水力压裂裂缝的半长采用Valko(2001)提出的在常规和致密气中应用的简单双翼压裂模型来预测。该模型采用基质渗透率、剪切模量(杨氏模量与泊松比的函数)以及其他储层参数作为输入数据,且如果建模的输入参数不确定,则都必须重新计算每次蒙特卡罗迭代。采用简单的关联(Acm=4xfh)可将裂缝半长转换为与压裂有关的面积。这个压裂模型可能无法代表部分更复杂的页岩气裂缝。为了更好的表示引入到大部分页岩气储层的复杂压裂网,Xu(2009,2010)等人建立了一个更具有代表性的水力压裂模型,该模型将被结合到本次工作中所演示的更新版本的方法中。该区的微地震观测表明,在本文预测的远景区横向双翼压裂的假设是合理的。

    作为所应用的速率预测模型中的关键组成部分必须估算裂缝半长,这一问题将在下面部分开展讨论。水力压裂裂缝半长在随机分析中作为不确定的输入量,其分布主要根据该地区的微地震事件或者其他方法来确定。

     

     

    图1  非常规天然气勘探阶段的勘探/开发方法工作流程

    2.3 速率预测

    Clarkson(2013)提供了关于页岩气井生产分析和速率预测综合全面的概述。在该工作中,我们将页岩气井理想化为一个矩形双孔介质系统,气体从基质岩块流入到裂缝且储层不随着裂缝延展(如图2的概念模型)。该模型忽略了包括体积压裂(SRV)在内的影响,其他作者认为大部分低渗页岩气井在合理的时间内不会发生体积压裂。此外,图2所示的概念模型假设了一个均质的完井——Amborse等(2011)和Nobakht等(2011a)讨论了非均质储层完井的预测。

    在本次工作中,该模型的解决方案首先由EI-Banbi(1998)提出来。人们普遍认为在页岩气藏中占主导地位的瞬时流动状态是从基质到裂缝的线性流。同时,也可能出现一个与水力压裂线性流动相关的线性流动周期,但是通常认为这个阶段持续时间很短,或者被水力压裂清理以及表皮效应所掩盖,而很少可用于分析。本项工作中,我们假设瞬时线性流(从基质到裂缝)之后是边界控制流,该流态与受表皮效应(见等式7)影响的线性流体模型存在早期偏差。压裂段之间的不渗透边界结构导致了边界控制流产生。由Wattenbarger等(1998)首先将早期线性到边界控制流体的假设引入到致密气的应用中,并且该假设被广泛应用于文献和页岩气行业的解析模型。

     

     

    图2  从线性流到边界流的解的概念模型

    2.3.1 瞬时线性流的速率预测

    EI-Banbi(1998)提出通过恒定速率和恒定流体压力来描述瞬时线性流的公式。本项工作中采用恒定流体压力的条件,这也是本文其他部分的重点——该边界条件最接近大部分产生达到最大水位降低值的页岩气井的流动条件。Samandarli等人(2011)采用不同的流体压力迭代方法,对页岩气生产进行分析建模,但是他们表明在大部分情况下采用恒定流体压力的假设就可以了。

    与常用于表征简单横向双翼压裂的裂缝半长(Xf)相比,相关储层面积(Acm)能更好的表示完井措施和增产措施效果以及生成复杂裂缝的能力。因此,在这一分析中,采用相关的储层(气藏)面积(Acm)取代裂缝半长(Xf)。许多业内专家相信由于页岩气藏超低的基质渗透率,复杂压裂对于页岩气的商业生产至关重要。

    无因次时间,tD,Acm,相关储层面积(Acm)依据公式1在恒定压力条件下定义。

                               (1)

    无因次速率,qD,Acm,由无因次时间定义:

                                           (2)

    基于储层特性的无因次速率表达式,如果可获得关于KmAcm估算值,通过公式(3)可确定气体流速。采用不稳定产量分析或者其他的模拟技术可估算KmAcmKm也可以通过实验室技术单独确定。

                                 (3)

    Ibrahim和Wattenbarger(2006)认为线性流的性能受水位下降程度的影响,同时提出水位下降量修正因子(fcp)。此次工作中采用的修正因子(fcp)由公式4给出。

                                (4)

    此处,

     

    Nobakht等人2011a和Nobakht等人(2011b)通过分析中采用校正时间(本次工作未采用)提出一种更严格的校正水位下降量的方法。

    将水位下降量修正因子应用到公式3得出公式5:

                           (5)

    除了水位下降量的修正,这些公式经过进一步修改可直接应用于页岩气井。与致密气井相比,大部分页岩气井在时间曲线的平方根中表现出的较大截距(在致密气井中曲线通常穿过原点),而在流量和时间双对数曲线上页岩气井则呈现出的一半斜率的偏差。多名作者最初认为是裂缝的有限导流能力造成了这种偏差,但是Bello(2009)和Bello和Wattenbarger(2009,2010)认为这种偏差可以通过采用表面效应来更好的解释。Bello(2009)、Bello和Wattenbarger(2009)在恒定流量和恒定流体压力条件下完成了大量的受表皮效应(skin effect)影响的线性流分析,且推导出了恒定流体压力条件下的解析解。在他们的分析中,将表皮效应作为一个常量。Bello(2009)和Bello和Wattenbarger(2009)证明恒定流量情况下表皮是附加量,而恒定流体压力情况下表皮的作用是非线性的。由Bello和Wattenbarger(2009)提出的解析式可以使用下面的近似代数方程:

                    (6)

    从方程(6)可以看出,当tD(t)值大时,包含表皮的项就会变小。

    Nobakht等人(2012)研究了巴内特、马塞勒斯和蒙特利的大量页岩气井(这些气井在相对恒定的流压下产量不断降低),同时得出结论:通常这些页岩气井更多表现出恒定流量的情况而不是恒定流压的情况。作者假设这种意想不到的表现可能是由于Bello(2009)以及Bello和Wattenbarger(2009)提出的表皮模型太过理想化,因此无法代表野外条件。通过假设恒定的表皮效应,模型不能说明由压裂清理、压力敏感地层、变化的压裂导流能力、变化的井底流压、压力相关的流体性质、变化的井筒流体梯度、液体加载等导致的表皮改变。作为这项工作的结果,作者提出了一个可应用于公式(2)的替代表皮修正项:

                       (7)

    包括水位最低量和表皮的影响,公式(1)、(5)、(7)能够利用预测的气体流量,作为时间的函数,在线性流区域可对KmAcm给出独立的估测。

    2.3.2 边界控制流的流量预测

    上面描述的方法适用于有效的储层边界相互接触,边界控制流形成之前。基于图2所示的几何图形,边界控制流紧随着瞬时线性流的末期出现。当外部SRV的影响较为显著时,这一观点较为保守。Clarkson和Beierle(2011)认为如果遇到了其他的瞬时流区,则应采用多重分区的方法,此外,如果多级压裂井需要进行非均质性储层的完井(heterogeneous completion),早期线性流之后不会立刻发生真实边界控制流,且需要更复杂“混合”预测技术。如同下面叙述的,我们选择采用更为保守预测程序,假设线性流之后紧随边界控制流。

    利用公式8计算达到线性流的拟稳态时间(或者是瞬时线性流的结束时间):

                           (8)

    正如图2中看到Ye是压裂到储层边界的距离,计算公式如下:

                           (9)

    多名作者已经提出了页岩气井拟稳态线性流的预测方法。包括Fraim和Wattenbarger(1987),Palacio和Blasingame(1993),Doublet等(1994),Agarwal等(1999)和Mattar和Anderson(2005)认为可采用物质平衡类模拟程序预测边界控制流。Clarkson和Pedersen(2010)将这种方法应用于致密油研究,同时本文也将采用这种方法。公式(10)给出采用物质平衡方法预测边界控制流的生产速度:

                  (10)

    此处qpssi-Linear是边界控制流初始的页岩气流体速度,Pri)pss是边界控制流初始的平均储层压力,且Pwfi)pss边界控制流体初始时井筒流体压力。通过物质平衡计算平均储层实际气体拟压力。对于含有大量吸附气的页岩气开采(application),一般使用Clarkson和McGovern(2005)提出的MBE方法。而在以游离气为主的情况下,则使用定容气藏的常规MBE方法。物质平衡计算需要地质储量和气体特性(比如天然气压缩因子),这两者都是由关键PVT输入量和状态公式(EOS)确定的。

    (a)

    收入总额

    (b)

    收入总额

    扣减

    使用费

    扣减

    使用费

    扣减

    运营成本

    扣减

    运营成本

    得出

    税前运营现金收入(OCIBT)

    扣减

    资金成本补助(CCA)

    扣减

    收入税

    扣减

    加拿大开发费用(CDE)

    得出

    税后运营现金收入(OCIAT)

    扣减

    加拿大勘查费用(CEE)

    扣减

    资本支出

    扣减

    加拿大油气物业费(COGPE)

    得出

    税后现金流(CFAT)

    得出

    生产应税所得

    贴现

    税后贴现现金流(DCFAT)

    生产税率

       

    得出

    应付税款

       

    扣减

    免税额度

       

    得出

    应付净所得税

    图3  现金流分析:(a)现金流;(b)收入税(加拿大税制)

    结合El-Banbi(1998)改进的瞬时线性流的无因次公式和边界控制流的物质平衡模拟方法,可以开发一种综合的预测方法:

    1)        获取Acm(或者Xf)和Km(来源于微地震和/或RTA模拟/已有生产数据或者其他估计)的独立估算值。

    2)        使用公式(1)和(7)作为时间函数计算tD,AcmqD,Acm

    3)        线性流部分的数据利用公式(5)作为时间函数计算qg

    4)        指定排放区(来源FMB模拟/已有的生产数据或者其他估算)。

    5)        使用公式(8)和(9)计算tPSS-LinearYe

    6)        确定

    7)        采用公式(10)通过废弃量(边界控制流)从tPSS-Linear预测产量。

    上面描述的解析模型是假设模型(最小变化)区块内的体积平均值参数是恒量,并从认为是不确定的参数的概率分布中选择一个值。每一次蒙特卡罗迭代将选择不同的值,导致不同的流量预测和不同的主要经济指标值。在许多参数高异质性水平的情况下,存在明显的不确定性,这种不确定性反映在关键输出参数的显著变化。

    2.4 经济模块

    将经济模块与速率预测集成来计算与生产相关的现金流。因为通常行业采用名义美元计算实际(通常的)现金流和名义(现行的)现金流,虽然采用实际的盈利指数计算项目的最低预期资本回收率,且通过不同的通货膨胀率来比较项目。采用图3中的业务流程计算现金流和收入税(加拿大税收制度)。

    该模块中的天然气价格的确定实行了价格操纵,而非价格预测。采用价格操纵表明了项目十分稳定(不论是单独而言还是相较于其他项目),并且不再需要预测极不稳定的天然气价格,该模块中也设置了以价格预测为基础引导经济的选项。

    方法中建立了多个实际盈利能力的指标,包括净现值(NPV)、内部收益率(IRR)和投资收益率(ROI),用来比较项目和公司设定的最低预期资本回收率,同时可给项目进行排序。

    2.5 蒙特卡罗模拟的一体化

    本次工作将蒙特卡罗模拟整合到方法开发中。采用@RISKTM(Palisade Corporation,2010)对关键PVT和储层属性(原始参数)进行概率分布和模拟操作。概率分布的输入变量根据不同项目的数据数量和质量而变化。Clarkson和McGovern(2005),Haskett和Brown(2005)和Harding(2008)认为对数正态分布最能代表PVT、储层和经济特性,因此本文使用了这种分布类型。这些概率分布拟合按P10(低)、P50(中)和P90(高)不同的值输入各个不确定变量。这些输入值可能来自勘探/远景数据、个人经验、模拟数据等。缩减所有输入变量的分布保证每个实现只选择合理的数值(缩减分布将选择少量接近无穷大的数值,从而影响输出变量)。

    上面讨论了@RISKTM输出变量定义的关键经济参数,以及气体速率和累积天然气产量。由于每个输出变量允许量化与项目相关的不确定性,可对其生成一个概率分布,以便做出与远景选取和开发有关的明智决策。

    通过在x轴上找到相应的最低预期资本回收率时的位置,向上垂直移动至曲线处,然后再水平投影到y轴,这样可以从累积概率分布计算出超过设定最低预期资本回收率的概率。用1减去y轴上求出的值,得出超过最低预期资本回收率的概率。这个方法在本文中将作为范例进行演示。

    在这一应用中(如在孔隙度和渗透率之间),采用了拉丁超立方体抽样,如果有必要的话,还可合并相关性(如孔隙度与渗透率)。典型的多相(气+水)页岩气/致密气应用的主要参数如表2.3所示。在某些情况下,参数的依赖关系可使用行业普遍接受的经验模型进行解释,而在其他情况下会使用来自现场数据或者估算得到的基于方向的相关性(如较高的正相关关系)。例如,与压力有关的渗透率(绝对的渗透率比值)使用Yilmaz等人(1991)的方法可与储层压力和岩石力学特性关联。相反,束缚水饱和度与孔隙度密切正相关。可能的参数关系如表2所示。

    蒙特卡罗模拟运用了一个类似于Clarkson和McGovern(2005)使用的煤层气气藏远景分析的方法。

    表2  基本参数、可能的相关性和参数关系

    基本参数

    可能的相关性

    关系

    有效厚度/英尺

    孔隙度/%

    粒径,有机质

    适用于某些情况下和正相关情况的实证模型

    初始含水饱和度/%

    孔隙度

    高度正相关

    束缚水饱和度/%

    孔隙度

    高度正相关

    基质渗透率/毫达西,初始状态

    孔隙度,有机物

    适用于某些情况下和正相关情况的实证模型

    基质渗透率/毫达西,初始比

    储层压力,力学性能

    野外/岩心数据经验曲线

    相对渗透率

    含水饱和度,束缚水饱和度

    野外/岩心数据经验曲线

    初始储层压力/磅/平方英寸

    深度,渗透率(超压)

    气压梯度

    储层温度/℉

    深度

    温度梯度

    天然气比重

    朗缪尔体积/标准立方英尺/吨

    容积密度

    来自岩心/岩屑的线性关系

    朗缪尔压力/磅/平方英寸

    体积密度/克/立方厘米

    流泄区/英亩

    含气量/标准立方英尺/吨

    TOC

    正相关

    井眼半径/英尺

    表面

    增产效果

    高度正相关

    压裂总半径/英尺

    剪切模量(+),渗透率(-),有效厚度(-),井眼半径/英尺

    变化—见括号中相关方向

    井底流压

    井眼长度

    高度正相关

    3 该方法应用于远景勘探

    本文中开发的方法广泛应用于SG远景将其分成区块进行分析的目的,以确定是否适合作为一个试点项目。由于SG试点和开发项目成本高,且其详细分析需要大量数据,页岩气远景勘探至关重要。

    对于远景勘探应用而言,其方法的选择以当前远景数据和模拟数据相结合为基础。理想情况下,对于关键PVT和储层参数情况良好的估计,作为空间坐标的函数可用于远景勘探。如果事实并非如此,可以对模拟气藏或者其他数据源进行估算以获取数据,同时分析该方法带来的不确定性。

    假定整个远景区PVT和其他储层特性不变,输入数据可用于生成主要储层特性图。关键生产指标图如OGIP和基质渗透率乘以可以开发的净投入(千米/小时),可用于区块的选择。区块的选择基于区域类似的关键生产指标的值。对页岩气储层而言,压裂的指标,如压裂指数或脆性也可能用于区块选择,同时许多作者表明建立复杂裂缝网的能力对于页岩气商业开采至关重要。

    选择区块后,开始进行蒙特卡罗模拟,按照P10、P50、P90的概率预测和可以开发累积产气的区块,且结合使用关键经济指标的分析来确定区块能否适合一个试点项目。其他因素比如公司的经验,企业和商业策略,可用的资源和基础设施等都将纳入评估,以便为公司以及股东们确定哪些区域可以作为最佳试点选项作出明智的决策。

    远景勘探方法工作流程见图4所示。

    4 采用两段页岩开发模型的样本示例

    为了进一步说明该方法的应用,对加拿大西部的某处致密砂岩/页岩(假定没有吸附气体)远景区的两段进行了分析。在之前的研究中,PetrelTM开发的远景地质模型采用可用的岩石物性、储层和生产数据。图5所示研究区域内4口井的三维孔隙度模型和孔隙度相关的钻/录/测井记录。在该区域,存在两处可获益的产气水平井段(井段3和井段4)。

     

    输入数据

    关键储层属性的填图属性

    PVT,其他储层和水力压裂属性

    生产数据

    经济投入

    区块选择

    根据OGIP或者其他关键属性确定区块

    蒙特卡罗模拟

    模拟输出

    P10、P50、P90的概率预测和累积产气量

    水力压裂运行情况

    经济参数

    可行的商业区块标志

    其他

     

     

    图4  远景勘探方法的工作流程

     

     

    图5  三维孔隙度模型和孔隙度相关的测井

    模型开发期间这个开发区拥有11口垂直井,2口倾斜井和4口水平井。最初钻完成垂直井,紧随其后的是开始于2008年的水平井。Clarkson和Beierle(2011)在该区选择一系列井进行不稳定产量试井(RTA)。模型开发中使用的水平井的总结显示在下面表3中,同时在图6中(在下面描述)该区域的天然气原始地质储量(OGIP)图上显示了井的近似轨迹。

    表3  研究区水平井概况

    井名

    井向

    进入层位

    完井方式

    1号井

    水平

    井段4

    尾管注水泥

    2号井

    水平

    井段3

    自膨胀封隔器

    3号井

    水平

    井段4

    自膨胀封隔器

    4号井

    水平

    井段4

    自膨胀封隔器

    所做的分析主要集中在大部分是水平井的井段4。为了简化分析,采用孔隙度下限为4%,通过Excel加权平均井段4层位,将PetrelTM多层模型转换成一个单层模型。这一平均化过程是为了完成对基质的孔隙度、初始含水饱和度和渗透率的处理。利用孔隙度下限值还可以计算总有效收益和毛净收益(有效收益假设包括所有孔隙度下限值以上的层)。图7a和图8a显示了OGIP和Km-h属性图。

    模型采用的网格大小如表4所示。在整个开发过程中假设为常量的PVT、储层和生产参数如表5所示。

    表4  网格属性

    网格属性

    数值

    网格尺寸

    135×129

    区块长度,X/英尺

    49.76

    区块长度,Y/英尺

    49.76

    网格区块面积/Ac

    0.057

    对于这种情况,人们认为井筒流动压力(pwf)为常量1750磅/平方英寸,接近开发区水平井最初的井筒流动压力。随着时间的推移井筒流动压力降低,后期模型中压力驱动力低于开发井,模拟气率并不乐观。这种情况下,在可获取日常生产和流动压力期间内,平均两个收益井的流动压力大约是1550磅/平方英寸,因此到开发后期之前,这种假设的影响并不很明显。在实际勘探中,该地区还没有投入生产,由于我们不需要将可用的生产数据与模型匹配,而是采用实际的流动压力估计值尝试得到一个准确的潜在生产能力估计值,所以这种假设的影响不是一个值得关注的问题。

    表5  PVT常数、储层和生产投入参数

    参数

    PVT参数

     

    气体比重

    0.648

    N2/%

    0.46

    CO2/%

    0.2

    H2S/%

    0.0

    温度/℉

    166.5

    Cw/磅/平方英寸-1

    2.9×10-6

    Cr/磅/平方英寸-1

    5.6×10-6

    VL/标准立方英尺/吨

    N/A

    PL/磅/平方英寸

    N/A

    储层参数

     

    Pi/磅/平方英寸

    3500

    排放面积/Ac

    80

    生产参数

     

    Pwf/磅/平方英寸

    1750

    rw/英尺

    0.3

    3个区块中假设关键属性的变化情况如表6所示。各属性的数值是每个区块的各个网格值的算术平均数。由于基质渗透率是蒙特卡罗输入量,且利用基质渗透率值可计算总压裂半径(虽然也可使用压裂分析模型在每次迭代时作为基质渗透率函数计算总压裂半径),故给出了一个基质渗透率值以显示区块之间总值的变化情况。

    表6  储层变量和水力压裂输入参数

    参数

    区块1

    区块2

    区块3

    储层参数

         

    有效厚度/英尺

    102

    74

    58

    孔隙度/%

    7.1

    6.5

    6.0

    Sw/%

    18

    15

    16

    Km/毫达西

    0.0084

    0.0079

    0.0077

    水力压裂参数

         

    剪切模量/磅/平方英寸

    2×106

    2×106

    2×106

    总压裂半径/英尺

    1432

    1477

    1489

     

     

    图6  研究区地质储量图呈现近似水平井轨迹

    4.1 区块选择

    利用从PetrelTM多层模型开发的单层模型,其单层等量地质储量如图7a所示。根据类似颜色为代表的区域具有类似地质特征和岩石物理性质,通过视觉观察可选择区块。虽然已知气藏具有高度的横向非均质性,可以看到关键的地质和岩石物理性质明显凸出部分。该图形显示了更复杂的异质性模式的情况,需要更多的区块并且可能有必要用区块代表具有相似属性的不连续块段。图7b显示基于天然气原始地质储量选择的区块远景区。在计算天然气原始地质储量时,虽然该远景区吸附气体量很容易被包含其中,但还是假设其可以忽略不计。

     

     

    图7  地质储量图:(a)地质储量;(b)选区

    从图7b可以看出选取的三个区块中,区块1具有最高的天然气原始地质储量(红色和橙色),区块2具有的地质储量(光和暗绿色)次之,区块3具有的地质储量(紫色和蓝色)最低。从这幅图中可以推断出区块1将有最理想的属性,因此可能具有最高的产量,而区块3产气物性最不理想,因此可能具有最不理想产气量。如同气藏地质储量图(图7)一样,如果绘制Km-h图我们也可以分辨出三个相似的区块。此次应用区块选区采用的天然气原始地质储量图和Km-h图作为代表资源的程度/密度和储层特性的两个要素,这是工业上常用的评估致密砂岩和页岩远景好坏的关键因素。区块选区的属性根据不同项目而变化,取决于驱动特定资源类型远景的关键要素。

    对于这种情况,假设简单的水平双翼压裂(如所使用的压裂模型所假定的)就足够了,因为微地震数据对同一区域的补充水平压裂井的解译说明复杂程度较低,如果不是水平情况,则进行压裂(图9)。采用水平和垂直观察井用以观察,同时采用双阵列处理会产生一个好的数据集。一般情况下,各个阶段仅出现一个水力压裂裂缝。水力压裂裂缝通常选择北东-南西方向,与加拿大西部沉积盆地(WCSB)部分最大水平应力方向一致。

     

     

    图8  Km-h图:(a)Km-h;(b)选区

    通过比较图6与图7b和8b可以看出在开发区所有水平井部分或全部在区块1范围内。因为这个原因,剩余的分析还将在区块1中开展。对区块1区域的水平井的预测情况而言稍微乐观,因为这些水平井水平延伸超出区块1区域进入地质储量和Km-h更低的区域(该区水平井采用恒定的流体压力与(Pwf)i相比将获得相反的影响)。

     

     

    图9  根据微地震数据解译的研究区内水平井水力压裂裂缝几何图形

    4.2 经济分析

    分析假设只有天然气价格是变量,而所有其他经济参数都保持常量。表7列出了其他主要经济参数的值(基于Magyar和Jordan的估算(2009))和表8介绍了主要的专利权使用费、税和贴现参数。

    在本文的分析中,净现值(NPV)作为重要的收益经济指标且最低资本回报率为0。

    分析远景的工作流程图如图4。

    表7  资本和运营成本参数

    参数

    土地成本

     

    租金/美元/亩

    2500

    代理费/美元/亩

    50

    单井成本

     

    钻井/百万美元

    1.5

    完井/模拟/百万美元

    2

    配套设施/管道/百万美元

    0.35

    储层表征

     

    地震/百万美元

    0

    测井/百万美元

    0

    提取岩心/百万美元

    0

    其他/百万美元

    0

    运营成本

     

    固定成本/美元/月

    5800

    可变成本/美元/千标准立方英尺

    1.25

    表8  使用费、税收和折现率

    经济参数

    费率

    使用费率

    20%

    税率

    30%

    实际贴现率

    15%

    名义贴现率

    18.45%

    通货膨胀率

    3%

    4.3 蒙特卡罗模拟

    在区块选择之后,本文进行了蒙特卡罗模拟研究。蒙特卡罗模拟中,基质渗透率(km)和页岩气价格不断变化,而所有其他的PVT、储层参数和经济参数保持不变。为了更好地进行说明,我们选择了将“不确定”的输入变量的数量显著限制在基本控制远景的油藏性能(储层渗透率)和经济情况(天然气价格)。基于P10、P50和P90值按照对数正态分布模拟参数。在大多数的勘探情况下,许多参数都是不确定的,可以通过这些参数的概率分布(见表2)来定义。对于需要使用概率分布进行定义的一些关键参数,可通过评估给定区块内重大变化的属性图来直接确定,或用更严格的统计技术,如采用区块内部数值计算变异系数(Cv)。由于基质渗透率是基质流动的主要控制要素,以及未来商品价格造成的天然气价格的高度不确定,针对这种情况,我们选择基于视觉观察的基质渗透率。

    基质渗透率按照P10、P50和P90的值计算如下。通常情况下,可以通过岩石物理模型中的参数值拟合分布来生成概率分布,但是因为我们处理的是远景的早期评估,因此我们采用了替代的方法,即最大限度提高模型获取的不确定性来解释其他早期参数估算无法获取的变化性。如果需要,对其他不确定参数也可以使用相似的方法。

    P10——区块1中比第十百分位值的基质渗透率低20%

    P50——区块1中的基质渗透率值居中间数

    P90——区块1中比基质渗透率的九十百分位值高20%

    表9中定义了2个输入变量的分布。将模型内部不确定参数合并关联(见表2)也很重要。虽然孔隙度和渗透率之间的相关性被加入到原始岩石物理模型(幂律相关),并且压裂半径与剪切系数(正相关)、基质渗透率(负相关),净收益(负相关)和压裂模型井眼半径(负相关)相关,但是出于演示的目的,本文对这一方法进行了简化,使蒙特卡罗模拟中的主要变量之间没有相关性。由于压裂半径取决于基质渗透率,压裂模型必须在每次迭代时重新计算。气体流量,累积产气量和净现值被定义为@RISKTM输出变量。

    本文进行了5000次蒙特卡罗迭代,以确保蒙特卡罗输入变量充分覆盖样本空间。要求覆盖足够的样品空间,是为了确保每个模拟输入相同参数运行时,能得出同样的结论。出于演示的目的,用上述方法获得的迭代数并不是最优化。但是,通过将无限大(非常大)的样本输出分布与减少样本数量的输出分布比较,同时寻找要求充分重复“已知”输出分布的最小值,可以获得优化的迭代数。当进行多个模拟时,优化处理可用于减少处理时间和容量。

    4.4 结果

    图10显示了区块1中单口气井的确定产气量和累积产气量预测。这个“确定性”的基质渗透率的值来自于表9所示输入分布的斯旺森平均值(SM),假设这个值代表区块收益的平均水平(静态平均Km=0.0095毫达西)。虽然Bickel等人(2011)指出了斯旺森平均值(SM)的缺点,但它仍然被广泛地用于工业,因此在这种情况下还将使用。此外,斯旺森平均值在输入分布的平均值的5%范围内(使用@RISKTM计算),因此认为在这个例子中的平均值是准确的。另外,可以使用另一个估计的平均值(即分布平均值、区块值的算术平均值等)。图10a显示的产气速率与时间半对数图以及累积气体的产生与时间的笛卡尔曲线,而图10b显示了产气速率和时间的对数分布图。

     

     

    图10  开发模型情况下的确定速率预测:(a)产气速率和时间、累积产气量和时间的半对数;(b)产气速率和时间的对数关系

    图11显示了产气速率与时间的半对数图,图11b显示一个产气速率与时间的对数图和图11c显示预测(约14年)最初5000天累积产气与时间的笛卡尔曲线。

    通过比较图10和图11,可以再次看到确定性预测与P50概率预测相比,具有更大的IP,持续的生产速度和累积产气量,表明确定性预测是比中位数情况稍微乐观,并且明显远超过P10的情况。这些结果再次支持使用概率分析取代非常规应用的确定性分析。

     

      

    图11  开发模型情况中概率速率预测:(a)产气速度和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    随后,P10、P50和P90产量预测与区块1内水平井可获取的生产数据进行对比,以测试开发方法的稳健性和准确性。在这个比较中,由于完井的复杂性,只有井3和井4可用,而井1表现不佳,且井2在此次分析区块外部。井3的产量被缩减了30天,以便使该井产量自然下降的初始时间与概率预测的一致(指修正井3)。生产的前430天的对比曲线如图12所示。

    如图12所示,两口井的生产数据(修正井3和井4)普遍落在P10和P90之间(使用@RISKTM生成的预测)。除了生产的前20天和第300天左右时的大约20天两个时间段(模型没有指出的操作问题导致的结果)外,约80%的数据点如预期处在P10和P90预测之间。初步预测产量可能更高,因为它不考虑压裂清理干扰、启动效应等,该模型增加了表皮效应来提高与IP的匹配程度。但是,在真正的勘探情况下表皮效应的大小无从得知,这是因为无法获取产气远景区域的数据且需要将其作为不确定的输入量以最大限度地提高模型的准确性。

     

     

    图12  3号井和4号井生产数据和概率速率预测的对比:(a)产气速率和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    虽然这不是一个令人满意的统计样本,只有一个关键属性(Km)被认为是不确定的,但结果令人鼓舞。图13显示了净现值的增加的累积概率分布,直方图和回归系数托那多图。图13a再次显示超过最低预期资本回收率概率计算的累积概率分布图。

    从图13a可以看出这个模拟平均净现值为53万美元,可能超过最低预期资本回收率的50%。然后,可将平均净现值和超过最低预期资本回收率的概率与相同远景的其他区块,以及与其他潜在远景的区块进行比较,从而确定哪些远景区域可提供最好的经济成功机会。这一分析显示了积极的NPV平均值和超过最低预期资本回收率的适度概率。基于这样的分析,可以得出结论:区块1的样品远景对于试点项目是极好的备选。这一分析支持了该地区的开发,但是这一测试中所采用的天然气价格网格假设对其结果影响极大。图13C中托那多图表明天然气价格对净现值带来的影响最大,基质渗透率给净现值带来的影响其次(区块1中最小的基质渗透率变化的结果)。这表明假设较高的气体价格(比如该区水平井钻探时期的气体价格)将提高远景的可取性。从图13b直方图可以看出模拟中大部分的净现值在300万美元和350万美元之间,众数等于-1.5万美元,相当于平均数53万美元左右。

     

     

    图13  开发模型应用NPV法得出的经济结果:(a)累积概率分布;(b)柱状图;(c)回归系数的龙卷风图

    此分析程序可在在开发区的其他2个区块内完成,以协助选择最适合公司的试点项目的位置。2号和3号区块的填图属性的直观观察(图7b和8b)表明,这些地区情况没有区块1理想,因此在本次分析所使用的气体价格假设中可能不适合作为试点项目。

    5 结论

    在本文中,开发了一种方法理论和基于excel的方法以协助页岩气和致密砂岩气藏的勘探。这个方法包含了来自不同来源的映射属性、一个用于估算水力压裂半径的简单的压裂模型、目前应用于页岩气井开采的速率预测技术、计算关键盈利能力指标的经济模块以及解释非常规资源中内在的风险和不确定性的蒙特卡罗模拟。本文所描述的方法和工具可被工业界用于评估远景区域内的各个区块和选择适合试点项目的地区。该方法较为严谨,以岩石物理、地质和现在产业应用的分析储层模型为基础,且通过重建现有实例的油藏动态来证明其准确性。由于不需要建立复杂的数值模型和详细的开发方案(所需数据是在开发早期通常无法获取),这种方法既简单又高效。

    感谢代金友副教授对本文提出的宝贵意见。本文受中国地质调查“地学情报综合研究与产品研发”(121201015000150002)项目支持。

    资料来源:Williams-Kovacs J. D., Clarkson C. R. A new tool for prospect evaluation in shale gas reservoirs. Journal of Natural Gas Science and Engineering,2014,18(5):90-103.

    一种用于页岩气藏远景评价的新方法
        5月12日,联合国教科文组织全球尺度地球化学国际研究中心(以下简称中心)在中国河北廊坊成立。这是世界首个地球化学国际研究中心,标志着中国地球化学发展进入一个新的历史阶段,同时也是中国地质调查局向世界一流地调局迈进的重要一步。该中心依托中国地质调查局中国地质科学院地球物理地球化学勘查研究所建立,将致力于提升全球地球化学调查研究水平,推进“化学地球”国际大科学计划实施,为促进地球科学进步、人与地球和谐发展贡献中国力量。


    全球地球化学 基准网采样网格

    化学元素,构成了地球上的一切,包括所有的动物、植物和矿物。摸清地球上各种化学元素的分布状况及迁移规律,对了解地球演化、生命演化、解决人类所面临的资源和环境问题至关重要。

    5月12日成立的联合国教科文组织全球尺度地球化学国际研究中心,就是要将元素周期表上所有化学元素的含量和分布绘制在地球上,编制全球地球化学一张图,建立数字地球的“化学地球”平台,为全球资源可持续利用和全球环境变化研究提供基础数据。

    1. 地球化学调查研究的中国经验

    联合国教科文组织全球尺度地球化学国际研究中心落户中国,首先看重的是中国在地球化学调查和研究领域取得的巨大成就。

    中国的地球化学研究工作,始于上世纪50年代。1951年,中国勘查地球化学的开拓者和奠基人谢学锦,在中国首次开展了勘查地球化学试验,揭开中国地球化学调查研究的序幕。


    中国绿色富硒耕地分布图

    自1978年开始至今,我国实施的《区域化探全国扫面计划》,是世界上持续时间最长、覆盖面积最大、技术最为系统、找矿效果最为突出的地球化学调查工作。该项计划,完成调查面积700万平方千米,完全覆盖中国山区和丘陵地带,为国家矿产资源基地规划建设提供了重要支撑。据不完全统计,从“六五”到“十二五”的35年间,通过区域地球化学调查发现各类矿床2570处,支撑了近700处中型以上金矿的发现。在此基础上,通过后续勘查探明的金矿资源储量超过4000吨,使我国成为世界第一产金大国。

    1999年开始,国土资源部、中国地质调查局实施了土地质量地球化学调查计划,调查土地调查面积196万平方千米,其中耕地面积95万平方千米,采集了约50万件土壤样品,分析了54个指标。调查发现12.72亿亩无重金属污染耕地,占已调查耕地面积的91.8%;发现的5244万亩富硒耕地资源,已成为地方政府实施精准脱贫的重要抓手。

    2005年开始实施的全国地下水质量与污染调查计划,调查总面积440万平方千米,覆盖了全国主要人口密集区、经济发达区和部分生态脆弱区,共采集地下水样品3.1万组,指标72项,获得数据306万个,提交了首份中国地下水质量与污染调查报告。报告显示,30.2%地下水可直接饮用,34.7%地下水适当处理后可饮用,新发现富含偏硅酸、锶、锌、硒等有益人体健康的优质地下水点2418处,大幅增加了我国饮用天然矿泉水资源。

    2008年~2015年实施的中国地球化学基准计划,建立了覆盖全国大陆930万平方千米的地球化学基准网,制作了81个指标的地球化学基准图,建立了8个重金属元素、3个放射性元素以及全碳和有机碳地球化学基准值,为资源与环境评价提供了定量标尺和长期监测的基础。

    2. 地球化学调查研究的中国贡献

    上述调查计划的实施,在取得丰硕调查成果的基础上,还创造性地发展了金矿勘查地球化学技术、地球化学块体理论、深穿透地球化学理论、超低密度地球化学填图方法,研发了各种景观区地球化学勘查方法、76种元素的分析测试技术,研制了234种地球化学标准物质。这些技术方法的研发,使得中国的地球化学研究走在了世界前列。

    中国勘查地球化学对世界的最大贡献,是发展了金异常形成理论,突破了低含量金分析技术,为金矿区域地球化学勘查奠定了理论基础。

    金矿勘查地球化学理论技术的创新,发现了大量超微细金和纳米金,突破了金是惰性的不能在水系中长距离迁移的传统认识,提出超微细金可以长距离搬运,形成大规模区域异常的新认识,并创新发明了活性炭富集或聚胺酯泡沫塑料富集金技术,使金分析检出限降到了0.3纳克/克,为圈定低含量金异常提供了技术保障。利用该理论技术,我国发现金矿近1000处,占新发现金矿的80%以上。

    通过76种元素高精度实验测试技术的研发,形成了由专业研究机构引领,辐射30个省级地质实验室的全国性地球化学样品分析和质量控制网络,直接从事分析测试人员达3700余人,为不同尺度地球化学调查提供了强大的实验分析测试能力。目前,中国是世界上地球化学元素测试指标最多的国家。

    我国目前已研制出岩石、土壤、水系沉积物、矿石、生物等系列共234种地球化学标准物质,占世界50%以上,为全国乃至全球地球化学分析测试数据的一致性和可对比性提供了技术保障。这些标准物质被美国、加拿大、欧洲等40余个国家采用,并被全球地球化学基准委员会推荐为国际地球化学填图的标准物质。

    研发的具有自主知识产权的“化学地球”软件平台,是世界上首个化学属性的数字地球平台,与具有物理属性的“谷歌地球”一样,是“数字地球”的重要组成部分,可以实现对全球地球化学大数据管理、展示和查询。

    此外,处于国际领先地位的地球化学块体研究,圈定了中国金、银、铜、铅、锌、钨、锡、锑8个主要成矿元素的地球化学块体分布;深穿透勘查地球化学技术,将探测深部矿的能力提升到1000米深度,显著提高了对隐伏矿的探测能力。

    3. 地球化学调查研究的中国引领

    中国是国际地球化学填图计划(IGCP259,1988-1992)和全球地球化学基准计划(IGCP360,1993-1997)的发起国,并担任核心职务,引领计划在全球的实施。

    在联合国教科文组织、国际地科联、全球地球化学基准委员会的指导下,在各国政府的支持下,中国、美国、澳大利亚和欧盟等30余个国家,合作完成了该计划的第一期任务,覆盖面积近3200万平方千米,约占全球陆地面积的22%,分析指标达81个,为建立全球地球化学基准网、监测全球气候变化和全球资源利用奠定了坚实基础。


    国际地球化学填图培训

    在地球化学基准网建立方面,中国与世界各国一道发展了适于世界各种地理地貌景观的汇水域代表性样品采集理论,并牵头制定了一系列技术指南,包括平原区泛滥平原沉积物采样、山区河漫滩沉积物采样、干旱汇水盆地沉积物取样、半干旱草原季节性湖沉积物采样等。建立的地壳全元素(共81个指标)精确实验分析系统和方法,实现了人类首次对元素周期表所有天然元素的分析,所有元素的检出限、报出率、准确度、精密度等指标均达到国际领先水平。

    “化学地球”平台的建立,更是为科学研究、政府决策和社会公众提供了互联网共享服务平台。

    目前,已有69个国家、169位科学家带领的团队参与全球地球化学基准计划,中国举办了26次国际地球化学填图培训班,为亚洲、非洲、拉丁美洲等60余个发展中国家培训600余人。为蒙古地质调查中心培训的20余人,组成蒙古国唯一的地球化学调查队伍,完成了蒙古国70万平方千米的地球化学填图工作。

    此外,中国还牵头制定了3项全球地球化学填图技术指南,目前正在制定实验室分析指南、数据管理与图件编制指南,指导和帮助有关国家和地区制定了5份地球化学填图指南。以“一带一路”为重点,指导并帮助20余个国家开展了地球化学填图工作,为所在国提供了大量第一手数据。

    4. 地球化学调查研究的中国力量

    2009年9月,中国科学院院士谢学锦起草了建立全球尺度地球化学国际研究中心的建议书。随后,在同年10月召开的国际地球化学填图会议上,谢学锦院士、王学求博士和大伟·斯密斯博士等联合提出依托中国地质调查局地科院物化探所建立中心的建议,得到与会全体科学家的一致支持。2010年2月,物化探所会同国际地球科学计划(IGCP)中国委员会,向联合国教科文组织地球科学计划项目处递交了正式申请书。

    中国的申请,得到了国际地球科学计划(IGCP)执行局和国际地科联一致支持,国际应用地球化学家协会、国际地科联全球地球化学基准委员会、国际水文协会大陆侵蚀委员会等国际组织,也纷纷发出支持函。


    2009年各国科学家汇聚廊坊研讨建立国际地球化学研究中心

    2013年6月联合国教科文组织第191次执行局会议通过评估报告。2013年11月,联合国教科文组织第37届大会正式批准在中国廊坊建立全球尺度地球化学国际研究中心。2015年9月,国务院正式批准中心建立。2016年5月12日,全球尺度地球化学国际研究中心在中国地质调查局地科院物化探研究所正式挂牌成立。

    联合国教科文组织于2008年依托中国地质调查局中国地质科学院岩溶地质研究所,在广西桂林建立了国际岩溶研究中心。全球尺度地球化学国际研究中心的成立,使国土资源部成为国内唯一拥有2家教科文组织二类中心的部委。这离不开多年来中国积极参与国际地球科学计划合作研究。截至2015年底,在实施的355项国际地球科学计划项目中,中国参与135项。2015年实施的22个在研的国际地球科学计划项目中,中国科学家参与10项,排名居各会员国首位。

    全国尺度地球化学国际研究中心的建立,是中国深化与世界各国在地球科学领域,尤其是地球化学领域合作的新起点。正如国土资源部部长姜大明所言:“在中国建立全球尺度地球化学国际研究中心,既是联合国教科文组织对中国地质调查机构的信任与支持,也是中国对国际地学发展应尽的责任与义务。”

    根据发展规划,全球尺度地球化学国家研究中心在未来6年将主要开展4项工作:一是建立全球地球化学基准网,开展全球资源评价和环境变化监测;二是开展“一带一路”地球化学填(编)图,服务国家“一带一路”建设;三是编制全球地球化学一张图与化学地球平台建设,向社会提供服务;四是积极准备“化学地球”国际大科学计划。

    5. 地球化学调查研究的国际期盼

    当前,地球科学进入了新的发展阶段,需要从大范围、大尺度、大数据系统认知地球,解决全球资源环境重大问题。创新、协调、绿色、开放、共享的发展理念,也需要开展更大范围、更高水平、更深层次的地球科学创新。

    迄今,人类发现存在于地球中的化学元素有92种,但人类对这些元素在岩石圈、土壤圈、生物圈、水圈和大气圈的分布状况及迁移规律却从未知晓。系统测量化学元素在地球五大圈层的含量,为层圈之间相互作用、物质与能量交换机理研究提供基础数据,是地球科学创新和发展的重大需求。


    “化学地球”平台界面 

    碳排放引起的气候变化、重金属污染变化、放射性注入量的变化等全球变化问题,是当今社会普遍关注的热点问题。而监测全球自然和人为引起的环境变化,需要建立全球地球化学基准作为定量标尺。对全球矿产资源总量的估算,也需要地球化学基准值提供全球成矿物质背景,为人类永续利用自然资源提供重要依据。

    全球尺度地球化学国际研究中心在中国建立,反应了国际社会对中国为地球化学发展作出更多贡献的期盼。

    随着中心的成立,2016年~2021年,中国政府预计投入6亿元~8亿元人民币,积极推进“化学地球”国际大科学计划的实施,依托全球尺度地球化学国际研究中心,牵头组织会员国绘制全球地球化学元素图谱,建立“化学地球”大数据平台,支撑全球自然资源与环境可持续发展,架起决策者、科学团体和社会公众的桥梁。

    正如联合国教科文组织助理总干事弗莱维娅·施莱格尔表示,“全球尺度地球化学国际研究中心将提供全球高质量地球化学数据和图件,这些数据和图件将为认知地球化学属性作出巨大贡献。”“认识地球的化学属性有助于我们更好地管理我们资源,如果我们要实现联合国2030年行动日程可持续发展目标,全球地球化学是至关重要的。”

    “化学地球”国际大科学计划的首要任务是,建立全球地球化学基准网和监测网。全球尺度地球化学国际研究中心副主任王学求形象地把整个地球比喻为一个大实验室,在这间“实验室”里按照160千米×160千米划分5000个基准单元格,在每个基准网格内按照80千米×80千米划分出4个子网格作为“化学地球”国际大科学计划实施的基准网格,全球共1.8万个网格。每个网格内在控制最大汇水域的出口处部署1个采样点,采集样品。

    在地球关键带建立全球地球化学监测网,主要是在世界大河流域入海口三角洲建立1000个长期地球化学立体监测点,对能及时反应污染物和放射性变化的水和大气介质进行实时自动采样和记录,持续获得岩石、土壤、水、生物、大气中重金属、放射性和碳等化学元素的变化和循环数据。

    获得的科学数据,主要用来开展资源估算和环境评价,包括全球资源总量估算以及评价全球重金属、放射性与碳排放环境,进而研究全球重大地质事件地球化学响应。最后,对数据和成果进行集成,在“化学地球”平台向社会发布信息。

    据介绍,该计划未来6年将基本建成覆盖全球50%陆地面积的地球化学基准网,建成关键带地球化学观测网平台和中国关键带地球化学观测网实验观测点100个,建成“化学地球”大数据平台,提交“一带一路”重点国家地球化学图500万平方千米,发布第一期76个化学元素基准值和基准地球化学图,以及中国、北美、欧洲和澳大利亚环境地球科学对比结果。

    相信在不久的将来,随着“化学地球”国家大科学计划的实施,人类对地球的了解将更加透彻,解决资源与环境重大问题的能力将大幅提升。

     

    共绘全球地球化学一张图