分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到8条相关结果,系统用时0.012秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    8月8日,由中国地质调查局武汉地质调查中心教授级高级工程师程龙牵头的海生爬行动物研究团队与中国地质大学(武汉)、湖北省地质科学研究院和英国布里斯托大学合作研究的成果“First filter feeding in the Early Triassic: cranial morphological convergence between Hupehsuchus and baleen whales(海洋滤食方式在早三叠世首现:湖北鳄与须鲸的头骨形态趋同)”在线发表于国际知名期刊《BMC Ecology and Evolution》。中国地质大学(武汉)地球科学学院与武汉地质调查中心联合培养的博士生方子晨为第一作者,程龙为唯一通讯作者。

    湖北鳄是一类史前生活在海洋中的爬行动物,与熟知的鱼龙来自同一祖先。湖北鳄是最早的海生爬行动物之一,与最早的鱼龙几乎同时在早三叠世晚期(距今约2.48亿年)出现。鱼龙在三叠纪-白垩纪晚期的海洋中广泛分布,但是湖北鳄不仅只出现在我国湖北省的南漳和远安两县交界地区的南漳-远安动物群中,而且在早三叠世末期迅速灭绝。迄今为止,湖北鳄共包括5个属种,南漳湖北鳄是其中最常见的物种。

    南漳湖北鳄的吻部细长且不长牙齿,背部生长一列骨板,肋骨肿大,腹膜肋粗壮且紧密排列。南漳湖北鳄的身体笨重,在水中游泳能力较弱。以往发现的南漳湖北鳄化石标本往往呈侧向保存,无法全面观察到头骨的特征,导致不能准确认识它的生活习性。近年来,研究团队长期从事南漳-远安动物群研究,采集到了两件呈顶面出露和一件呈腹面出露头骨的南漳湖北鳄化石标本。通过对上述化石标本研究,发现南漳湖北鳄的两侧前颌骨和鼻骨几乎不接触,在吻部中间形成一条狭长的吻中缝;上颌的两侧唇边各发育一列浅槽。在几何形态测量学研究的基础上,通过与现生的130种水生四足动物进行形态趋同对比分析,研究团队发现南漳湖北鳄的吻部结构趋同于现代海洋中的须鲸。

    须鲸体型巨大,是现代海洋食物链顶端的特殊类型,它的上颌生长梳状排列的角质须,只以小型浮游动物为食。须鲸在捕食时,借助吻中缝和下颌扩充口腔空间,尽可能张开大口一次吞下大量海水,接着闭上嘴巴将水吐出,海水中的食物便会被鲸须挡住而留在口中。所以,研究团队推测出南漳湖北鳄的上颌可能也生长类似鲸须的软组织。另外,结合南漳湖北鳄较弱的运动能力,研究团队进一步提出南漳湖北鳄可能类似须鲸中的弓头鲸或露脊鲸,采取游速较慢的持续滤食方式在海水表层小型浮游动物。

    这种现代海洋生态系统中独特的进食策略在早三叠世南漳-远安动物群中的发现,进一步说明二叠纪末生物大灭绝之后随着生物快速复苏,现代海洋生态系统的雏形在早三叠世时期已经形成。

     

    南漳湖北鳄滤食生态复原图

    全球最早滤食性海生爬行动物——2.48亿年前的“须鲸...

    地球是一个直径为6000多千米的实心球体,从地面到地球中心的距离比从北京到海南岛2倍的距离还要远。地球由地壳、地幔、地核三部分构成,整个结构就犹如一颗半熟的鸡蛋:蛋壳好比地球的地壳,其物质状态为固态;蛋白好比地球的地幔;蛋黄好比地球的地核,物质状态为液态。地表以下平均每100米温度升高约3℃。科学家研究显示:地核与地幔边界的温度大约为3700℃,而地核内部温度可能高达5000℃,几乎与太阳表面一样炽热。因此,地球内部蕴藏着惊人的热量,其中一部分地热资源便以干热岩的形式埋藏于其中。

    一、干热岩是什么?

    早期,干热岩通常是指温度高于200℃,埋藏于距地面2000米以下的无裂隙的岩体,主要是各种变质岩或结晶岩类岩体。伴随着干热岩勘测和开发的深入,干热岩的概念有了更为广泛的外延。只要岩体温度高,埋藏深度合理,内含流体较少(或不含流体),能用各种技术手段提取其中的热量,均可称为干热岩。

    干热岩属于地热资源的一种,被誉为“来自地球母亲的温暖”。地热资源是一种来自地球内部的热能资源,温泉便是我们日常生活中最熟悉的地热资源。关于地热的来源,有多种假说。一种假说认为,地热主要来源于地球内部放射性元素衰变释放出的热能。还有一种假说认为,地热来源于地球自转产生的旋转能以及化学反应、岩矿结晶释放的热能。而在地球的发展演化过程中,产生的热能总量超过地球散逸的热能,巨大的地热能便储存于地球内部,等待人们去开发。

    相比当前已开发利用的各类能源,干热岩具有无可比拟的优势。与煤炭、石油和天然气等传统化石能源相比,干热岩是一种清洁的可再生能源,不会产生污染环境的有害物质。与太阳能、风能、核能等新能源相比,干热岩的稳定性好,不受季节气候昼夜条件的限制。此外,干热岩的成本低,干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一,和煤炭发电的成本相当。

    干热岩是无处不在的资源,分布几乎遍及全球,从理论上说,随着地球向深部的地热增温,任何地区达到一定深度都可以开发出干热岩,因此干热岩又被称为是无处不在的资源。但就现阶段来看,由于技术和手段等限制,干热岩资源专指埋深较浅、温度较高、有开发经济价值的热岩体。因此,当前的干热岩开发更多地着眼于这些地区,它们位于全球板块或构造地体的边缘,构造活动剧烈,是地球释放内部能量的主要区域,地热资源十分丰富。

    我国干热岩分布广泛,特别是东北地区、华北平原、东南沿海地区、西北地区均具有丰富的干热岩资源,具有很大的开发潜力。以高温干热岩体的发现地青海共和盆地为例,其干热岩理论资源量折合标准煤6303.05亿吨,以其2%作为可开采资源量计算,折合的标准煤是中国2016年能源消耗的3倍。

    干热岩不但储量丰富,还可以循环利用。开发干热岩时,加热产生水蒸气的过程会使岩石温度降低,但地心的炽热岩浆会重新加热这些岩石,从而实现干热岩的周期性循环利用。

    二、“石头”也可发出电来?

    目前,人们对干热岩的开发利用,主要集中在干热岩发电。干热岩开发利用的核心是建立增强型地热系统(EGS工程)。首先从地表往干热岩体中打一眼井(注水井),将井口封闭后,注入高压清水,此时井底能够产生非常高的压力,该压力足以将致密的岩石压裂形成复杂缝网,或将岩体中的天然裂隙扩张形成更大的裂缝;随着清水的不断注入,裂缝不断增加、扩大,并相互连通,最终形成一个体积庞大的人工热储(类似一个巨大的鸟窝)。在距注水井合理的位置再钻几眼采出井,通过控制井眼轨迹,使采出井能够贯穿压裂缝网。整个EGS工程,通过注水井(回灌井)将低温水注入到人工产生的、张开且连通的缝网中,低温水与高温岩体接触被加热,然后通过采出井便将岩石裂隙中的高温水、汽提取到地面,取出的水、汽温度可达150~200℃,通过热交换及地面循环装置用于发电,冷却后的水再次通过高压泵注入地下热交换系统循环使用。整个过程都是在一个封闭的系统内进行。

    以法国东部阿尔萨斯地区的一座干热岩发电站为例,工作人员在这里钻了三眼深井,一直钻到地表5000米以下的基岩中。发电时,用水泵以每秒100升的速度从中间的注水井向地下灌冷水,这些冷水被干热岩加热成约200℃高温的水蒸气,从另外两眼生产井抽出地面,送入一个热交换器,并在热交换器中驱动涡轮机发电。整个转换过程消耗的总电量,只相当于发电站发电量的20%。

    增强型地热系统的开发和利用主要是建造两个子系统:地下人工储层和地面发电系统,二者都需要多项技术的运用和集成。其中,创建地下人工储层是目前研究的焦点。

    三、我国干热岩勘查开发现状

    我国干热岩资源潜力巨大,开发前景广阔,是极具潜力的战略能源,但是我国干热岩勘查与开发起步晚,在干热岩形成机制、分布情况、热储特征、评价方法、勘查开发技术等领域仍存在较多尚未解决的问题。

    为推动我国干热岩勘查开发,2013年以来,中国地质调查局先后在东南沿海地区、松辽平原地区、华北地区和青藏高原等重点地区实施了干热岩勘查。2014年,中国地质调查局与原青海省国土资源厅共同组织实施的青海共和盆地干热岩勘查钻获干热岩,填补了我国一直没有勘查发现干热岩资源的空白。2017年5月在共和县恰卜恰镇完井的GR1干热岩勘探孔再获温度新高,取得了一批重要成果,为我国进一步开展干热岩勘查开发研究打下了重要基础。在此基础上,中国地质调查局围绕国家清洁能源需求,加大力度在青海共和推进干热岩资源的试验性开发。

    干热岩开发利用的技术原理虽然简单,但实际应用过程中仍存在大量的技术性难题,例如在干热岩中钻井,对钻杆、钻头的寿命以及具有“钻井血液”之称的泥浆稳定性都是极大的挑战;而地层中含有大量的矿物质,在干热岩开发中,被气化的矿物质会重新在井壁结垢,类似血管中的“血栓”,沉积时间一久很容易将开采通道堵死。面对众多的技术性难题,科研人员唯有加快技术探索的步伐,才能在这场国际能源竞赛中拔得头筹!

    (作者单位:自然资源部中国地质调查局北京探矿工程研究所)

    来自地球深部的绿色能源

     

    龙抓崖

     

    双龙大裂谷

     

    ■基本情况

     

    熊耳山国家地质公园位于山东省枣庄市山亭区境内,总面积约108平方公里,园内集崮、谷、泉、洞、崩塌灾害,不整合接触面,寒武系中下统层型剖面等多种地质遗迹于一体,崮形地貌各个生成发展阶段在园内均有完整的实物展现。园区自然景观原始,生态环境良好,是一处集自然性、典型性、稀有性、多样性、完整性、系统性为一体的地学科普教育、旅游观光的理想场所。

     

    熊耳山为距今5亿年前的浅海相沉积的石灰岩、页岩、砂岩等地层,山体上半部的石灰岩受断裂构造影响,长期的物理、化学风化作用及溶蚀作用,使张性裂隙渐变发展形成裂谷。

     

    1668年,爆发我国历史上罕见的郯城大地震,释放能量约为1976年唐山地震的11倍,地震震中正处于“郯庐断裂带”主体范围内。该断裂带是我国东部最大的一条地震断裂带,长2600千米,宽160千米。熊耳山大裂谷便是由此次地震形成的天然大裂谷,是目前我国发现最早的有史料佐证的特大地震山体崩裂遗迹。

     

    熊耳山公园内重峦叠嶂、沟壑纵横、湖川相连,涓涓细流汇成飞流瀑布,经年不息。下游的龙床风光和抱犊平湖碧波荡漾、秀丽迷人,为游客营造出一个理想的旅游避暑胜地。

     

    熊耳山海拔483米,呈东西走向,东西绵延6公里,南北宽2公里,横卧在北庄镇,是一典型的低山丘陵。远远望去,熊耳山像一只大白熊,头东尾西地横卧着,主峰像一扇张开的熊耳,故名熊耳山。

     

    熊耳山特殊的横断山脉为景区造就了奇异绚丽的天然溶洞群,黄龙洞、巨龙洞和卧虎洞各具特色,其洞天互映、崎岖深邃,石笋、石柱、钟乳石形态各异,形象逼真,蔚为壮观。

     

    ■特色景点

     

    双龙大裂谷:受差异性风化剥蚀和重力地质作用等影响,形成较大规模的张性裂隙,是崮形地貌形成过程中的一个有机组成部分。裂谷一侧的岩体受重力、地震等因素影响,逐渐倾斜、崩塌、坠落而产生崩塌地质灾害。原山体逐渐风化剥蚀而形成山顶平平、边缘陡峭、山肩斜缓的崮形地貌景观。

     

    龙抓崖:是典型的崩塌地质灾害遗迹,满山遍野布满奇形怪状的巨石,大者重达千吨,小者几十吨,石石相叠、错落有致、形态各异,仿佛刚从山顶滚落一般。站在巨石之上,闭目凝神,300年前那山崩地裂的轰鸣声仿佛在耳畔回响。

     

    卧虎洞:位于熊耳山北侧,洞内遍布钟乳石、石笋、石柱,形态各异的钟乳石形成的玉石屏风、雄鹰翱翔、观音高坐、鲲鹏展翅等自然象形景观令人叹为观止。

     

    黄龙洞:被誉为“北方第一窟”,为产于5亿年前石灰岩内受断裂控制的喀斯特溶洞。洞口向南,有石阶相通。洞口呈半月形,被一棵千年古槐半遮,洞内分前后两厅,因后厅壁上有两条黄色钟乳石似蛟龙附壁盘蜒而得名。

     

    ■沟通交流

     

    熊耳山于1999年底因双龙大裂谷的惊现逐渐被引起重视,2000年开始开发建设;2001年12月被国土资源部批准为国家地质公园;2002年9月,熊耳山国家地质公园在首届“中国人游山东=我心中最美的齐鲁十景”评选活动中荣获“山东十大优秀景点”称号;2003年10月,国土资源部、枣庄市委市政府在熊耳山国家地质公园举行揭碑开园仪式;2004年以来,先后投资300万元打通了另一条裂谷,目前黄龙洞正在引资建设之中;2004年6月,熊耳山国家地质公园以其独特的面目,展现在首届世界地质公园大会上;2006年12月,熊耳山地震遗址被国家地震局评为国家级崩塌开裂地震遗址,熊耳山地震科普馆被国家地震局命名为国家防震减灾科普教育基地。

    熊耳山国家地质公园
      为做好2015年地质矿产调查评价专项立项论证技术支撑工作,2014年11月2日,发展研究中心在京举办了地质工作部署系统培训会,来自168个项目的38家项目实施单位的120余名代表参加了培训。地调局总工室、财务部相关领导出席了培训会。

      在培训会开班仪式上,地调局部署处张开军副处长和预算处王旭光副处长分别介绍了2015年立项论证和预算编制审查相关要求,强调了系统应用的重要性,并对系统的使用和相关工作提出了明确要求。

      培训会上,部署系统项目负责人详细介绍了系统开发应用总体情况、支撑地质矿产调查评价专项立项论证的工作流程和系统使用注意事项等,并对系统的各个功能进行了演示讲解。参会人员实际操作了系统,并对应用中存在的疑问进行了讨论交流。

      根据地调局2015年地矿专项立项论证要求,项目组按照“计划-工程-项目-子项目”重新设计了系统层级关系,调整了系统结构及功能设置。将8个计划联系人和所有项目实施单位作为系统用户,涉及局各部室、局属各单位、相关行业单位、高校、省级地调院等。系统用户范围扩大,支持的用户数显著增加。部署系统项目组不断完善系统的功能并提高系统的支持能力,以满足各类系统用户的新需求。通过本次培训,使相关人员明确了要求、熟练了操作,对2015年度地质矿产调查评价专项立项论证工作提供了技术支撑。


    图1 培训会现场1


    图2 培训会现场2


    图3 系统使用流程介绍与实际操作1


    图4系统使用流程介绍与实际操作2

    发展中心组织召开地质工作部署系统培训会

    一、地表破裂带

        2010年4月15日-22日,地震应急现场工作队先后派出3个科考小组对玉树7.1级地震地表断层进行了考察。科考队员克服高原反应,跋山涉水,沿地表破裂带进行了一步一步追索。至4月22日,关于此次地震的地表破裂带的初步结论是:

        同震地表破裂带由3条主破裂左阶组成,总体走向310°,北侧主破裂长约16km,中间主破裂长约9km,南侧主破裂长约7km,总长约31km,另在微观震中南侧见有约2km长的雁列式张裂缝(图1)。各主破裂均由一系列支破裂雁列组成,支破裂表现为一系列挤压鼓包与张裂缝相间排列或雁列式张裂缝。破裂为左旋走滑性质,最大走滑位移量位于北侧主破裂上,约1.8m。


    图1  玉树2010年4月14日7.1级地震地表破裂分布简图

    黑实线为地表破裂,黑虚线为雁列式张裂,红星为微观震中

        一些典型地点的破裂特征如下:

        破裂带的北西端点位于(N33°06′02.0″,E96°46′18.0″)附近,表现为雁列状的地表裂缝,裂缝逐渐变小直至消失(照片1)。


    照片1 北西端点地表破裂带

        从改点向NW追索,直至隆宝镇(N33°15'50.2",E96°25'49.9")一带(直线距离约36km),沿光缆线路挤压鼓包和裂缝带非常发育,并且连续,推测为地震过程中沿这种特殊结构面发育的特殊破裂现象(照片2)。但这一带未发现典型的地震地表破裂现象,仅在隆宝镇(N33°11'50.0",E96°35'00.8")处微观震中南侧一带见有约2km长的雁列式张裂缝(照片3)。鉴于这些特征,将破裂带的北西端点定位于(N33°06′02.0″,E96°46′18.0″)附近。


    照片2 (N33°07'59.7",E96°39'46.5")一带沿地下电缆铺设线路发育的鼓包与裂缝(镜向NW)


    照片3 隆宝镇(N33°11'50.0",E96°35'00.8")一带雁列式张裂缝(镜向E)

        从NW端点往南,在(N33°05'15.2",E96°47'51.9")处河床中,挤压鼓包和破裂清晰可见(照片4)。


    照片4 (N33°05'15.2",E96°47'51.9")处河床同震地表破裂(镜向S)

        至(N33°05'02.2",E96°48'16.7")一带,同震地表破裂带清晰(照片5)。破裂带总体走向310°,总体由两条地表破裂斜列组成,破裂表现为一系列挤压鼓包与张裂缝相间排列,左旋走滑性质,实测同震左旋水平位错量约1.0-1.1m。北侧分支破裂叠加于老地震沟槽上,形成反向沟槽(照片6)。


    照片5 (N33°05'02.2",E96°48'16.7")同震地表破裂(镜向SE)


    照片6 (N33°05'02.2",E96°48'16.7")一带地震沟槽地貌(镜向SE)

        (N33°04'22.5",E96°49'31.9")一带,地表破裂带清晰(照片7)。破裂带总体走向320°,由两条地表破裂斜列组成,破裂表现为一系列挤压鼓包与张裂缝相间排列,左旋走滑性质。该点是此次地震破裂实测水平位移量最大的地点,人工沿冲沟岸壁堆砌的石墙左旋位错量约1.8m(照片8)。该点略往北,实测冲沟沟壁得到的水平位错量为2.2m,但标志存在一定的不确定性,因此,最大位移取1.8m。


    照片7 (N33°04'22.5",E96°49'31.9")一带同震地表破裂(镜向NW) 


    照片8 (N33°04'22.5",E96°49'31.9")处人工石墙左旋同震位错约1.8m
    (镜向SW)

        至(N33°04'11.9",E96°49'54.2")一带,地貌上为地震坳槽,地表破裂带总体走向310°,由两条地表破裂斜列组成(照片9、10),分别分布于坳槽的两侧,破裂表现为一系列挤压鼓包与张裂缝相间排列,左旋走滑性质。往北,地表破裂清晰、连续,多表现为2条发育有挤压鼓包的破裂和多条张裂缝。往南,破裂沿山前地震坳槽分布,现象清晰、分布连续。


    照片9(N33°04'11.9",E96°49'54.2")处地震坳槽与同震地表破裂(镜向SE)


    照片10(N33°04'11.9",E96°49'54.2")处地震坳槽NE壁上的同震地表破裂(镜向SE)

        在(N33°03'18.6",E96°51'15.2")一带,地表破裂带穿过河床,形成有规模不大的陷落塘,并延向基岩,破裂特征清晰,宽约25m,产状为40°∠50°(照片11、12)。这一带的公路路边实测左旋走滑量约1.5m,但存在有一定的不确定性。 


    照片11 (N33°03'18.6",E96°51'15.2")一带同震地表破裂与基岩断裂(镜向SE)


    照片12 (N33°03'18.6",E96°51'15.2")一带同震地表破裂(镜向NW)

        在(N33°01'42.3",E96°53'55.0")一带,地表破裂带由一系列支破裂雁列组成(照片13),总体走向310°。支破裂表现为一系列挤压鼓包与张裂缝相间排列,左旋走滑性质。2条石砌墙左旋位错量均为1.1m(照片14)。往南,地貌上为坡中地震坳槽(照片15),此次地震破裂沿槽谷雁列分布。沿主破裂带追索,至(N33°01'23.5",E96°54'47.7")西侧,破裂带发散为雁列状的张裂隙并至该点处基本消失(照片16)。


    照片13(N33°01'42.3",E96°53'55.0")一带同震地表破裂(镜向NW)


    照片14 石砌墙体左旋位错量1.1m(镜向N)


    照片15 地震坳槽与同震地表破裂(镜向SE)


    照片16 西侧主破裂带尾端的雁列式张裂隙(镜向NW)

        在北侧主破裂带南端点(N33°01'23.5",E96°54'47.7")的北侧开始出露中间主破裂带,表现为与北侧主破裂带近于平行的一些雁列状的张裂隙,并延向结古镇赛马场。在赛马场(N33°00′14.5″,E96°56′29.3″)一带,表现为雁列状的地表裂缝连续分布(照片17)。




    照片17  结古镇赛马场(N33°00′14.5″,E96°56′29.3″)一带地表破裂带

        中间主破裂带至(N32°59'36.6",E96°59'08.7")一带,挤压鼓包、裂缝等地表破裂现象非常清晰(照片18)。实测庄稼地埂边左旋位错量约0.9m(照片19)。该破裂带的南端点在(N32°59′16.4″,E96°59′38.5″)一带,表现为雁列状的地表裂缝逐渐发散、变小而消失(照片20)。


    照片18 (N32°59'36.6",E96°59'08.7")一带地表破裂带(镜向NW)


    照片19 (N32°59'36.6",E96°59'08.7")一带田埂边实测左旋位错量0.9m


    照片20 (N32°59′16.4″,E96°59′38.5″)一带地表破裂发散并逐渐消失(镜向S)

        南侧主破裂带起于(N32°59'29.3",E96°59'30.9")附近,与中间主破裂左阶斜列。北端点一带表现为雁列状张裂隙(照片21)。破裂带穿过结古镇往玉树机场方向西侧山坡,形成一系列挤压鼓包、裂缝等地表破裂现象(照片22)。在禅古寺附近破裂带穿经公路、河床以及禅古寺,禅古寺全部毁坏(照片23、24)。实测河床边岸左旋位错量约0.5m。破裂带南端点位于禅古寺SE侧的山坡上,表现为一系列雁列状的地表裂缝逐渐发散、变小而消失。


    照片21 (N32°59'29.3",E96°59'30.9")一带地表破裂(镜向SE)


    照片22 结古镇往玉树机场方向西侧山坡上的地表破裂(镜向NW)


    照片23 禅古寺(N32°57'17.3",E97°02'04.3")一带地表破裂(镜向NW)


    照片24 破裂带穿经的禅古寺(镜向NW

        二、滑坡、崩塌

        隆洪达(N33°03′45.1″,E96°52′02.8″),出现10处山体基岩表层松散堆积物滑塌(照片22),最大滑塌体高100米,宽90米,滑塌方量共约5万立方米。确定烈度为Ⅸ度。

        甘达林(N33°04′58.9″,E96°49′12.4″),省道S308线路边山体出现5处崩塌现象(照片23),崩塌总方量数十方,大型岩块落下,最大直径1.7m,附近有6处滑坡(照片24),滑坡体合计约4000立方米。确定烈度为Ⅸ度。

     
         
    照片22 隆洪达基岩表层松散堆积物滑塌

     
    照片23 甘达林崩塌

     
    照片24 甘达林滑坡

        直隆盖托村附近(N33°08′27.2″,E96°43′47.2″),S308路面有2处滑坡掩盖路面(照片25),共计约1000方量,道路已被清理。确定烈度为Ⅸ度。


    照片25 直隆盖托村滑坡

        格惹同(N33°05′31.0″,E96°47′48.4″),附近边坡出现11处滑坡现象(照片26),总塌方量约9000方,确定烈度为Ⅸ度。


    照片26 格惹同山体滑坡

        一冲沟出山口处(N33°00′45.2″,E96°55′30.0″),两岸灰岩边坡均发生碎石滑塌,滑塌总方量约7000立方米,最大岩块为80cm(照片27)。山口冲洪积扇顶部产生锯齿状张性破裂,长度约20m,张开12cm,垂直位错10cm,裂缝走向120°(照片28)。此外,国道G214雁口山至结古段有30多处道路边坡塌方。

     
         
    照片27  冲沟口出山处(N33°00′45.2″,E96°55′30.0″)滑坡

     
         
    照片28  冲沟出山口处(N33°00′45.2″,E96°55′30.0″)地裂缝

      玉树7.1级地震断层地表破裂带和地质灾害调查报告

      近日,中国地质调查局天津地质调查中心研发的“一种用于拔出电法勘探电极的圆嘴竖置大力钳” 获国家实用新型专利授权(专利号ZL 202021947778.0)。

      在电法勘探工作当中,缺乏配备拔出电法勘探电极的专用工具。在拔出电极时,费时费力,且拔出电极遇到困难时,通常利用铁锤左右敲击电极,这一过程极易将电法勘探电极敲击变形,使电法勘探电极无法正常使用。

      本专利设计活动钳头和固定钳头均为半圆形夹持口,且内侧为凸凹槽螺纹,提高竖置圆嘴大力钳夹持电极的牢固度;利用旋提杆和活动手柄拔出电法勘探电极省时省力、便于操作;通过调节螺杆改变活动钳头与固定钳头的张开度大小,从而形成不同直径圆形夹持空间,以适应多种尺寸的电法勘探电极,提高了圆嘴竖置大力钳的通用性和实用性。

      天津地调中心“一种用于拔出电法勘探电极的圆嘴竖置...

        

      野外考察合影

        

      第三届IGCP-649蛇绿岩研讨会上,古巴地质学会主席致欢迎词

        

      参观莫阿矿业大学标本博物馆

        

      加勒比地区板块构造简图

        

      古巴地质简图

       

      对中国而言,什么国家距离无比远、心却相当近?古巴!这样的答案当然是基于有段时间的文化历史记忆。可是地质学家的考虑另有角度。

      2017年4月3日~4月14日,由中国地质调查局地质研究所地幔研究中心承担的国际地球科学研究计划“金刚石与地幔再循环”项目(IGCP-649)在古巴举办了第三届蛇绿岩国际研讨会。

      来自中国、美国、德国、加拿大、俄罗斯、土耳其、埃及和古巴及其周边国家近百名科学家参会,包括中国地质调查局地质研究所、北京大学、吉林大学、中国地质大学(武汉)和香港大学的24名中国代表团参会并组织了蛇绿岩及铬铁矿的野外考察。

      不久前,记者专访了本次会议主席、IGCP-649项目首席、中国地质科学院研究员杨经绥。他说,这次的地学合作活动,如同完成了与古巴地质的约定。

      1 第三届会议选择古巴当然是从全球对比研究的考虑

      记者:为什么要选择在古巴开这个会议?

      杨经绥:IGCP-649项目《金刚石与地幔再循环》是国际地科联和联合国教科文组织批准的一项全球性的地学研究计划(2015~2019)。项目的目标是从全球范围开展不同造山带中蛇绿岩地幔橄榄岩和铬铁矿中超高压—强还原伴生矿物(如金刚石等深部矿物)的研究,探讨大洋岩石圈地幔中深部地幔矿物的形成和碳的起源等新的科学问题,并由此探讨地幔的演化规律和蛇绿岩侵位期间发生在板块边缘的动力学过程。

      这项研究每年都要选择具有重要地学研究意义的地区,举办一次研讨会和野外考察,一方面是为了交流已取得的学术成果,另一方面也是为了更好地进行下一步的科学研究。第一届和第二届会议分别在中国和塞浦路斯举行,因为我国祁连山蛇绿岩非常经典,塞浦路斯有全球最发育和保留最好蛇绿岩。

      第三届会议选择古巴当然也是从全球对比研究的角度考虑。古巴位于加勒比海西北部,地质构造上属于南、北美洲大陆之间的连接。古巴的蛇绿岩和铬铁矿很发育,其蛇绿岩作为古洋壳,记录了南美洲板块和北美洲板块的汇聚和增生历史,是认识全球板块运动的重要组成部分。古巴的特殊之处还在于,同一蛇绿岩中发育高铝和高铬两类不同的铬铁矿。这在中国没有发现,全球也很少见,仅阿尔巴尼亚和菲律宾等地有过报道,前者属特提斯洋西段,后者属环太平洋带,且研究程度都很低。我们已经在开展阿尔巴尼亚的两类铬铁矿研究。古巴的样品得天独厚,我们要从中寻找金刚石等深部矿物,探讨铬铁矿的成因和深地幔作用。

      记者:古巴与我国地质情况有什么异同?

      杨经绥:古巴位于一条极其重要和十分特殊的板块缝合带。缝合带中有大量的蛇绿岩和榴辉岩等高压变质岩石,它们是古洋壳的残留,记录了洋盆的形成和闭合的复杂历史。尤其规模巨大的蛇绿岩地幔岩中产出许多不同类型的铬铁矿床,这些矿床具有重要工业价值,曾经为第二次世界大战的反法西斯胜利作出过贡献。

      中国大陆上发育多条不同地质时期的板块缝合带,从全球角度来看,也是十分丰富多彩、得天独厚。位于我国西藏的雅鲁藏布江缝合带,是印度大陆和欧亚大陆之间的界线,板块缝合带中蛇绿岩发育,地幔橄榄岩规模巨大,并产有我国最大的罗布莎铬铁矿床,与古巴的缝合带存在可比性。此前我们已经在罗布莎铬铁矿和雅鲁藏布江的多处地幔橄榄岩中找到了金刚石等深部矿物,如今我们十分期待古巴蛇绿岩的研究结果及其意义何在。

      中国中部的秦岭—大别—苏鲁造山带,记录了我国南、北两大板块的汇聚历史,与古巴蛇绿岩代表的板块缝合带有可比之处,但由于我们的造山带经历了早古生代和中生代两期板块俯冲碰撞,区别还是存在的。

      记者:这次会议的重要成果有哪些?

      杨经绥:中国多部门构成的20多位科学家来到古巴和他们交流地学,这还是首次。我觉得很成功。会议宣讲了各国科学家的最新研究成果,扩大了交流,也让国际同行认识和了解了改革开放后中国地质者的风采和水平。我们顺利完成古巴蛇绿岩和铬铁矿野外考察,取得一批珍贵的样品。这些样品将运回国进一步开展研究。与此同时,我们还与古巴地质调查局、古巴莫阿矿业大学建立了合作关系,开启了新的中古地学合作模式。

      2 尽管古巴不属于”一带一路”沿线国家,但与中国在很多方面有相似或共同之处,先天有合作基因

      记者:从古巴归来,您有什么体会?

      杨经绥:我国上世纪80年代之前,曾经是一个被封闭了30年的国家,与外界的交往十分有限。古巴也有类似的经历。记得上世纪80年代,国际上研究蛇绿岩和板块构造早已如火如荼。当法国人来到雅鲁藏布江边,指着地下石头说这就是“蛇绿岩”时,我们才恍然大悟,但为时已晚,法国人在全球最好的《自然》杂志,发表了雅鲁藏布江蛇绿岩的专辑。

      古巴的“被封闭”,也对地学研究产生了一定影响。由于条件的限制,古巴的地质研究以及铬铁矿、镍、铁、钴等金属资源的勘探和开采还有很大研究发展空间。我国政府提出的“一带一路”倡议,鼓励我国科研人员走出去,积极发展与沿线国家的经济合作伙伴关系。虽然古巴不属于”一带一路”沿线国家,但由于相同和相似性,两国的地质研究,包括地质矿产和基础地质调查等,都有广泛合作前景。目前,古巴规模巨大的蛇绿岩地幔橄榄岩中已经发现大量的铬铁矿点和矿体,具有很大的找矿空间和潜力。

      记者:我们与古巴地质人交流多吗?

      杨经绥:外界地质学家很少能够得到许可来古巴开展工作。举办像我们这样的全球国际会议也很少见,此次20余中国地质学家的集体到访,在古巴属第一次。所以无论古巴地质学会,还是地质调查局和大学,对我们的参会都十分重视,也十分友好,不仅派人参加我们的会议和野外考察,还邀请我们作报告,访问他们的研究所和大学,洽谈合作。

      这次会议以及会后考察能够顺利完成,离不开古巴能源矿产部、古巴地质学会、古巴地质调查局和莫阿矿业大学的相关领导的大力支持和帮助。会议期间,这些机构的相关领导和我们代表团等部分代表举行了交流座谈会,双方就古巴境内的蛇绿岩铬铁矿及其他贵金属资源的勘查与研究进行深入交流并达成了合作意向。会后考察,古巴方相继派出8名懂英语、长期在这些区域做研究的地质研究者带领我们完成考察工作。期间,我们与古巴不同的人多有接触和交流,感觉他们十分友好。尤其两个主要野外向导给我们留下了难忘的印象。

      一个是50岁左右的女地质学家伊莎贝尔。除了母语西班牙语,伊莎贝尔能讲一口流利的俄语和英语。她是古巴地质调查局的研究人员,也是整个会议和野外考察的组织者和领队。话语不多,却任劳任怨为大家服务,各项安排有条不紊,细心照顾到每个人。休息时,她会翻出手机上儿子的照片与我们分享亲情。

      野外向导名字叫瓦多,年近70岁,古巴地质调查局的研究人员,也是长年野外地质的高手。每次带队他都走在前面,返回时走在最后。因为线路熟,瓦多总爱带我们走近路。道路艰难时,我们乘坐的前苏联越野炮车在芦苇荡中前行,车两侧的芦苇比车还高。有些行程需要走7~8公里山路,但他总是神采奕奕。和很多中国的老专家一样,瓦多也是在前苏联大学地质专业副博士毕业。老先生获得过许多荣誉,但他最骄傲的奖品是古巴政府奖励的一辆中国产的“永久牌”自行车,他认为那是质量最好的自行车,至今伴随他出行。

      3 中国目前在蛇绿岩铬铁矿的研究上处于国际领先地位,由于我们的工作,带动了多国科研人员参与合作研究

      记者:对于下一步的蛇绿岩研究,您有什么打算?

      杨经绥:基于这些年我们团队在西藏等地的蛇绿岩地幔橄榄岩和豆荚状铬铁矿中发现金刚石和深地幔矿物,我们提出一个新的研究思路,即从全球尺度选择不同时代和地区的代表性蛇绿岩,查明金刚石等强还原超高压矿物群在古今大洋岩石圈中的空间展布、赋存状态及其形成和保留机制,探讨和揭示全球不同构造背景的地幔物质组成和深部地质作用。

      在这一思路指导下,我们得到中国地质调查局和国家基金委支持,分别开展了塞浦路斯特罗多斯、阿尔巴尼亚、缅甸、土耳其和俄罗斯等地的蛇绿岩和铬铁矿调查取样,包括这次古巴。

      古巴期间,我们采集了近3吨的古巴蛇绿岩的珍贵岩石和铬铁矿样品。运用现代高科技分析测试手段,相信它们不仅可能揭开古加勒比大洋的裂解和关闭历史,同时可以探讨铬铁矿的成因,探讨深地幔矿物和深部物质的循环和侵位,指导铬铁矿的进一步找矿。

      我们计划明年去澳大利亚和新加里多尼亚举办研讨会并野外调查取样。该地区产出从太平洋仰冲上来的很新的地幔橄榄岩和铬铁矿,我们将首次取得南太平洋小岛上的铬铁矿,我们十分期待,来自地球南半球的样品会给我们带来什么样的惊喜和另一半地球的奥秘。

      记者:我国相关研究在这个领域处在什么位置?

      杨经绥:中国地质调查局地质研究所地幔研究中心团队通过蛇绿岩型铬铁矿这个窗口,研究壳幔过渡带深度的矿物群,探讨铬铁矿的深部成因,为蛇绿岩铬铁矿的研究提供了新的思路。目前在国际上处于领先和领跑地位,带动了多国科研人员参与合作研究,例如,我们目前与美国、德国、法国和英国科研人员开展广泛和深入合作,每年我们都有研究人员去国外开展地质调查,取回了不少样品,进行实验室合作研究,以我为主发表了合作论文。有些国家的科研人员已经用我们提出的研究思路,申请到了科研项目,并且邀请我们为项目的指导。

      总的来说,我们国家在这个领域的研究处于相对领先的位置。但科学总是在进步,接下来还需要国内年轻的地质研究者更加努力,争取在领先的位置上站稳脚。

      延伸阅读

      古巴是一个狭窄的岛国,国土面积只有11万平方千米,但从地理上看,它是南、北美洲大陆之间的连接,从地质上看,它处在北美洲、南美洲和加勒比三个板块的接合部,是一条极其重要和十分特殊的板块缝合带。缝合带中有大量的蛇绿岩和榴辉岩等高压变质岩石,是古洋壳的残留,记录了三个板块之间洋盆的形成和闭合的复杂历史,板块俯冲和火山弧的生长过程。

      自三叠世起,古巴经历了复杂多阶段的构造演化。晚三叠世以来,泛大陆裂解,侏罗纪时期北美板块及南美板块逐渐分离,古加勒比海槽张开。早白垩世,太平洋板块开始向美洲板块俯冲,古加勒比弧形成于太平洋板块东缘与古加勒比海槽连接处。白垩纪时期加勒比板块形成于太平洋地区,随着加勒比板块的逐渐扩张,古加勒比弧开始逐渐向东北方向移动。晚白垩世时期,中美洲火山岛弧开始发育, 加勒比板块与太平洋板块分离,成为一个独立的构造单元,并受到太平洋板块的挤压开始向东北方向移动。加勒比板块在东北向移动的过程中逐渐与北美板块和南美板块碰撞拼合, 最终形成现今的构造样式。古巴群岛作为加勒比板块北缘的重要组成部分, 于中生代晚期至新生代早期, 受到加勒比板块与北美板块碰撞作用的影响,在这个过程中进行了拼合, 逐渐形成现今的格局。

      古巴大安第列斯群岛在加勒比板块的北部边缘,为一条由洋壳蛇绿岩、洋内火山岩以及大陆沉积组成的造山带。该造山带属于北美和加勒比板块的碎片,是一系列复杂的洋壳增生、变质,连续的火山弧生长,以及洋壳残片侵位的结果。蛇绿岩主要出露于古巴北部,形成古巴北部蛇绿岩带,东西向延伸长达1000千米。

      和古巴地质有个约定
        2015年1月12-14日,我们对北查尔斯王子山比弗湖南部区域的沉积岩进行了详细的地质考察。

        贝恩梅达特组主要出露于该地区——它是假整合在拉多克砾岩组之上,由河流与森林-泥潭在时空上交替沉积形成的。贝恩梅达特组中包含了100多条煤层,单一煤层在0.2-1.5米之间,个别超过3-8米。煤层具有基本连续的厚度,并且延长数千米。其中,贝恩梅达特组下部层位的煤层最具代表性,通过南北含煤地层对比,在贝恩梅达特组下部出露的煤层虽然较上部的薄(多在1-2米之间),但是煤层数量多于上部,且露头显示下部煤层中含泥质成分少于上部。在贝恩梅达特组底部煤层上部含有大量硅化木(这些硅化木的形成与其上覆湖泊沉积初期的富含硅质水体交代有关),由于存在有舌羊齿型植物化石,因此确定该套煤层地层时代属于二叠纪,我们选择了地层出露完整的剖面进行了详细测量和取样,样品重量达到了300多公斤,圆满完成了项目设计要求。


      贝恩梅达特组中0.5米厚的煤层(刘健拍摄)


      贝恩梅达特组底部煤层上部出露的硅化木(刘健拍摄)


      沉积岩地区地质调查与采样(陈虹拍摄)


      考察队员沿着四轮摩托车辙前进(刘健拍摄)

        2015年1月12-14日,我们又对营地西侧约10-15千米的拉多克湖(Radok Lake)西岸变质基底开始了详细的野外考察。拉多克湖西岸是南部营区变质岩出露最连续、也是最近的基岩区,因此是我们本次考察的重点地区。


      拉多克湖西岸地质露头(陈虹拍摄)

        巴蒂冰川流入拉多克湖,在湖中间形成一条长约2千米的冰舌,由于冰舌内隐伏多条冰裂缝以及高达4-5米的陡坎,无法穿越。从安全上考虑,我们决定在冰舌的南北两侧分别开展基岩剖面测量。


      冰舌前缘的冰脊(陈虹拍摄)


      在危险区探路前行(陈虹拍摄)

        我们12日的工作剖面位于冰舌北部,湖面的雪层厚度大约有5-20厘米,下部则是坚硬的冰层,而且没有发现冰裂缝,比较安全。14日的工作剖面位于冰舌的南侧,需要从冰舌前缘绕行才能抵达到工作区。由于冰川运动,这里的冰裂缝很多很深,最宽的一条大约有1.5米,我们需要沿着裂缝边缘行走,直到找到安全通道,才能通过。而在通过危险地区的时候,James还会要求我们张开双臂,以防不测发生时能及时撑住身体,防止跌入冰裂缝。


      张开双臂穿越危险地区(James拍摄)


      在陡峭上坡上寻找露头点(刘晓春拍摄)

        15日,我们尝试攀登了拉多克湖北侧福克斯山脊东部的一个基岩露头,这也是我们在南部营地能够步行到达的最后一个区域。该地距南营地的直线距离为10千米,但高差达800米。山脊的四周都被皑皑白雪覆盖,从南营地出发行走约2小时后,我们进入了冰雪覆盖区,每一脚踩下去都有30-50厘米的深坑,再加上是走上坡路,因此没过多久,膝盖以下就已经湿了。四个小时以后,我们大概翻越了4-5个山垄,在离露头大约还有2.5千米时,被前面超过50-70厘米的深雪挡住了去路,虽然尝试着往前行走,但发现雪越来越深,根本无法前进。岩石露头近在咫尺,但实在无法抵达,虽心有不甘,却只能放弃。我们也意识到,北查尔斯王子山地区的徒步考察该结束了。


      近在咫尺却无法达到的目标(刘晓春拍摄)
      南极北查尔斯王子山考察系列报道(十)