分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到23条相关结果,系统用时0.026秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    5月30日,“共和国血脉”展在中国科技馆正式开展。应中国科技馆邀请,本次展览由中国地质图书馆、中国地质科学院地质力学研究所(以下简称“地质力学所”)李四光纪念馆及石油行业相关单位共同合作举办,持续到今年10月底。

    2024年是中国现代地质学奠基人之一、新中国地质事业的主要领导人和开拓者李四光先生诞辰135周年,同时也是大庆油田发现65周年。“共和国血脉”展再现了李四光先生和老一辈石油地质人筚路蓝缕、艰难探索、执着追求,坚信中国有油、创新生油理论,为国找出工业的“血液”,甩掉了中国“贫油”帽子的波澜壮阔岁月。该展也体现了一代代地质人、石油人赓续优良传统,弘扬李四光精神和大庆精神的努力。他们在能源资源领域取得了重大科技成果和关键技术突破,为提升国家能源自主保障能力作出了卓越贡献。

    中国地质图书馆作为展览主要合作单位之一,积极主动与中国科技馆、地质力学所等单位加强合作,发挥专业优势,协助梳理中国石油发现史,提供了李四光先生以及地质、石油方面的相关资料,合作获得中国科技馆好评。中国地质图书馆将以此为契机与相关单位加强合作,加强地质史研究,扩大弘扬科学家精神的传播渠道。

     

    “共和国血脉”展在中国科技馆亮相

    全球非常规天然气资源量约923万亿立方米,其中近半数为页岩气,其资源量(456万亿立方米)与常规天然气(378万亿立方米)相当。美国是开发页岩气资源最早、最成功的国家之一。已发现的页岩气盆地主要是分布在以 Appalachian盆地为主的东部早古生代前陆盆地带、以 Fort Worth盆地为代表的南部晚古生代前陆盆地带、以 San Juan盆地为代表的西部中生代前陆盆地带以及以 Michigan 盆地和 Illinois盆地为代表的古生代—中生代克拉通盆地带。

    Appalachian盆地位于美国东北部,是美国石油工业的发源地,也是目前页岩油气资源勘探开发的主要盆地之一,其中的Marcellus页岩是北美洲最高产的区带之一。尽管Marcellus页岩区带仍是Appalachian盆地中具有低风险、高质量的资源区域,但是该区域内很多业内领先的生产商都在逐渐将他们的注意力从Marcellus页岩转向其下覆地层,美国能源部化石能源办公室认为“就厚度和延伸范围等方面而言,Marcellus页岩下方的Utica页岩的油气勘探开发潜力更大”。Utica/Point Pleasant页岩属于目前美国页岩气产量增长最为迅猛的页岩区带之一。

    我国页岩气资源丰富,勘探开发前景广阔,目前已在四川盆地及周缘多个区块取得海相页岩气勘探开发突破。四川盆地具有与美国东部典型盆地(如Appalachian盆地)相似的构造演化和地质条件,均为古生代沉积的海相盆地,页岩气勘探前景良好。美国典型盆地的页岩气开发为我国的页岩气开发展示了良好的前景,对我国页岩气的高效开发具有重要的参考意义。

    中国地质调查局地学文献中心(中国地质图书馆)文献情报室依托地调局二级项目“地学情报综合研究与产品研发”,针对美国Appalachian盆地石油天然气研究协会(AONGRC)和西维吉尼亚大学的相关研究成果组织编译了《Appalachian盆地Utica页岩勘探开发地质成藏手册》专辑,旨在为国内页岩气勘探开发提供借鉴。

    《Appalachian盆地Utica页岩勘探开发地质成藏手册》专辑集合并包含了不同尺度下进行的研究成果,范围涵盖了从盆地规模的地层和构造,到储层中因有机质生气而成的纳米级孔隙。主要包含三大方面内容:①描述和评估了Utica页岩和Appalachian盆地北部相应岩层的岩性、烃源岩、地球化学特征、地层发育特征、沉积环境及储层特性;②通过区域填图、钻井活动和生产动态跟踪的整合,确定了Utica石油和天然气富集区;③通过本研究过程中收集的地质和地球化学数据,提供了基于生产和体积计算的Utica资源量评估。第一章对Utica页岩的地质研究进行了简要介绍,包括所有数据的访问、组织和管理。第二章为Utica钻探活动和生产动态跟踪成果。第三章描述了整个研究区域Utica和与之相应的岩层的岩相特征。第四章阐述了测井分析、相关对比和填图成果。第五章介绍了岩心研究结果,包括沉积环境的解释。第六章涉及无机地球化学研究成果。第七章介绍了Utica源岩的地球化学发现和解释。第八章提供了储层孔隙成像和孔隙度/渗透率数据。第九章为资源评估结果。第十章为Appalachian盆地北部Utica区带开发的总体结论及意义。参考文献的完整清单包括在第十一章中。

    后续地学文献中心还将完成《东得克萨斯和路易斯安那州西部Haynesville页岩气地质》专辑,敬请关注。

     

    中国地质调查局地学文献中心完成《Appalachian盆地U...

    为迎接第51个“世界地球日”,宣传自然资源国情国策、提高公众节约集约利用资源意识、普及科学技术知识,自然资源部中国地质调查局油气资源调查中心(中国地质学会非常规油气地质专业委员会)联合中国地质学会举办页岩气知识科普活动,通过网络向社会大众普及宣传,中心于今年4月制作完成了《鄂西页岩出气了,神女应无恙》科教视频,在《光明网科普频道》播出,向广大群众讲述了最古老的页岩气藏的故事,带我们认识“当惊世界殊”的页岩气,将《冲吧 页岩气!》科普宣传材料在网络上进行了再宣传,同时积极投稿了《病毒、人类、地球》、《地球的演变》、《气候变化与生物大灭绝》、《温室气体?它也是油气工业的宝贝》4篇科普文章均被中国矿业报-地球日特刊收录。 

    页岩气作为一种非常规的、清洁的新型能源,在我国越来越受到重视。为了更好地宣传页岩气,让页岩气贴近生活,能被更多的广大人民群众所认知,油气调查中心(中国地质学会非常规油气地质专业委员会)、中国科协页岩气科学传播专家团队组成的专家小组,通过制作视频、多媒体等多种方式向大众普及什么是页岩气、页岩气的用途、工程实施安全科学以及对社会发引导大家认识清洁能源,使用清洁能源,科普教育的意义凸显。

    4篇科普文章从人类、地球、环境三者间的关系为主题,生动、形象的向民众普及了相关知识,提高了民众对于现有环境问题的意识,把环保行动融入日常,为促进人与自然和谐共生多贡献一份力量。

     

     

    油气调查中心举行第51个“世界地球日”宣传活动

    十大地质科技进展

    1.我国首次海域天然气水合物试采成功

    由国土资源部中国地质调查局广州海洋地质调查局叶建良为首席专家的研究团队组织实施的海域天然气水合物试开采,是世界上首次实现资源量全球占比90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。连续试开采60天,累计产气量超30万立方米,创造了产气时长和总量的世界纪录。实现了勘查开发理论、技术、工程和装备自主创新。一是实现三项重大理论自主创新,创建天然气水合物系统成藏理论、“三相控制”开采理论,有力指导了试采目标井位确定和试采方案制定。二是实现储层改造、钻完井、勘查、测试与模拟、环境监测等关键技术自主创新。三是构建了大气、海水、海底、井下“四位一体”的立体环境监测网,监测结果显示,试采未对周边大气和海洋环境造成影响。

    2.湖北宜昌寒武系—志留系页岩气调查实现重大突破

    以中国地质调查局武汉地质调查中心陈孝红为首席专家的研究团队于2017年在宜昌黄陵隆起周缘实现下古生界页岩气调查重大突破。鄂宜页1HF井在寒武系获得6.02万立方米/日、无阻流量12.38万立方米/日的工业气流,鄂阳页1HF井、鄂宜页2HF井也分别在寒武系、志留系获得高产页岩气流。创新建立了古老隆起边缘页岩气富集模式;自主研发了构造复杂区地质导向技术、低地温页岩储层压裂液体系、高水平地应力差和常压储层压裂技术;创新形成了钻完井一体化工程管理的工作模式。该地区页岩气调查的重大突破填补了中扬子页岩气勘查的空白,实现了我国页岩气勘查从长江上游向长江中游的战略拓展。

    3.延安气田复杂致密气藏开发关键技术创新

    延长石油(集团)王香增团队针对延安气田位于鄂尔多斯盆地东南部“储层致密且横向变化快、地震预测技术适用性差、气藏叠置关系复杂、开发难度大”等一系列问题,开展了复杂致密气藏开发关键技术攻关,创新发展了非震条件下“沉积相控制、骨架井约束、动静态校正、逐级优化”的有效储层预测技术,创建了黄土塬地貌多井型立体井网动用技术,研发了大跨度长井段不动管柱多层分压改造技术,建立了基于产能试井和静态资料的早期快速产能预测模型,实现了快速建产、高效开发的目的。目前,延安气田已建成产能32×108立方米/年,累计产气74.83×108立方米;预计2018年底建成产能52×108立方米/年,“十三五”末建成产能100×108立方米/年,可满足陕西全省人民用气需求;同时,对保障国家能源安全、缓解天然气供需矛盾、保护陕北地区的绿水青山,具有重大的现实意义。

    4.深部金矿阶梯式找矿技术方法成效显著

    由山东省地矿局宋明春研究团队率先组织实施的深部找矿探索和技术研发项目,将成矿理论、找矿技术与勘查实践有机结合,自主研发了深部金矿勘查系列方法技术。研究团队突破传统浅表部金矿找矿思路,研发以“阶梯式成矿模式+精细地球物理模型”为核心的深部金矿阶梯式找矿方法,获得国家发明专利,将胶东主要金矿区的探测深度由500米延伸到超过2000米,拓展了深部第二找矿空间。针对滨浅海勘查存在的钻孔定位、岩芯采取等技术难题,发明海域金矿勘查钻探方法,开辟了海域找矿新空间。集成创新多尺度逐步逼近成矿预测技术,首次预测胶东金资源总量约10000吨。新方法为胶东深部找矿提供了关键技术支撑,助推探明了三山岛、焦家和玲珑3个千吨级金矿田,使胶东跃居世界第三大金矿区。

    5.西北印度洋现代海底热液成矿现象的首次发现

    国家海洋局第二海洋研究所韩喜球团队在西北印度洋卡尔斯伯格脊上发现了6个热液区,其中3个属于正在发生热液成矿作用的活动热液区,有繁茂的热液生态系统和林立的海底黑烟囱;另有3个属于已经休眠的热液区。携“蛟龙号”首次对卧蚕1号、卧蚕2号、天休与大糦热液区进行了近距离观察和精细的调查采样,对热液活动的特征、热液流体的温盐和成分等物理化学参数、围岩类型与微地形地貌、多金属硫化物的分布、热液生物群落类型等有了详细的了解,厘定了各热液区热液成矿作用的类型,建立了成矿模式。为卡尔斯伯格脊现代海底热液成矿作用、极端生境生命起源和生物多样性等相关研究奠定了坚实基础;也为古代火山成因块状硫化物矿床的成矿机制研究和找矿勘查提供重要启示。

    6.井下超前探放水和水害监测关键技术系统研发

    国家煤矿水害防治工程技术研究中心武强带领的创新团队将钻探与物探技术有机无缝结合,研发了井下钻孔物探超前探放水成套技术与系列装备(钻孔激发极化、钻孔电磁波层析成像和钻孔雷达三大类超前探放水技术与装备),直观明了在有限数量钻孔中进行廉价、短距离精准随钻物探;应用物联网技术,将微震与激发极化高密度电法有机耦合,研发了可同时监测采动变形和突(透)水潜势于一体的矿井水害面状监测预警技术和装备,解决了矿井突水的水源、水量以及突水通道三者联合监测的难题;基于弹性波数据传输理论的三维电子罗盘测量钻孔轨迹技术,研发了随钻钻孔轨迹深度测量技术和装备,提出了利用弹性波的传输时间测量钻孔深度的技术方法。

    7.多要素多技术城市地质调查有力支撑雄安新区总体规划编制

    由中国地质调查局水环部郝爱兵为首席专家牵头组织实施的多要素多技术城市地质调查项目有力地支撑雄安新区总体规划编制。研究团队认真落实习近平总书记关于雄安新区规划建设的重要指示精神,改变观念、创新理念,围绕雄安新区规划编制需要,组织开展工程建设和地下空间开发利用条件、土地和地下水质量、地下水资源与地面沉降现状等多要素调查,创新编制支撑服务雄安新区总体规划地质调查报告、国土空间布局综合地学建议图和地下空间利用区划图,为雄安新区总体规划和土地利用、地下空间、交通、能源等专项规划编制提供了依据。首次以空间、资源、环境、灾害为调查对象,以城市规划、建设、运行、管理全过程为服务对象,以多方协调联动为工作机制,为多要素城市地质调查提供了示范。

    8.全国煤中金属矿产资源评价取得新进展

    由中国煤炭地质总局宁树正为首席专家主持的地质调查项目,坚持产学研结合,以全新工作理念开展全国煤中金属元素分布规律和矿产资源调查评价。总结了煤中金属元素矿产研究方法,确定了煤中金属元素矿产综合评价指标,首次划定了全国煤中金属元素成矿区带,发现一批新矿点,圈定了地质工作远景区。初步摸清了全国煤中金属元素矿产资源家底,预测煤中锗、镓、锂、铝、稀土矿产资源量分别为:1.17万吨、188.02万吨、86.49万吨、195746.9万吨、1130万吨。上述成果表明,煤中金属元素矿产资源潜力和价值巨大,是我国“三稀”矿产资源的重要组成部分。该项目实施拓展了煤炭地质工作新领域,对指导煤系矿产资源综合勘查和开发利用具有重要意义。

    9.相山铀矿田三维地质“玻璃体”调查和成矿预测取得新进展

    由核工业北京地质研究院李子颖为首席专家的研究团队承担的中核集团示范工程《相山铀矿田三维地质“玻璃体”调查和成矿预测》项目,运用多学科、多技术方法综合研究,建立了火山岩型铀矿深部有利成矿空间探测的地质、地球物理、地球化学三维立体勘查技术体系,首次实现了相山矿田2500米深度范围立体探测,构建了三维地球物理模型、三维地质模型,实现了相山矿田三维地质“玻璃体”。揭示了铀矿化、热液蚀变、元素的水平和垂向空间分布规律,查明了基底构造控矿规律,构建了三维综合找矿模型,首次实现了我国热液型铀矿三维定量定位预测。深部钻探查证取得突出成果,实现了相山矿田铀多金属找矿新突破。为相山铀矿田外围及深部铀资源找矿突破提供了技术支撑,对我国热液型铀矿找矿勘查具有重要的示范作用。

    10.首次建成国家地质大数据共享服务平台—“地质云1.0”

    由中国地质调查局发展研究中心高振记为首席专家的研究团队组织实施的国家地质大数据共享服务平台“地质云1.0”。采用混合云架构,实现了数据集成共享技术创新,研发了云环境下海量、异构、分布式地质数据的统一组织、调度与服务技术,初步解决了异构、异地、异主数据共享技术难题;实现了地质调查业务系统整合协同应用创新,集成开发了智能调查、业务管理、数据共享与信息服务等云应用系统,提高了系统整合及协同服务能力;实现了地质调查数据安全有序开放和分级共享机制创新,基本解决了“数据孤岛”与“信息烟囱”等老大难问题;探索了云环境下智能地质调查工作新模式。权威专家认为“地质云1.0”成果达到同行业国际领先水平,为国家正在推动开展的政务部门信息系统整合与数据资源共享提供了一个鲜活范例。

    十大地质找矿成果

    1.湖南省平江县仁里发现超大型铌钽多金属矿

    由湖南省核工业地质局三一一大队周芳春为首席专家的团队在湖南省平江县仁里发现了超大型铌钽矿。仁里矿区位于湖南省平江县,钦杭成矿带主带的中部,幕阜山复式花岗岩的西南缘,为典型的花岗伟晶岩脉型铌钽矿床。项目团队运用大岩基地区多期次岩浆演化的“共岩浆补余分异”稀有金属成矿理论,在矿区发现铌钽矿脉14条,圈定矿体17个,(333+334)五氧化二钽资源量10791吨,五氧化二铌资源量:14057吨,平均品位:五氧化二钽:0.036%、五氧化二铌:0.047%。矿区铌钽品位富,找矿潜力大, 五氧化二钽远景资源量有望突破2万吨,潜在经济价值超过1千亿元。突破了“大岩基地区难以形成超大型稀有金属矿床”的既有认识,总结、提出的铌钽等稀有金属矿成矿规律及控矿因素的新认识,丰富和发展了稀有金属成矿理论,对华南地区稀有金属找矿具有重要的指导意义。

    2.福建省建瓯市井后探明超大型优质叶蜡石矿

    由中化地质矿山总局福建地质勘查院卢林为首席专家的团队在福建省建瓯市井后矿区探获超大型叶蜡石矿。井后叶蜡石矿属火山期后低温热液交代矿床。矿体呈似层状赋存于晚侏罗世南园群火山碎屑岩中,最大走向延展长725米,最大延深600米,各矿体累计总厚可达90米。矿石划分玻纤级和陶瓷两个品级。项目技术人员从火山构造研究开始,在火山期后热液蚀变与矿石原岩组构的研究中发现了火山岩地层与火山期后气液矿化蚀变之间的有机联系,取得矿区成矿理论的突被,并依此科学规划地质找矿技术路线,有效推导成矿空间,合理布设探矿工程,地质找矿取得重大突破,提交一处特大型叶蜡石矿床,资源量达4000余万吨,资源储量占全国叶蜡石累计查明总资源储量的1/3,为我国最大叶蜡石矿床。

    3.内蒙古自治区乌拉特中旗石哈河首次发现大型砾岩型砂金矿

    由内蒙古第三地质矿产勘查开发有限责任公司冯硕颖为首席专家的团队在内蒙古自治区巴彦淖尔市乌拉特中旗石哈河地区发现一大型露天开采的砂金矿床,这是内蒙古地区近年来发现的第一个大型冰碛砾石型砂金矿床。备案矿石资源储量44695481.22立方米,金金属量17020.85千克,平均品位金0.3808克/立方米,混合砂平均厚度25.30米。石哈河冰碛砾石型砂金矿矿石可选性较强,为易选矿石;矿床采矿、选矿生产工艺成熟可靠。该矿床的开采将对发展边疆经济,增加地方财政收入起到积极的作用。

    4.塔里木中西部顺北地区探明超深层大型油气田

    由中石化西北油田分公司焦方正为首席专家的研究团队通过3年的攻关研究,在顺北9169米超深层探获大型油气田。明确了塔中北坡陆棚—斜坡部位是优质烃源岩分布区,由此将重点勘探区域由隆起向斜坡部位拓展,大大扩大了下古生界碳酸盐岩勘探范围;建立了塔里木周缘前陆盆地寒武纪烃源岩成烃、沿断裂带运移聚集成藏新模式,提出了“立足原地烃源岩,沿着高陡断裂带、寻找原生油气藏”新的勘探思路;初步明确顺北地区油气成藏条件与富集规律,形成顺北超深碳酸盐岩裂缝洞穴型油气藏成藏理论;建立了塔里木盆地沙漠覆盖区超深层裂缝洞穴型储集体预测技术系列、"超深、三高" 井钻完井配套技术,超深小井眼短半径定向钻井技术(水平井斜深8169米)跨入世界领先行列;这些理论技术有效指导了区带评价及勘探部署,天然气探明储量73.8亿立方米,控制储量33.82亿立方米,预测储量412.3亿立方米,实现了超深找矿的突破。

    5.准噶尔盆地玛湖凹陷南斜坡二叠系探明大型油田

    由中国石油新疆油田分公司何海清为首席专家的团队在玛湖凹陷南斜坡探获大型油田。项目组提出上乌尔禾组为区域不整合面之上第一套填平补齐的沉积,具备形成大油区条件。创新性提出三项认识和三项配套技术:1.构建了大型地层背景下砂体纵向叠置、横向连片大面积成藏新模式;2.建立了凹槽区厚层状低饱和度、斜坡区互层状和古凸带薄层状三种类型油藏分布模式,探井成功率从35%提高到76%;3.发现了上二叠统支撑砾岩高产储层新类型,指导试油选层,多井获得百吨高产;4.攻克扇体刻画、低渗砾岩测井评价和低饱和度油层改造三项配套技术,试油获油率从45%提高到83%。在上述认识和技术的支撑下,玛湖凹陷南部上乌尔禾组勘探快速推进,落实三级石油地质储量3.36亿吨,展现出5亿吨级前景。

    6.甘肃省西和县大桥探明超大型金矿

    由甘肃省地质调查院张忠平为首席专家的团队在西秦岭地区发现并探明了一处超大型硅化角砾岩型金矿床。矿床控制长约4500米、宽40~1100米,发现金矿体53条,累计探获金资源储量105吨,伴生银资源量276吨,并在外围发现了渭子沟、马家山、安子山等金矿点。该矿床的发现和勘查为西秦岭地区增加了新的金矿类型,为地质找矿指出了新方向,并提供了类比依据和理论指导。矿床已于2012年建厂投产并取得了显著的经济效益,大大改善了当地贫困落后的面貌和就业状况,促进了经济发展。

    7.江西省武宁县东坪发现超大型钨矿

    由江西省地质调查研究院楼法生为首席专家的团队在武宁县东坪探获超大型钨矿。团队成功运用赣南石英脉型黑钨矿“五层楼”成矿模式,历时6年持续勘查,实现找矿突破。东坪矿床共探获储量:保有钨矿(122b+332+333)矿石量47729千吨,金属量(三氧化钨)213941吨,平均品位0.448%;保有低品位钨矿(332+333)矿石量6105千吨,金属量(三氧化钨) 5946吨,平均品位0.097%。其储量规模超过福建行洛坑、湖南瑶岗仙和江西西华山等钨矿,成为目前我国乃至世界资源储量规模最大的黑钨矿。矿床具有规模大、品位高、易采易选等特点。东坪矿床的发现丰富和完善了“五层楼”式石英脉型钨矿床成矿理论和成矿规律,拓展了长江中下游成矿带钨矿找矿空间、找矿思路和找矿方向。提出了赣北地区自南至北存在160Ma±、150~145Ma、135~125Ma三期钨成矿作用的认识。

    8.云南省盈江县大石坡发现超大型红柱石矿

    由中国冶金地质总局昆明地质勘查院李伟为首席的团队在云南盈江县大石坡矿区探获超大型红柱石矿。在该区发现并圈定7个红柱石矿体,探获(333+334?)类矿石量91979.89万吨,红柱石矿物量11043.57万吨,工业矿平均品位18.0%,低品位矿平均品位8.5%。该矿的发现与勘查,开创了云南寻找红柱石矿的先河,实现了该区找矿新突破。采用湿式磁选—浮选流程工艺,红柱石回收率62.03%,精矿满足HJ-55产品技术要求;通过碳热还原工艺可直接生产硅铝合金、3N高纯硅;磁选云母可综合回收氯化铷。未来矿山开发社会经济意义重大,对我国红柱石矿勘查及应用研究将起到良好的示范作用。

    9.河南省嵩县雷门沟探明超大型钼矿

    由河南省地质矿产勘查开发局第三地质勘查院章传飞为首席专家的团队在嵩县雷门沟探获超大型钼矿。矿区地处华北地台的南缘,熊耳山古隆起与嵩县中新生代断陷盆地的交界处,属环太平洋成矿带东秦岭矿带,岩浆及构造活动具多旋回和多期次活动的特点,矿床受高—中温热液蚀变影响,是以钼为主伴生硫的可供综合利用的一特大型斑岩型钼矿床,共完成钻探17184.90米,圈定大小矿体92个,其中工业钼矿体19个;低品位钼矿体66个;钼氧化矿体7个。共估算(332)+(333)工业矿钼矿石资源量80180万吨,钼金属量636373吨。开发本区钼矿资源为当地及周边地区提供资源的同时,也将促进本地区工业的发展,改善当地居民生活水平,对地方经济的繁荣将起到重要的作用,经济意义巨大。

    10.广东省英德市鱼湾发现大型稀土矿

    由广东省有色金属地质局九四〇队温汉辉为首席专家的团队在英德市鱼湾探获大型稀土矿床。圈定6个矿体,估算花岗岩风化壳离子吸附型稀土矿资源量(332+333)矿石量136411千吨,全相稀土氧化物总量153618吨、平均品位0.1126%,离子相氧化物总量105218吨、平均品位0.0771%;另有低品位矿石量2801千吨,储量规模达到大型。矿区探明的稀土储量为广东省近年第一。矿山总工业价值约80亿元,矿山服务年限50年,具较好经济效益;可带动当地相关产业的发展,并增加就业及税收,具有较好的社会效益。

    中国地质学会2017年度十大地质科技进展十大地质找矿...

     

    17日,“蓝鲸一号”海上钻井平台可燃冰开采现场。广州海洋地质调查局供图

     

    可燃冰又称天然气水合物,是一种甲烷和水分子在低温高压情况下结合在一起的化合物,被看作是有望取代煤、石油的新能源

     

    勘探显示,南海神狐海域有11个矿体、面积128平方公里,资源储存量1500亿立方米,相当于1.5亿吨石油储量

     

    从5月10日起,国土资源部中国地质调查局从我国南海神狐海域水深1266米海底以下203—277米的可燃冰矿藏开采出天然气。截至5月17日15时,总量试采12万立方米,最高产量达3.5万立方米/天,平均日产超过1.6万立方米,其中甲烷含量最高达99.5%。

    这是我国首次海域可燃冰试采成功,这一成果对促进我国能源安全保障、优化能源结构,甚至对改变世界能源供应格局,都具有里程碑意义。

     

    神狐海域可燃冰储量只是我国可燃冰蕴藏量的冰山一角

     

    直升机从珠海九州机场起飞,飞行约90分钟,远远就见到蔚蓝的海面中巍然伫立着的37层楼高的钻井平台,这里就是我国首次完成可燃冰调查的神狐海域,也是我国首次进行可燃冰试采的海域。

    “对于海洋可燃冰的研究,我国是从1995年开始的,并于2007年5月成功获取了可燃冰实物样品,成为世界上第四个通过国家级开发项目发现可燃冰的国家。”试采现场指挥部总指挥叶建良介绍说。

    可燃冰,又称天然气水合物,它是一种甲烷和水分子在低温高压的情况下结合在一起的化合物,因形似冰块却能燃烧而得名,是一种燃烧值高、清洁无污染的新型能源,分布广泛而且储量巨大。1立方米的可燃冰分解后可释放出约0.8立方米的水和164立方米的天然气,能量密度高,资源潜力巨大,估算其资源量相当于全球已探明传统化石燃料碳总量的两倍,科学家们甚至认为它是能够满足人类使用1000年的新能源,是今后替代石油、煤等传统能源的首选。

    2010年底,由广州海洋地质调查局完成的《南海北部神狐海域天然气水合物钻探成果报告》通过终审,科考人员在我国南海北部神狐海域钻探目标区内圈定11个可燃冰矿体,显现出良好的资源潜力。“海洋六号”入列后,再次深入南海北部区域进行新一轮精确调查,调查海域包括琼东南海域、西沙海域、神狐海域和东沙海域等区域,调查的重点是在南海北部前期勘探的基础上圈定重点勘探区域。

    试采现场指挥部地质组组长陆敬安说,勘探显示,神狐海域有11个矿体、面积128平方公里,资源储存量1500亿立方米,相当于1.5亿吨石油储量,“成功试采意味着这些储量都有望转化成可利用的宝贵能源”。

    神狐海域可燃冰储量还只是我国可燃冰蕴藏量的“冰山一角”。在西沙海槽,科考人员已初步圈出可燃冰分布面积5242平方公里;在南海其他海域,同样也有天然气水合物存在的必备条件……

     

    此次试采实现了勘查开发理论、技术、工程、装备的完全自主创新

     

    可燃冰储量丰富,但是如果一直只躺在南海海底,则发挥不了其价值。但可燃冰开采难度巨大,迄今鲜有国家尝试。

    全球可燃冰研发活跃的国家主要有中国、美国、日本、加拿大、韩国和印度等。其中,美国、加拿大在陆地上进行过试采,但效果不理想。日本于2013年在其南海海槽进行了海上试采,但因出砂等技术问题失败。2017年4月日本在同一海域进行第二次试采,第一口试采井累计产气3.5万立方米,5月15日再次因出砂问题而中止产气。

    “此次试采实现了中国可燃冰勘查开发理论、技术、工程、装备的完全自主创新,在这一领域实现了从跟跑到领跑的跨越。” 叶建良介绍。

    “通过这次试采,中国实现了可燃冰全流程试采核心技术的重大突破,形成了国际领先的新型试采工艺。”试采现场指挥部办公室副主任谢文卫说。

    南海神狐海域的天然气为水合物泥质粉砂型储层类型,该类型资源量在世界上占比超过90%,也是我国主要的储集类型。这是我国也是世界第一次成功实现该类型资源安全可控开采,为可燃冰广泛开发利用提供了技术储备,积累了宝贵经验。谢文卫介绍,“我们提出‘地层流体抽取试采法’,有效解决了储层流体控制与可燃冰稳定持续分解难题。我们成功研发了储层改造增产、可燃冰二次生成预防、防砂排砂等开采测试关键技术,其中很多技术都超出了石油工业的防砂极限。”

    本次试开采是世界上第一次针对粉砂质水合物进行开发试验,为此海洋地质学家们在试采思路、井位选择、工程地质勘查、关键技术和工艺确立、试采平台优选等诸多方面,都具有中国特色,可以称之为“中国方案”。

    在试采作业中,大量国产化装备成功投入应用,充分表明“中国造”已走在世界的前列。

    首先,必须要点赞的是试采作业最重要的“大国重器”——我国最新研制成功世界最大、钻井深度最深的海上钻井平台“蓝鲸一号”,这个净重超过43000吨、37层楼高的庞然大物今年2月刚“诞生”,就从中国烟台起航,于3月28日抵达神狐海域实施试采。“蓝鲸一号”是目前全球最先进的双井架半潜式钻井平台,可适用于全球任何深海作业。

    其次,大量拥有自主知识产权工具的成功应用,表明国内石油公司已具有深水工艺及设备研发能力,如完井防砂工艺,已远远超过石油工业的防砂极限;完井与测试系统集成装备,结合可燃冰试采工程开发与科研需求,为我国可燃冰开发研究提供科学数据。

     

    监测结果显示,试采过程安全、友好、可控、环保

     

    试采可燃冰,外界一直有一个疑问,就是会不会对周边海域的环境造成影响。

    由于甲烷是比CO2更高效的温室气体,因此可燃冰的环境问题一直是人们关心的一个重要问题。我国进行海域可燃冰试采,同样非常重视环境问题,为此投入人力物力进行了研究。

    2011年6月至2017年3月,南海水合物环评项目组在南海神狐水合物区先后共组织了10个航次的野外调查工作,对试采区进行了多年系统调查,调查内容包括海底工程地质特征、地质灾害特征、海底环境监测、海洋生物特征、海水溶解甲烷含量、海水物理化学及水文特征、海表大气甲烷含量特征等,基本查明了可燃冰试采区的海洋环境特征,同时,发展了一系列我国自主产权的环境评价技术,为可燃冰试采、开发提供了良好基础。

    可燃冰试采的环境问题,主要是试采过程中是否发生不可控的可燃冰分解,导致甲烷泄漏,从而引起海底滑坡等地质灾害,甚至是甲烷泄漏到海洋或者大气中而引起环境问题。针对这些问题,在试采过程中,一方面根据水合物区海底地形地貌特征、工程地质特征、水合物储层特征,通过合理设计井位及降压方案,从工程设计上避免发生甲烷泄漏所引发的环境问题和灾害问题,另一方面通过布设海底地形、气体渗漏等监测设备,构建了海水—海底—井下一体化环境安全监测体系,实现对温度、压力、甲烷浓度及海底稳定性参数的实时、全过程监测。监测结果显示试采未对周边大气和海洋环境造成影响,整个过程安全、友好、可控、环保。

    本次开采试验还为后续研究提出了很多课题。下一步重点是研究如何解决本次试验当中发现的一些问题,并在之后3—5年内开展第二次试采,进一步为商业化开采做好技术准备。

    《 人民日报 》( 2017年05月19日 12 版)

    打开一个可采千年的宝库

        2013年1月12日,全球巨型成矿带找矿勘查方法技术研究学术研讨会在中国地质大学(北京)召开。会议由中国工程院院士、中国地质科学院矿产资源研究所研究员裴荣富和矿产资源研究所研究员聂风军共同主持。国务院参事张洪涛、国土资源部高咨中心研究员李裕伟、矿产资源研究所研究员唐菊兴、矿产资源研究所副研究员李德先、中国矿业大学教授武强、中南大学教授陈建宏、国土资源部环境承载力评价重点实验室研究员袁国华、北京矿冶研究总院教授解连库、中国铝业公司广西分公司矿山部主任向瑞群等业内知名学者专家齐聚一堂,为更好地开展“全球巨型成矿带找矿勘查方法技术研究”项目建言献策。

        “全球巨型成矿带找矿勘查方法技术研究”所属计划项目“全球巨型成矿带区域构造与成矿地质背景对比研究”,由中国地质科学院矿产资源研究所承担,该工作项目以中国工程院院士裴荣富 “5R循环经济矿业可持续发展理论”为指导,与会专家从地质、资源、环境和经济等方面做了相关探讨。

    寻找超大型矿,要深化认知

        如何找超大型矿床?中国工程院院士裴荣富在会上给出的问题,吸引了众多参会者。他介绍,矿产资源的形成是各种成矿因素的最佳耦合,但这种最佳耦合出现的机率很小,必须通过大量地质观察、科学实验和深化认知,即裴院士的五字箴言(DECUT),描述矿床学(description)、实验矿床学(experiment)、比较矿床学(comparison)、理解矿床学(understanding)、理论矿床学(theory)等角度深入研究,方能掌握其最佳耦合的机制,合理地进行矿产资源勘查和开发,多快好省的充分利用矿产资源,才能保证矿产资源工业的可持续发展。超大型矿床的发现几率是很小的,特别是异常超大型矿床(exceptional superlarge)更难发现。若没有新“认知”在成矿几率很小的成矿区带中找寻一模一样的超大型矿床是难以奏效的。但是,找寻其变异相(Heteromorphic)或衍生相(Derivative)的姊妹矿是有可能的。我们正在进行超大型矿床变异相的新分类研究。如两个一对(A pair)、三个一组(A tripartite)、四个一列(A line)、五个一群(A group)的新分类法。如果发现姊妹矿,我们就能事先辨认其为准超大型矿床(Para-superlarge deposit)。 裴荣富院士说,“大比例尺成矿预测的重要目的是在已知矿集区和矿田、矿床范围内进行理论的和合理的使用技术方法、深化成矿预测的认知,达到综合预测,希望发现超大型矿床或相对大的矿床。”

    勘查开发,要保护环境

        裴荣富院士说,大型-超大型矿应合理开发,要既满足当代人的需要也不危害后代人的发展。不要过量消耗矿产资源,更不要超过了生态环境合理承载能力。

        袁国华研究员表示,大型矿山环境承载力研究涉及资源供给能力、环境纳污能力、生态服务能力和社会支持能力等多方面。他强调,要学习国内外大型-超大型矿床有哪些现代勘查开发技术,还要考虑各种勘查开发技术对开采成本及环境保护的优劣势。武强教授和李德先副研究员指出,环境研究与地质研究不可分割,环境问题伴随矿山开发建设的各个阶段。唐菊兴研究员长年工作在西藏地区,他的主要工作区西藏墨竹工卡县甲玛铜多金属矿床在矿山建设、采矿、选矿和矿区复垦等方面都起到了榜样的作用。陈建宏教授提出“运用人工智能,建立固体矿产资源合理勘查开发智能系统,用户向系统输入矿床地质、资源、环境和经济等指标,系统将运用模型对获得的数据进行判断,向提交用户提交矿床勘查开发可行性报告”。

        裴荣富院士和聂风军研究员共同建议,从地质、资源、环境和经济等方面对典型矿床进行综合研究,提出合理勘查开发‘四元’模型,并对其矿产资源潜力评价、预查、详查、普查和开发等阶段勘查开发活动进行指导。

        与会专家对巨型矿床具有极大兴趣,张洪涛参事说:“这次学术研讨会可分为四个版块,即经济版块、环境版块、综合版块,从地质、资源、环境和经济等方面为项目的开展提供了思路。以后要形成地质与经济双轨评价,注重资源与经济发展关系。”最后,他建议“与会专家形成科学家联盟,为项目更好地保驾护航”。

    全球巨型成矿带找矿勘查方法技术研究学术会议综述

    1月20日,记者从中国地质调查局天津地质调查中心获悉,经国际矿物学学会新矿物命名与分类专业委员会(IMA-CNMNC)评审投票,由中国地质调查局天津地质调查中心曲凯课题组联合国际研究小组申请的新矿物倪培石获得正式批准。

    含倪培石的稀土矿石照片。(受访者供图)

    倪培石的发现具有重要意义。研究团队介绍,倪培石是目前在自然界中发现的最富铈的硅酸盐矿物。倪培石属稀土矿物,稀土元素常被称为“现代工业的维生素”,能够广泛应用于航天、新能源、先进制造等高新技术产业。倪培石还对探讨稀土矿床早期成矿作用具有重要研究价值。

    这种新矿物发现于河南省西峡县太平镇稀土矿,从发现到正式获得批准,历经了两年多的时间。2021年,课题组采集到矿石标本;2022年初,在对该矿石进行稀土元素赋存状态研究时,发现了一种具有特殊成分的稀土矿物,通过物理性质、化学成分等系统矿物学研究后,确认其应为一种硅铈石超族的新矿物。

    “矿物学作为地质学的基础,是整个地球科学系统的基石。而新矿物研究属于矿物学领域的基础性研究,可为人类认识和利用自然物质提供依据。”曲凯说,随着近年来对基础研究的重视,我国在新矿物研究领域取得了突破性进展,发现数量不断上升。

    值得一提的是,倪培石因其独特的化学成分与晶体结构特征,打破了硅铈石矿物族原有的分类命名体系。最终,以南京大学地球科学与工程学院倪培教授的名字命名,致敬他长期以来在钨、锡多金属以及稀有、稀土矿床研究领域的卓越成就。

    倪培石(红棕色,箭头所指)。(受访者供图)

    该发现由中国地质调查局天津地质调查中心牵头,南京大学、意大利帕多瓦大学、意大利比萨大学、捷克马萨里克大学、俄罗斯科学院费斯曼矿物学博物馆、中国地质大学(北京)、核工业北京地质研究院与河南省核技术应用中心的科研团队共同参与完成。研究得到了国家留学基金与中国地质调查局合作项目、国家自然科学基金和中国地质调查项目的联合资助。

    新华社:我国科研团队发现自然界新矿物倪培石


      “十三五”时期,京津冀步入协同发展的关键阶段。随着京津冀协同发展规划的实施,京津冀地区不仅要成为全国创新驱动经济增长的新引擎,而且要打造成为生态修复环境改善的示范区。

      在今年全国两会上,京津冀如何推进产业升级转移,生态环境如何改善,大气污染如何联防联控,交通如何实现一体化,成为代表和委员们关注的焦点。同时值得关注的是,从首都北京,到海河之滨,再到燕赵大地,不论是国土空间开发格局的优化,还是新型城镇化规划建设;不论是经济结构调整,还是生态文明建设;不论是服务民生,还是脱贫攻坚,都离不开一项基础而重要的工作。那,就是地质工作。

      京津冀“四纵四横一环”城际铁路网络的规划、建设和运行,急需进一步查明活动断裂、地面沉降、地裂缝等的发育规律,并给出相应防治措施。北京非首都功能疏解和产业升级转移,急需开展国土资源与环境承载能力评价,提供地质资源和地质安全保障。京津冀西北部张承地区生态涵养、中南部湿地修复、水土污染治理等,急需基础地质和环境地质信息支撑。燕山—太行山集中连片特困地区和黑龙港贫困地区的脱贫,急需解决饮水和地质灾害问题,开发旅游地质资源及打造特色农业产区。

      为支撑服务协同发展,京津冀建立“一部三省(市)”地质工作协调机制,依托中国地质调查局和京津冀三省市国土资源及地勘部门,按照“一网(重要交通通道),三区(非首都功能疏解与产业升级转移承接区、生态环境保护区、燕山—太行山集中连片特困区),一支撑(技术支撑体系)”部署实施综合地质调查工作,构建国土资源环境承载力评价与监测预警体系和京津冀综合地质信息平台。作为京津冀三地地质工作任务的主要承担者,三省市地勘局也已开始了地质工作的转型升级,着力为京津冀协同发展规划实施提供基础支撑和服务。在协同发展深入推进的今天,京津冀大地上,正在奏响一曲地质工作的协奏曲。

    一部三地联动:绘就京津冀协同发展地质路线图
    高慧丽

      2月26日在京召开的京津冀协同发展地质工作研讨会上,《支撑服务京津冀协同发展地质调查实施方案(2016—2020)》正式启动实施,全面部署了京津冀协同发展综合地质调查工作。

      中央地方构建地质工作协调联动机制

      京津冀综合地质调查工作将秉承需求导向、强化服务,统一部署、分步实施,科技创新、机制创新的原则,围绕疏解北京非首都功能,重点支撑服务京津冀交通一体化、生态环境保护、产业升级转移和脱贫攻坚,以期为京津冀协同发展提供持续服务。

      中央与地方联手构建京津冀地质工作协调联动机制,形成分工明确、部署统一、实施协同、服务高效的合作模式,充分发挥基础性公益性地质工作的先行作用,根据京津冀协同发展不同发展阶段和需求,有针对性地部署京津冀地区地质调查工作,并针对不同需求,设计形成通俗易懂、简洁实用、形式多样的专业服务产品,适时形成一批具有宏观影响的整装成果。

      调查工作推进过程中,坚持调查研究一体化,深化活动断裂、地裂缝、地面沉降等重大地质问题的认识,加强地热能开发利用、国土资源环境承载力评价与监测预警、水土污染调查与修复等技术方法的研发与创新,提升破解制约京津冀协同发展的资源环境问题的能力。

      京津冀综合地质调查瞄准五个方面发力

      京津冀综合地质调查主要开展京津冀重要交通通道综合地质调查,非首都功能疏解及产业升级转移承接区综合地质调查,西北部生态涵养区、重要湖泊湿地综合地质调查,以及燕山—太行山连片特困区综合地质调查,完善地质环境综合监测设施,优化京津冀综合地质信息平台,建立国土资源环境承载力评价监测预警体系。

      京津冀交通一体化的重点是构建以轨道交通为主的交通网络,拟规划建设 “四纵四横一环”城际铁路网络,实现中部核心城市一小时交通圈。为此,京津冀重要交通通道综合地质调查将瞄准高铁沿线,查明活动断裂、地面沉降、地面塌陷、地裂缝、崩滑流等环境地质问题特征,以及规划高铁沿线软土、液化砂土、盐渍土等特殊土体分布规律,提出环境地质问题防治对策建议,为建设“轨道上的京津冀”提供技术支撑。至2018年,中央财政部署重要交通通道1∶5万环境地质调查4.2万平方公里,全面完成重要交通通道综合地质调查。此外,2016年—2020年,中央财政部署完成11个节点城市和主要城镇(微中心)1∶5万综合地质调查,综合评价国土资源环境承载能力。

      非首都功能疏解和产业升级转移承接区主要包括京津保核心功能区、东部滨海发展区、南部功能扩展区。在这些区域,将主要查明规划建设区工程地质条件、供水远景区水文地质条件、主要农业区土地地球化学条件以及地下水、地热、地下空间等资源状况,综合评估国土资源环境承载能力与保障程度,为非首都功能疏解和产业升级转移总体规划、产业布局、重大工程选址提供科学依据。

      生态环境保护区主要包括西北部生态涵养区、白洋淀、衡水湖、七里海等重要湖泊湿地保护区。在西北部生态涵养区,初步查明环境地质条件和地质资源状况,分析崩滑流及矿山地质灾害分布特征和危害程度,进行矿山地质公园建设专题调查评估;查明河北坝上主要农耕区土地质量地球化学特征,定量分析氮磷钾等有益元素分布规律。在白洋淀、衡水湖、七里海等重点湖泊湿地,开展1∶5万环境地质调查,重点查明湿地变化特征,包气带及含水层地层结构,地下水补径排条件,地表水与地下水之间补排关系,分析湿地演变、退化、现状及发展趋势,提出湿地保护方案。此外,围绕绿色办奥运,重点查明冬奥会场馆周边环境地质条件,地热、地质景观等资源状况以及崩滑流、活动断裂等环境地质问题特征,进行冬奥会场区建设适宜性评价,为冬奥会场区规划建设及后期开发运营提供基础地质资料。

      燕山—太行山集中连片特困区地处环首都经济贫困带,是列入我国农村扶贫规划纲要的11个片区之一。这一地区的综合地质调查,主要是圈定地下水富水地段,解决贫困县、老区县人民群众饮水困难;查明地理标志农产品产地土地地球化学特征,为发展特色农业和沟域经济提供支撑;开展地质景观和地质遗迹调查,提出地质景观和地质遗迹资源开发及保护建议;结合脱贫开发,进行京津冀矿产资源调查成果集成和燕山—太行山地区重要矿产资源调查,避开京津冀地区“三区两线”及生态环境敏感区,查明重要矿产赋存状况,为京津冀重要矿产资源开发保护提供科学依据。

      此外,还将开展京津冀地质环境综合监测体系、京津冀综合地质信息平台、京津冀国土资源环境承载力评价监测预警体系建设,以及地球关键带地质调查与国土资源环境承载力评价研究等科技创新工作。从京津冀协同发展的实际需要出发,利用数字模拟、大数据、可视化和云计算等现代信息技术,对基础地质、水文地质、工程地质、环境地质、灾害地质、城市地质、土地质量、海岸带环境、地球物理、地球化学、遥感、矿产资源、地下水资源、地热资源、地下空间资源等海量的专业地质信息和成果进行集成—综合—管理—发布。围绕土地、矿产、地质环境、地下水等资源环境要素,尝试对不同层次区域的国土资源环境承载能力进行初步评估;提出不同区域尺度国土资源环境承载力评价关键指标体系,进而建立国土资源环境承载力评价监测预警平台。

    北京
    调整功能,保障首都地质环境安全

    段金平 李斌  蒋明



      建设世界一流的和谐宜居之都,全面落实《京津冀协同发展规划纲要》,率先实现“三个突破”,北京面临着人口、资源、环境的多重压力,以及生态文明建设的许多新课题。

      对经济社会发展中先行性、基础性的地质工作而言,城市发展的新课题,既是新机遇,也是新挑战。

      主动调整北京地质工作社会功能

      近年来,北京地质工作的社会功能发生了重大改变,从传统的地质工作转为以服务首都建设为主题,着重开展服务民生和服务生态文明建设的城市地质工作,在首都城市地质安全、水工环地质、清洁能源开发利用、土壤生态环境、地质资源环境承载力监测等领域进行探索,服务范围涉及市属规划、国土、农委、水务等13个委办局的业务内容。

      为进一步发挥地质工作在城市发展建设中的基础支撑作用,北京市地勘局确立了以“保障首都地质安全为目标,全面支撑首都经济发展”的战略方针,全面开展北京地区的城市地质工作。

      北京城市地质工作取得初步成果

      为保障北京地区经济社会可持续发展,北京市地勘局先后开展了北京地区多参数立体地质调查(部市合作)、11个规划新城前期工程地质勘查、42个重点小城镇综合地质调查、北京地区土壤地球化学调查等调查研究工作。同时,围绕重点规划和建设区,开展了通州城市副中心地区地质条件适宜性调查和新机场工程地质勘察等工作。这些工作的成果目前都已应用于城市规划和建设中。

      围绕地质资源保障和地质环境安全,北京市地勘局开展了备用地下水水源地勘查、地下水环境监测、岩溶水调查、地热资源和浅层地温能资源勘查、矿山地质环境调查和治理、垃圾堆埋场地调查等工作,其成果为北京绿色可持续发展作出了应有的贡献。

      北京地勘局制定的《首都建设地质响应计划》,从地质工作先行先决的角度出发,对保障首都资源环境协调可持续发展提出了中长期工作建议和对策,部署了“两项工程、一个平台”工作。该平台由八大监测系统构成,目前已初步建成地面沉降监测预警系统、地下水环境监测系统;初步建成框架的包括地热与浅层地温能开发利用地质环境影响预警系统、土壤地质环境监测预警系统;正在建设的有突发地质灾害监测预警系统。已建成的监测预警系统取得的数据和研究成果在城市规划和建设中得到了广泛应用。

      今后北京城市地质工作展望

      根据北京的新定位,北京地质工作要着眼于区域一体化、城乡一体化,全面切入“三规合一”、重大基础设施互联互通、生态环境建设、治理城市病等各个领域。

      一是进一步调整北京地质工作的社会功能。地质工作要从城市规划建设的源头发挥支撑作用,在城市总体规划和土地利用规划时提前考虑地质条件的约束限制;在重大建设项目前期论证、规划选址前、用地预审前,由地质部门对该区域的地质条件适宜性进行综合评价,出具地质审查意见。适时推动制定《北京市城市地质管理条例》,促进城市地质的制度化、法制化。

      二是继续完善和推进实施“两项工程,一个平台”。大力推进活动断裂监测预警系统、土壤地质环境监测预警系统、重大线性工程地质安全监测预警系统和重大构筑物及地下空间地质安全监测预警系统的建设。

      三是积极落实“一部三省(市)”地质工作协调机制。北京已制定了相应的地质响应计划,明确了今后一段时间内各级政府围绕交通一体化、生态环境保护和产业升级转移三个重点领域部署和开展地质工作。北京市地勘局将积极与兄弟省市地勘局共同努力,建立高效的协商联动机制;充分调动全局力量,以保证《京津冀协同发展地质工作响应计划》的实施和完成,为首都和京津冀地区协同发展作出有力支撑。

    天津
    创新服务,支撑三个领域率先突破

    吴岗  冯鑫



      “京津冀地质工作协调机制的建立,给天津的地质工作提供了更加宽阔的舞台,这是一次很好的机遇。”几位天津地质人接受记者采访时表示。

      最近几年,天津市的地质工作积极适应经济发展新常态,主动服务生态文明建设,与北京市、河北省国土资源管理部门密切配合,在不少方面已经共同实施地质调查工作,建立起技术交流与信息互通共享机制。

      着力落实京津冀一体化协同发展地质工作实施方案

      京津冀协同发展地质工作研讨会后,天津市地质工作下一步该怎么走?记者从相关部门得到答案:

      围绕生态环境保护,天津市将开展以北大港湿地为重点的区域水文地质环境地质调查、以宁河凸起为重点的滨海新区深部地热资源调查、以静海含煤区为重点的煤炭地下气化可行性研究等工作,为实施清洁水行动和大气污染防治、湖泊湿地保护与修复等提供地质信息支撑。

      围绕服务都市现代农业、高产高效生态农业和特色农业发展,开展中心城区周边等重点地区土地质量地球化学调查,为现代农业发展、耕地保护与管理以及高标准农田建设提供依据。

      围绕重大地质问题,开展主要活动断裂与区域地壳稳定性调查评价以及矿产资源成矿规律研究,为天津市能源矿产开发与城市规划提供地质依据;开展1∶5万区域地质调查和区域水文地质调查工作,为开发和保护地下水资源提供科学依据。

      推进地质工作服务区县生态城市建设改革试点

      地质工作服务区县生态城市建设将是今后天津市工作的一大重点。

      结合天津市“十三五”总体规划,天津市将以滨海新区为试点,围绕新区 “一城、双港、三片、四区” 的规划格局,立足新区生态保护、资源保障、环境友好和地质安全,针对当前亟待解决的地质问题,开展地下水资源调查、三维地质结构调查、地热资源勘查、地质信息化建设等工作,建立滨海新区三维地质环境信息管理与服务系统,为城市规划建设、生态环境、减灾防灾提供地质数据支撑。

      通过滨海新区的实践,摸索出一套可复制、可推广的经验做法,为全市各区县经济社会发展、生态文明建设提供更有力的基础支撑。

      同时,建立完善市、区县两级地质环境监测体系,推进地质环境监测点补建,加大监测频度、密度,实现地下水、地质灾害、土壤环境、矿山环境、地热等地质环境监测全覆盖,不断提高地质环境监测预警能力。

      努力实现天津地热资源可持续利用

      作为清洁、环保和可再生的高品位资源,地热在天津市生态文明建设和生态城市建设中发挥着巨大的不可替代的重要作用。天津市在科学利用地热资源方面进行了大量工作,积累了丰富经验。

      有数据为证:地热回灌井由“十一五”末的 66眼增加到2015年的158眼,总体回灌率由“十一五”末的29.9%增加到44.6%。“十二五”期间天津市组织编制了《天津市地热资源规划(2011-2015年)》,这是全国出台的第一部省级“十二五”地热专项规划。

      天津市今后将在地热资源可持续利用上加大工作力度,更加严格规范地热资源开采,实行开采总量控制,大力实施供热示范区工程,加大地热井回灌数量,努力促进地热资源的集约节约利用和保护性开发,大力推广梯级利用和回灌等技术,认真开展资源整合和回灌井补建工作,努力实现天津市地热资源可持续利用。

    河北
    转型发展,拓宽地质工作服务领域

    李 岩



      “十三五”开局之年的河北省地矿局工作会议上,该局把地质工作转型发展、优化升级,立足保障全省经济社会发展对能源矿产的需求,立足服务京津冀协同发展、全省生态文明和美丽乡村建设,作为了今年的工作目标。

      以经济社会发展需求为目标,加强新能源勘查开发

      河北地矿局局长张俊杰说:“全省发展需要什么矿,我们就找什么矿;急需什么资源,我们就下大力主攻什么资源。”紧盯国家和全省发展需求,进一步优化勘查布局,成了河北省地矿局全局上下的共识。

      为支持和推动全省经济转型升级和供给侧改革,河北省地矿局有针对性地调整了地质找矿方向,主攻急需紧缺矿种。

      首先,在太行山中段、燕山南部及冀北地区加强有色金属、贵金属矿种勘查。重点在唐山、承德勘查铌钽、铷;在承德、张家口勘查钼、钴;在承德勘查钒钛;在唐山、张家口、承德、保定、石家庄勘查金等,推进深部找矿、就矿找矿,在单一矿种找矿基础上兼顾其他矿种。

      第二,加强新能源的勘查和开发利用。河北地矿局将以服务生态建设为目标,不断加大地热、浅层地温能、干热岩、页岩气、煤层气等清洁能源调查评价力度,尽快摸清资源家底,为清洁能源的科学合理利用提供基础依据。重点在秦皇岛、保定、石家庄西部开展干热岩地质工作,在大城、青县一带平原区开展页岩气、煤层气的勘查。

      第三,在新材料勘查方面取得突破。以为全省战略性新兴产业和新材料工业的发展提供资源保障为目标,重点勘查张家口坝上地区的石墨矿,石家庄行唐、灵寿地区的云母资源,张家口、邢台等地区的石英资源。

      第四,把绿色勘查贯穿地质找矿全过程。在做好生态环境保护的前提下开展地质勘查工作,在项目设计中充分考虑对生态的影响,在项目实施中采取有效环保措施,努力减少对生态环境的影响,探索适合河北特点的绿色勘查模式,实现地质找矿与生态保护“两促进”。

      紧密对接京津冀协同发展需求,扩展服务领域

      为更好地发挥地质工作的基础作用,河北省地矿局力求在水文地质、环境地质、灾害地质、城市地质、农业地质、海洋地质等领域寻找新突破,有针对性地加大地质服务工作力度。

      首先,抓住京津冀协同发展的机遇,紧密对接《支撑京津冀协同发展地质工作实施方案》,进一步推进京津冀地区地面沉降研究,大力开展地质灾害防治、矿山环境恢复治理等相关地质工作。加强重点区域和断裂活动带综合地质调查评价,为京津冀交通一体化、生态环境保护、产业升级转移“三个率先突破”提供服务。

      第二,针对河北省突出的地质环境问题,进一步做好地下水超采、土壤重金属污染、地下水污染防治等方面的调查评价,积极开展资源环境承载力评价与监测预警工作。继续加强省内土地质量地质调查,开展燕山、太行山地区空白区的调查,特别是环京津地区和重点县(市)、富硒土地分布区的大比例尺调查。

      第三,抓住新型城镇化和京津冀世界级城市群建设的机遇,开展设区市的城市地质调查工作,查明城市地下空间构造布局、城市地质资源和环境承载力,为城市规划、海绵城市以及地下管廊建设等提供详实的地质资料和依据。

      第四,抓住环渤海地区发展的机遇,依托《环渤海地区合作发展纲要》提出的推进跨区域重大基础设施建设和生态环境综合整治等重点任务,加强海洋基础地质调查、海洋矿产资源调查、海洋环境监测,大力开展近岸海域环境综合整治以及海岸带修复治理,为河北省沿海地区崛起和发展蓝色经济提供优质服务。
    京津冀,奏响“地质”协奏曲
    我国煤矿资源丰富,长期开发形成了巨大的可利用特殊地下空间,为发展地下生态城市创造了得天独厚的条件。据调查,我国现有煤矿地下空间约139亿立方米,到2030年,预计将达到241亿立方米,长度约160万千米,可绕赤道40圈。

    开发利用废弃煤矿地下空间,既可以避免煤矿采空区被充填造成极大的特殊地下空间浪费,又可以缓解地面城市发展面临的土地紧缺等问题,可为废弃矿井企业提供一条转型脱困和可持续发展新路径,不断推动资源枯竭型城市的转型发展。

    煤矿井下可利用空间的类别 

    煤矿经过长期开采会产生大量的地下空间,这些空间主要包括井筒、巷道、硐室和采空区。

    井筒是指在井工采矿或地下工程建设,从地面向矿体开凿的垂直或倾斜一类工程,垂直的工程称为立井,倾斜的工程称为斜井。井筒是矿井通达地面的主要进出口,是矿井生产期间提升运输煤炭(或矸石)、运送人员、材料和设备以及通风和排水的咽喉工程,是整个矿井结构最“牢固”的地方。

    巷道分为开拓巷道、准备巷道和回采巷道。一般来说,巷道空间上呈条带状,绵延数公里,断面形式为拱形和矩形。开拓巷道服务年限最长,服务于全矿井,准备巷道服务年限其次,服务于矿井的一个区域,回采巷道服务时间最短,基本随着采矿活动的结束而坍塌消失,很少能够保留下来。采矿活动结束,将对准备巷道和回采巷道进行封闭,封闭之后的空间会直接淹没在矿井积水或有毒有害气体中。因此,判断巷道可利用性时,需要考虑空间环境的恶劣性,再对其进行有针对性地改造、修复甚至直接放弃。

    井下硐室主要有排水泵房、变电所、避难硐室等。这些硐室空间大,直径一般在8米,直立高度一般为50米。煤矿井下硐室在设计之初普遍采用了高强支护材料和特殊的结构形式,服务年限一般较长,结构较为牢固。因此,矿井关停后,井下硐室的空间可利用性较好。

    采空区一般是指将地下煤炭开采完成后留下的空区。由于煤炭的赋存一般呈层状煤层出现,因此可以形成大片连续的采空区。一般来说,煤矿开采过程中,采空区顶板需要在特定时间自动垮落或被强制垮落,形成垮落区。顶板岩石会重新充填采空区,因此,煤矿采空区的空间利用局限性很大。

    煤矿地下空间的优缺点 

    废弃煤矿地下空间主要有三大优点:一是防护性和安全性优越。煤矿地下空间具有天然抗灾性,对于防御战争的空袭、核冲击、抗御地震破坏等明显优于普通浅层城市地下空间。二是空间环境条件较稳定。由于埋深较大,煤矿地下空间具有隔音隔震、低本底无辐射、恒温恒湿的特点,受外界影响小,冬暖夏凉。三是节省投资。由于煤矿地下空间在形成过程中已经进行了开拓和加固,因此废弃煤矿地下空间在开发利用时只需要稍加改造、加固和修缮即可,较新建地下工程空间可以节省大量投资。四是有利于就业安排,具有很好的社会效益。煤矿地下空间开发利用对于废弃矿井转型发展提供新的生命,可以缓解当地的就业问题,促进社会稳定,为资源枯竭型城市的转型发展提供新的思路。

    尽管煤矿地下空间具有上述优点,但在开发利用时需要考虑几个问题:

    一是煤矿地下空间结构稳定性和可靠性。在开发利用之前,需对围岩和支护结构进行全面评估,并采取措施进行修复和加固以提高其稳定性和可靠性。二是矿井地质条件与井下环境问题。煤矿地下空间埋深较大,地质条件复杂,地下水、地压、地热、瓦斯及其他有害物质等都会对其可利用性产生重要影响,在开发利用时需要额外注意并采取相应措施。三是提升运输及基本维护费用问题。煤矿地下空间埋深较大,地质环境复杂,二次开发利用时候,通风、进出口提升、巷道运输、排水以及照明等日常维护成本较高。而且,煤矿地下空间一般出口较少,在二次利用时提升运输能力稍显不足。

    煤矿地下空间开发利用的模式 

    基于煤矿地下空间的基本特点,研究人员和工程技术人员开发出多种二次利用模式,主要包括:

    地下储库。煤矿地下空间具有隔音隔震、低本底无辐射、恒温恒湿的特点,为此,利用煤矿地下空间作为地下储库最为适宜,这也是目前其最主要的开发利用模式。煤矿地下空间可以用来储存炸药、雷管等易爆有毒危险品,甚至作为地下水库等。

    博物馆、地下旅游和文娱活动场所。以煤矿地下空间作为博物馆、地下旅游和文娱活动场所在国内外已有较多实例。例如,德国鲁尔工业区的埃森煤矿在关停后改造成地下矿井博物馆,开展煤矿采矿科普教育、矿井旅游等活动,取得巨大成功,并于2001年被联合国教科文组织评为世界文化遗产。国内唐山开滦煤矿是2005年批准建设的全国首批28家国家级矿山公园之一,并被评为国家AAAA级旅游景区。

    开滦国家矿山公园运煤小火车 

    抽水蓄能电站。由于煤矿地下空间体积大且埋深较大,可以将其改造成抽水蓄能电站的地下水库,并将地面矿坑改建抽水蓄能电站的地上水库。在用电低峰的时候,利用便宜、多余的电力,将地下水库的水提升到地表水库中;在用电高峰时段再将地表水库的水向下排放到地下水库发电。目前,德国鲁尔区普斯波(Prosper-Haniel)煤矿正在建设一个抽水蓄能电站,将其埋深1200米、绵延26公里的井巷系统改造成一个100万立方米容积的地下水库。

    地下生态城市示范区。由于煤矿地下空间具有环境清洁、隔音隔震、天然抗灾等优势,可以构建地下宜居城市、地下房地产、地下轨道交通系统等,打造地下生态城市示范区。

    变废弃矿石为可利用资源 

    □田 敏

    矿产资源在我国的国民经济发展中起着举足轻重的作用,我国95%以上的能源、80%以上的工业原料、70%以上的农业生产资料等都来自矿产资源。

    早期受科技水平的限制,人们对矿石中矿物的使用具有单一性粗放性,矿石中低含量矿物或伴生矿物均作为废矿被抛弃,造成极大的浪费。经过长期的科学研究,矿物加工领域的工程师们已经取得了巨大进步,大量低含量或复杂伴生的可利用矿物能够被综合回收。但据不完全统计,全世界每年排出的矿业固体废物仍然在100亿吨以上。

    为了解决这些问题,科研人员通过长期研究,将废石变成了可利用资源。首先,科研人员利用高倍显微镜研究废石的矿物组成,探究其内部结构,尤其是不同矿物之间的连接架构,同时还要仔细了解不同矿物的生长粒度,分析每一种矿物内部的晶格形态。比如,标准石英矿物是由4个氧原子和两个硅原子组成的硅氧四面体,在分析该废石石英矿物时必须考虑其在自然界中是否受外力影响,氧原子被其他矿物如铝原子替换形成类质同相现象。因此,随着对废石中矿物性质的深入研究,将为下一步不同矿物分离奠定坚实的基础。

    玻璃制品在人类的生活中无处不在,其主要是以高品质石英矿物作为原料。石英矿物中的主要成分二氧化硅含量不同则制作的产品也不同,达到90%以上的可以制作玻璃器皿,达到98%以上时可以制作精密的光学产品,达到99.9999%以上时可以作为目前具有高科技性质的芯片原料。江西钨矿属蚀变规模不大的石英脉型钨矿床,废石中矿物含量达到40%~70%的为石英矿物。其内部晶型发育良好,杂质含量极低,具备成为制备高品质石英的原料。经过破碎-分级-物理除杂-化学除杂,利用石英无磁性、硬度较高耐磨性、耐腐蚀性、巨变温差下产生裂隙性等性质,可以生产出高品质石英原料的产品。

    废石中除石英矿物外,还有含量分别在10%~20%的萤石、长石、云母等矿物,萤石是无机盐工业的重要原料,长石在陶瓷工业具有举足轻重的作用,云母天然形态呈现片状,具有良好的弹性、韧性,广泛应用于电器、橡胶、塑料、造纸等行业。针对这几种矿物的不同晶体结构,采用具有针对性络合试剂,通过浮选工艺可以有效地分离,获得不同高纯度优质产品通过变废为宝,再次应用在不同的工业领域,创造更高的经济价值。

    通过采取综合利用技术,将几乎90%的废石变成可以利用的资源,从而实现“变废为宝”,既能产生重要的经济价值,又可以彻底解决土地污染,可谓一举多得。

    钨矿共伴生组分的综合回收 

    □张红新 赵恒勤

    世界钨矿资源储量比较丰富,发现的钨矿物和含钨矿物有20余种,但具有开采价值的只有黑钨矿和白钨矿,黑钨矿约占全球钨矿资源总量的30%,白钨矿约占70%。钨矿资源特点之一是共伴生矿床多,综合利用价值大。我国许多钨矿床伴共生有益组分多达30多种,主要有锡、钼、铋、铜、铅、锌、金、银等。

    根据矿石赋存状态的差异,有些共伴生组分可以在选矿过程中分离,比如锡、铜、铅、锌、萤石等,有些需要在冶炼过程中分离,比如金、银、铟、镓、铼、钪等稀有元素。对钨共伴生组分的综合回收方法的选择则需要根据矿石性质差异采用合适的工艺流程和设备进行分离,主要的分选方法有拣选法、重选法、磁选法、浮选法等,由于钨矿共伴生组分较多,几乎涵盖了所有的选矿方法。

    拣选法。根据物料中不同颗粒之间某些易被检测的物理特性差异,通过对颗粒的逐一检测和鉴别,然后以一定外力使欲拣颗粒分离出来的一种选矿方法。对颗粒进行逐一检测和鉴别,以及依靠外力分离欲拣颗粒,这是拣选不同于其他选矿方法的独特之处。手选是最古老、最简单的拣选。它是根据物料颗粒之间颜色、光泽、密度、硬度、形状等物理性质的差异进行分选的。手选法在黑钨矿中应用较多,通过手选可分选出黑钨矿和石英初级产品。

    重选法。根据矿物密度不同而分离矿物的一种选矿方法,进行重选时除了要有各种重选设备之外,还必须有介质,重选过程中矿粒受到重力(如果在离心力场中则主要是离心力),设备施加的机械力和介质的作用力,这些力的组合就使密度不同的颗粒产生不同的运动速度和运动轨迹,最终可使它们彼此分离。通过重选法可以得到密度较大的锡石。

    磁选法。基于被分离物料中不同组分的磁性差异,采用不同类型的磁选机将物料中不同磁性组分分离的一种选矿方法。在磁选过程中,强磁性矿物所受磁力最大,弱磁性矿物所受磁力较小,非磁性矿物不受磁力或受微弱的磁力。在磁选过程中,矿粒受到多种力的作用,除磁力外,还有重力、离心力、水流作用力及摩擦力等。当磁性矿粒所受磁力大于其余各力之和时,就会从物料流中被吸出或偏离出来,成为磁性产品,余下的则为非磁性产品,实现小同磁性矿物的分离,通过磁选法可以获得黑钨矿。

    浮选法。根据矿物颗粒表面物理化学性质的差异,从矿浆中借助于气泡的浮力实现矿物分选的过程。现代的浮选过程一般包括:磨矿,先将矿石磨细,使有用矿物与其他矿物(或脉石矿物)解离;调浆加药,调整矿浆浓度适合浮选要求,并加入所需的浮选药剂,以提高效率;浮选分离,矿浆在浮选机中充气浮选,完成矿物的分选;产品处理,浮选后的泡沫产品和尾矿产品进行脱水分离。通过浮选法可获得共伴生组分中的铜、铅、锌、硫等有色金属。

    有些稀散元素,由于其含量极低,常常以载体形式依附于其他矿物,比如金、银和铜、铅、硫结合紧密,通过以上选矿方法难以有效回收,需要在后续冶炼过程中回收。

    以上所述方法通常需要组合使用,然后再选择合适的设备,才能将各种矿物得到有效的回收。通过综合利用,在钨矿利用的同时,也综合回收了其他伴生组分,一方面提高了资源的利用率,增加了矿山企业的经济效益,另一方面也减少了金属矿物的排放,降低了环境污染。

    石英矿床类型及用途 

    □张亮 刘磊

    石英资源是一种重要的非金属矿资源,可作为加工玻璃砂、工业硅等原料,是冶金、化工、玻璃、陶瓷、铸造、橡胶等行业的重要原料,也是电子信息产业、光伏、新能源产业和有机硅新材料产业发展的基石。自然界石英矿床成因多种多样,目前常见可供开发利用的石英矿床工业类型有天然水晶、石英砂岩、石英岩、脉石英、粉石英、天然石英砂和花岗岩石英七类。

    天然水晶 天然水晶为透明的大型石英结晶体矿物,主要成分为二氧化硅。水晶多是在岩洞、岩石裂缝或节理、断层中自然生长形成的,其生长条件比较苛刻,必须同时满足4个条件:充裕的生长空间,能够提供富含二氧化硅的热液,一定的温度和压力,足够生长时间。我国天然水晶资源分布广泛,其中以江苏东海地区最为丰富。

    天然水晶 

    天然水晶矿床储量小,开采条件差,资源匮乏,价格昂贵,难以满足大规模工业生产的需要。但由于天然水晶的色彩丰富,晶莹剔透,美丽纯正,目前主要用作雕刻各种工艺品。

    石英砂岩 石英砂岩是经过沉积作用固结的砂质沉积岩,其石英和硅质碎屑含量一般>95%,副矿物多为长石、云母和黏土矿物,胶结物一般为硅质。目前,我国石英砂岩在各省均有分布,其中云南大关、盐津、彝良及四川沐川等地区资源较为丰富。

    石英砂岩矿床一般规模较大,地质产状稳定,开采条件较好。同时,矿石硬度一般相对较低,天然粒度适中,易于破碎分级和大规模工业化生产。但由于石英砂岩胶结物成分比较复杂,因此通常用于生产日用玻璃砂、玻璃纤维、金属硅、耐火材料、白炭黑、有机硅等领域。

    石英岩 石英岩通常是由石英砂岩或其他硅质岩经区域变质作用或热接触变质作用而形成的变质岩石,伴生矿物除长石、云母和黏土矿物以外,往往还含有微量的电气石、赤铁矿和锆石等。与石英砂岩相比,石英岩其矿石更加致密坚硬。我国石英岩资源十分丰富,开发利用量大,主要分布在安徽凤阳等地区。

    石英岩矿床具有规模大、地质产状稳定、开采条件较好等优点,其矿石一般致密均匀,块度好,比较适合日用玻璃砂、浮法玻璃砂、玻璃纤维、金属硅、耐火材料、石英板材等SiO2含量 99%左右传统应用领域产品大规模工业化生产。

    脉石英 主要是在岩浆热液作用下形成的,通常呈致密块状构造,其矿物成分单一,几乎全部为石英,SiO2含量一般在99%以上。脉石英矿床规模一般不大,产状陡,厚度一般在几米至几十米,长度一般为十几米至几百米,一个矿区可由一条矿脉或由多条矿脉组成。

    脉石英矿床资源储量规模一般相对较小,开采难度相对较大,但由于其杂质含量少、资源品质稳定等特点,因此多将其用于制备SiO299%~99.9%的硅微粉、低铁石英砂、光学玻璃、半导体等高品质石英产品。

    粉石英 通常由硅质母岩在特殊的地质构造条件下(温湿的古气候、地形平缓古地理、水力作用等)风化解体而成的沉积风化型矿床,石英含量通常为95%~98%,有的可高达99%以上。该类矿床在我国南方分布较多,如贵州贵定、江西莲花、渝东云峰山等。

    与石英岩和石英砂岩相比,该类矿床规模相对较小,其主要优点是自然白度高,天然疏松多孔,容易超细粉碎加工,可作为陶瓷原料、硅微粉填料等。

    天然石英砂 天然石英砂是由花岗岩、石英岩、石英砂岩和脉石英等母岩经过自然界长期风化而形成的一种以石英为主要矿物成分的砂状石英矿物原料,其伴生矿物包括长石、岩屑、云母、黏土矿物及锆英石、电气石、钛铁矿和角闪石等重矿物,主要为海相沉积砂矿床和河湖相沉积砂矿床。

    该类矿床规模一般较大,其主要优点是通常具有天然适中粒度和角形因数,开采简单,是加工铸造用石英砂产品理想原料,但该类矿床缺点是杂质成分比较多,如果杂质充分去除可用于SiO2含量99%左右所有石英产品加工。

    滨海石英砂开采现场 

    花岗岩石英 指由于岩浆作用固结成岩形成的大颗粒花岗岩或花岗伟晶岩(白岗岩)中的石英。该类矿床中的石英品位多在25%左右,矿物杂质主要来自石英颗粒中的流体包裹体级晶格杂质元素。该类矿床为生产高纯石英的主要原料,目前主要产自美国北卡罗来纳州Spruce Pine地区。

    和谐共生 资源综合利用大有可为

    探索资源环境和谐发展之路

    邓杰 邓善芝

    资源的综合利用,主要是指在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用;对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用;对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    资源综合利用的重要性

    矿产资源综合利用不仅是解决矿产资源短缺的重要途径,而且是实现矿业经济可持续发展战略目标的现实选择,对有效利用和合理保护自然资源起着积极的推动作用。矿产资源综合利用是矿产开发的一项重要政策,也是合理开发、保护环境、维护生态平衡的一种有效手段。在矿产资源综合利用过程中,倡导低碳经济不仅有利于缓解我国经济发展的资源约束矛盾,调整优化结构和转变经济发展方式,而且对于减少污染排放、改善环境质量具有重要意义。

    1.矿产资源低碳开发

    就我国有色金属工业来说,每年排出废石上亿吨、尾砂7000多万吨,占用大量土地;数亿吨废水只有少部分复用或处理达标后排放。有色金属材料生产过程的许多材料含有一定量的有毒金属,如汞、镉、钍等,产生的废弃物已成为环境污染的重要因素之一。有色金属采选回收率仅为50%~60%;矿产资源综合利用率达70%的矿山仅占7%,综合利用率达50%的矿山不到15%,75%的综合型矿山企业综合利用率不到2%~5%;选矿回水利用率65%~70%;尾矿综合利用率为20%左右;冶炼的资源综合利用率为40%~60%,许多共、伴生矿没有综合回收;工业水重复利用率为72.8%;固体废物资源综合利用率为7%~8%;SO2的利用率约70%左右,致使每年排放大气中的SO2高达50余万吨。因此在有色金属工业的采、选、冶、加工过程中,对尾矿及“三废”进行综合利用显得格外迫切。

    2.再生资源回收利用

    除开展矿产资源的综合利用之外,发展再生资源回收利用也是非常重要。

    发展再生资源回收行业,可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。业内预计,到2020年末,我国再生资源回收行业整体产业链产值将达3万亿元。

    资源综合利用的途径

    综合利用固体废物生产的产品包括:利用煤矸石、铝钒石、硼尾矿粉、锅炉炉渣、冶炼废渣、化工废渣及其他固体废弃物生产建材产品、电瓷产品、肥料、土壤改良剂、净水剂、作物栽培剂;利用制糖废渣、滤泥、废糖蜜、淀粉废渣、造纸污泥等生产造纸原料、建材产品、酒精、饲料、肥料、赖氨酸、柠檬酸、核甘酸、木糖,碳化硅、饲料酵母,及多种有机糖类。

    综合利用废水(液)生产的产品包括:利用化工、纺织、造纸工业废水、制盐液(苦卤)及硼酸废液,生产银、盐、锌、纤维、碱、羊毛脂、多种无机盐类、粘合剂、酒精、香兰素、饲料酵母、肥料、制冷剂、阻燃剂、燃料等;利用酿酒、酒精、制糖、制药、味精、柠檬酸、酵母废液生产饲料、食用醋、酶制剂、肥料、沼气,以及利用糠醛废液生产的醋酸钠;利用石油加工、化工生产中的废硫酸、废碱液、废氨水以及蒸馏或精馏釜残液,生产硫磺、硫酸、硫铵、氟化铵、芒硝、硫化钠、环烷酸、肥料,以及酸、碱、盐等无机化工产品和烃、醇、酚有机酸等有机化工产品。

    再生资源生产的产品包括:回收生产和消费过程中产生的各种废旧金属、废旧轮胎、废旧塑料、废纸、废玻璃、废旧家用电器、废旧电脑及其他废电子产品 ,从中提取金属(包括稀贵金属)非金属和生产的产品;利用废棉、废棉布、废棉纱、废毛、废丝、废麻、废化纤、废旧聚酯瓶和纺织厂、服装厂边角料,生产造纸原料、纤维纱及织物、无纺布、毡、粘合剂、再生聚酯产品;利用废轮胎等废橡胶、废塑料生产的胶粉、再生胶、轮胎、防水材料、橡胶密封圈、塑料制品、建材产品、装饰材料、保温隔热材料;利用杂骨、皮边角料、毛发等生产骨粉、骨油、骨胶、明胶、胶囊、磷酸钙及蛋白饲料、氨基酸、再生革、生物化学制品。

    城市矿产垃圾:放错地方的资源

    据测算,每回收利用1万吨再生资源,可节约自然资源4.12万吨,节约煤1.4万吨,减少6万吨~10万吨垃圾处理量;每利用1万吨废钢铁,可炼钢8500吨,节约铁矿石2万吨,节能0.4万吨标煤,少产生1.2万吨废渣,减少86%的空气污染。

    在“城市矿产”回收体系当中,垃圾分类处理是废弃资源再生回收利用中重要的一个环节。通过分类投放、分类收集,把有用物资,如纸张、塑料、橡胶、玻璃、瓶罐、金属以及废旧家用电器等从垃圾中分离出来回收利用,既提高垃圾资源利用水平,又可减少垃圾处置量。按照一般城市特点,我们将城市可能产生的垃圾进行分类,主要分为:动物尸体、人畜粪便、可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾。

    垃圾分类处理大致分为三个步骤:湿垃圾(有机垃圾)在有机垃圾加工利用厂被加工成有机肥或有机复合肥,用于绿化或农业施肥;干垃圾(无机垃圾)在生活垃圾分拣中心被进一步细化分类为废纸张、废塑料、废玻璃、废金属等可回收利用成分,再由相应的再生利用厂进行再生利用;有害垃圾在有害垃圾分拣处置站分拣,可回收利用物送去回收利用,残渣进行焚烧或安全填埋处理。

    对垃圾进行分类收集,有以下诸多优点:

    一是减少占地。生活垃圾中有些物质不易降解,使土地受到严重侵蚀。垃圾分类,去掉能回收的、不易降解的物质,能减少垃圾数量达60%以上。

    二是减少环境污染。废弃的电池中含有金属汞、镉等有毒的物质,会对人类产生严重的危害;土壤中的废塑料会导致农作物减产;抛弃的废塑料被动物误食,会导致动物死亡。

    三是变废为宝。中国每年使用塑料快餐盒达40亿个,方便面碗5亿~7亿个,一次性筷子数十亿支,这些占生活垃圾的8%~15%。1吨废塑料可回炼600公斤柴油。回收1500吨废纸可生产1200吨纸。1吨易拉罐熔化后,能炼结成1吨很好的铝块,可减少开采20吨铝矿。生产垃圾中有30%~40%可以回收利用,应珍惜这个本小利大的资源。

    石墨,缘何脱颖而出?

    曾小波 徐明

    2008年,英国曼彻斯特大学两位学者因发明石墨烯材料获得诺贝尔奖,在全球引发“石墨热”;欧盟宣布石墨烯入选“未来新兴旗舰技术项目”,并设立专项研发计划;日本将石墨作为重要战略性矿产资源进行储备;美国将石墨列为高新技术产业的关键矿物原料,实行立法保护。2015年10月,习近平总书记考察访问英国莫彻斯特大学石墨烯重点实验室;2015年10月,华为与曼彻斯特大学石墨烯研究所签订石墨烯合作战略协议;2016年,《全国矿产资源规划》将晶质石墨列为我国战略性非金属矿产资源。

    石墨烯晶体结构模型

    石墨到底是一种什么样的资源,为什么会在众多矿产资源中“脱颖而出”?在中国经济面临新常态、产业转型升级的关键时期,晶质石墨资源开发及高科技利用将会带来怎样的机遇与挑战?

    一、晶质石墨是什么

    石墨,别称“石涅、石黑、石螺、石黛、画眉石”,是C元素的结晶矿物之一,素有“黑金子”的美称,呈钢灰色、黑灰色,具半金属光泽,有滑感,易污手。

    石墨分为天然石墨和人造石墨,天然石墨可分为晶质石墨和隐晶质石墨。晶质石墨特别是大鳞片晶质石墨是高端石墨产品的重要原料,工业价值较大。

    中国石墨矿产分布及生产加工基地示意图

    二、晶质石墨的战略地位

    1.晶质石墨的性质

    晶质石墨具有金属和非金属两种特性,同时是碳结晶矿物,具有优异的导电、导热、自润滑、耐高低温、高化学稳定性、密封、抗辐射及可塑性型强等特点,使其在光学、微电子、热力学等方面具有独特的优异性能。

    2.晶质石墨的主要产品

    耐火材料:鳞片石墨大量应用于冶金工业中的石墨坩埚和镁碳砖生产等。

    高纯石墨:高纯石墨材料要求C≥99.9% ,用于核能、半导体等高新技术产业的材料,则要求C≥99.99 %。

    铸造工业用石墨:用石墨作铸模涂料,增加铸件的光滑度,减少铸件的裂纹和孔隙。对石墨原料的要求一般粒度0.074mm,含碳70%~80%。

    柔性石墨:具有较高的化学稳定性、耐高低温、耐腐蚀、耐辐射、导电、导热、安全无毒,且具有良好的柔韧性、自粘性和润滑性,广泛应用于石油、化工、冶金等领域。

    胶体石墨:拉丝用石墨乳粒度小于10μm,含碳98%~99%;模锻用石墨乳呈鳞片状,含碳要求在80%~99%以上,粒度+0.15μm。

    锂离子电池负极材料:目前成熟应用的主要是碳石墨材料,是电子、新能源汽车等新兴产业的关键性材料。

    各向同性石墨材料:是核能、半导体、电火花加工等高新技术产业发展急需的高端石墨产品,大量用于单晶硅、多晶硅等半导体材料的制造设备。

    电气工业用石墨:利用石墨制作电极、电刷、碳棒、碳管、阳极板、石墨垫圈等。对石墨原料的要求为粒度43μm,含碳94%~97%。

    石墨烯:是目前发现的最薄最轻、硬度最高、韧性最强、导热性和导电性最好的纳米材料,被誉为“21世纪的新材料之王”。

    3.晶质石墨的战略地位

    晶质石墨是多种工业必需的关键性原料:在航空航天方面,用于制造远程导弹或者航天火箭推进器的材料、宇宙航行设备的零部件等;在国防军工方面,用于制造新型潜艇的轴承,生产国防用高纯石墨、火药、石墨炸弹、隐形飞机和导弹的鼻锥等;在化工方面,用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、泵等设备,用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业;在电子方面,用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层、电磁屏蔽的导电塑料等;在新能源汽车方面,可用于锂离子电池负极材料;在核能工业,高密度的高纯石墨和氟化石墨,用作核反应堆中子减速剂和防原子辐射的外壳;在光伏产业,石墨烯是一种较好的储氢材料,用于制作大比电容的超级电容,提高锂电池的充放电效率,石墨烯也是太阳能电池较好的备选材料。

    晶质石墨将带动新能源、新材料等领域的技术革命。石墨烯将带来诸多工业革命性的技术进步,是未来科技竞争的核心。计算机及互联网领域的技术革命:石墨烯芯片的主频可达1000GHz,是普通晶硅电脑芯片的数百倍;通信领域的技术革命:石墨烯制成的天线以1000GHz的频率正常工作,远超目前常规的天线;新能源工业技术进步:石墨烯制成的超级电容器,充电时间只需1 毫秒,新能源汽车电池有望充电10分钟,连续开行1000公里;国防军工:石墨烯强度比钢强200倍,是现有测试材料中轻度最强的,这将带来武器工业的技术革命。

    4.晶质石墨的需求

    未来,传统领域石墨需求保持稳定,新兴产业石墨需求将快速增长,需求增长集中在晶质石墨。据中国地质调查局预测,2020年晶质石墨需求将达到95万吨,新兴产业需求占比将超过45%,其中,新能源和新能源汽车领域需求约23万吨,核电领域需求约14万吨,高端制造和电子信息等领域需求10万吨以上。预测到2030年,晶质石墨需求将达到135万吨,新兴产业需求占比将进一步提高。

    三、晶质石墨产业发展机遇与挑战

    1.我国石墨资源丰富,资源保障程度高。

    据美国地质调查局(USGS)统计,2017年,全球石墨储量2.7亿吨,80%集中分布于土耳其、巴西和中国。矿石种类上,晶质石墨主要分布在中国、乌克兰、斯里兰卡、马达加斯加、巴西等国;隐晶质石墨矿床主要分布于土耳其、印度、韩国、墨西哥、奥地利、中国等地。多数国家只产出某一类型石墨,中国是少数几个石墨资源种类齐全的国家之一。

    中国石墨资源丰富,总保有量长期位居世界前列,其中晶质石墨资源量约2.6 亿吨。晶质石墨以大、中型矿居多,占矿产地总数的70%,全国晶质石墨保有矿物储量约88%集中分布于大型矿中。目前,我国已形成六大石墨生产加工基地,产量占全国的80%以上,其中晶质石墨主要产地有黑龙江鸡西、黑龙江萝北、山东平度、内蒙古兴和等;隐晶质石墨主要产地有湖南郴州、吉林磐石等。

    2.晶质石墨深加工技术相对落后,尚未成为资源强国。

    长期以来,我国晶质石墨深加工技术相对落后,大量出口低附加值产品,高端深加工产品主要依赖进口,开发利用粗放。

    石墨产品一般分为高纯石墨(固定碳含量>99.9%)、高碳石墨(94%~99%)、中碳石墨(80%~93%)和低碳石墨(50%~79%)四大类,国内企业主要生产低碳、中碳石墨产品,高碳和高纯石墨产品较少。球化石墨、柔性石墨和氟化石墨等深加工产品占比有限,深加工技术相对落后。出口的石墨产品80%为初加工产品,同类产品进出口价格相差悬殊,如球化石墨进口价格是出口价格的两倍以上。

    石墨矿石中含有大量的杂质矿物,晶质石墨矿石的品位较低,一般为3%~15%,但可浮性很好。在选矿过程中,需采用多段磨矿多段选别,通过筛分或水力旋流器分级,及时将已解离的大鳞片石墨分离出来,避免受到反复磨损。

    我国中小型采选企业数量多,生产规模小而散,技术设备落后,采富弃贫、采易弃难等现象突出,晶质石墨利用率仅为40%,资源浪费严重。

    四、结语

    晶质石墨不仅应用于耐火材料、电极电刷、铅笔、铸造、密封、润滑等传统工业领域,更是高端装备制造、新能源、新材料等战略性新兴产业及核电领域的关键资源,被誉为“21世纪支撑高新技术发展的战略资源”,素有“黑金”美誉。随着技术发展和应用领域的不断拓展,晶质石墨资源的战略地位越来越受到重视。

    我国是世界石墨资源大国,第一大石墨生产国、出口国和消费国,但长期以来石墨加工技术落后,大量出口低附加值产品, 高端深加工产品主要依赖进口,资源优势未能转化为技术和经济优势。未来,随着我国石墨资源战略地位凸显,科学利用和保护天然石墨资源,开发深加工技术和发展高端产品,将成为石墨产业发展的必然趋势。

     

    绿色引领 科学高效利用资源

    “锂”从山中来,仗剑走天涯

     邓伟 李成秀 冀成庆 徐莺 周雄

    1.“锂”的家族群

    1)锂(Li)

    锂的克拉克值为30ppm,是较分散而又广泛分布的元素,主要在岩浆结晶作用的晚期阶段富集在伟晶岩中;花岗岩中含量最高,其次是碱性岩。矿床中经常与铍、铷、铯、钽等有益元素共生。

    目前,已知含锂的矿物有150多种,呈独立矿物形式的有30多种,主要工业锂矿物有锂辉石、锂云母、透锂长石、磷锂铝石、铁锂云母等。川西稀有金属矿集区中的锂资源基本以锂辉石形式产出。

    锂辉石,化学成分LiAl[Si2O6]。一般Li2O含量7%左右;晶体呈柱状、板状、针状,颜色可呈无色、灰白、淡紫、淡绿、淡黄、宝石绿色;条痕白色;摩式硬度6.5-7;比重3.03-3.22。

    含锂矿物特征

    2)铍(Be)

    铍的克拉克值为6ppm,为显著的亲石元素。在花岗岩及霞石正长岩中的含量较高,在岩浆分异过程中富集于岩浆残液中,经常固结集中在岩石圈最上部,在地壳深部含量减少。

    世界上已发现的铍矿物和含铍矿物有60多种,常见的矿物约有40多种,主要的工业矿物有绿柱石、硅铍石(似晶石)、羟硅铍石、金绿宝石(铍尖晶石)和日光榴石。

    绿柱石,化学成分Be3Al2[Si6O18],一般BeO含量13%左右;晶体一般呈柱状,呈绿色、黄色、浅蓝色、红色;条痕白色;玻璃光泽或树脂光泽;性脆;硬度7.5-8;比重2.65-2.91。

    含铍矿物

    3)铌(Nb)和钽(Ta)

    铌和钽的原子构造类似,因此,两者在物理化学性质、地球化学性质及矿物学性质方面都很相近。铌、钽经常共生,在岩石和绝大多数矿物中铌和钽的含量此消彼长。在成因上与碱性岩有关的矿物中铌相对富集,与花岗岩有关的矿物中钽相对富集。

    铌在地壳中的丰度为3.2ppm,钽的丰度为2.4ppm。由于铌、钽的地球化学迁移行为不同,铌开始早、收敛晚,钽主要富集于晚期。所以铌矿物种类多,分布广;而钽的变种少,分布不广。目前,已知的铌、钽矿物和含铌、钽矿物有130多种,常见的有30多种。如铌铁矿-钽铁矿、钽铁矿、铋铁矿、褐钇铌矿、易解石、铌易解石、铌铁金红石、烧绿石、锰钽矿、重钽铁矿、黄钇钽矿、细晶石等。铌钽矿物基本呈黑-棕红色,半金属光泽、油脂光泽,少数为金刚光泽;比重大,因此可用重选方式得以富集;化学成分极为复杂。

    含铌钽矿物

    4)铷(Rb)和铯(Cs)

    铷在地壳中的丰度为90ppm。目前没有发现铷的独立矿物,呈分散状态,常以类质同象混入物出现在含钾矿物中。工业来源主要从富含铷的锂、铍、钾的矿物中提取。如锂云母中含Rb2O3%、微斜长石(天河石)中含Rb2O0.3%、铯榴石中含微量铷等。

    铯在地壳中的含量为20ppm。含铯的矿物有10多种,但铯的主要来源还是稀有金属伟晶岩中的铯榴石和锂云母。除此之外,铯还分散在其他矿物中,如绿柱石、黑云母、天河石和堇青石等。

    含铷铯矿物

    铯榴石,化学式Cs[AlSi2O6] nH2O。一般含Cs2O30%左右,晶体往往呈立方体、粒状及致密块状,无解理;颜色为无色、白色,有时带灰、粉红、浅紫等色颜色;性脆,硬度6.5-7;比重2.67-3.03。

    2.“锂”从哪里来

    1)传统矿山

    在您印象中矿山是什么样的?答案也许是偏远、荒凉、破旧的厂房,艰苦的条件,又或许是漫天尘土、泥浆满地、污水四溢,像这样又或许是那样……

    2)绿色矿山

    随着时代的发展和绿色矿山建设的推进,如今的矿山早已不再是从前的样子。先进的设备、一流的技术、现代化的厂房,一座座“花园式”的矿山正拔地而起。清洁生产,循环用水,大家再也不用担心环境污染了!

    3)“石头”变“电池”

    石头是如何变为电池的呢?锂辉石矿经过采矿进入选矿厂,选矿厂采用物理方法分选出含锂矿物,含锂矿物经过冶金处理成为碳酸锂产品,再由产业部门深加工,最终脱胎换骨成为电池。

    3.崭新“锂”程

    1) 锂之应用——走入寻常百姓家,健康美好新生活

    随着科技的快速迭代升级,锂在日常生活中的应用越来越常见。含丁基锂的橡胶轮胎更加耐用,寿命比原来提高了4倍以上,让驾车出行更加安心;锂动力电池驱动的新能源汽车逐渐进入普通家庭,成为城市代步、环保出行的首选之一;锂电池和其他锂产品在娱乐设备上也得到广泛应用,为我们的休闲娱乐生活开启了无限可能性;锂的应用在家中随处可见,它为我们提供了便捷舒适的智能生活。

    厨房里,添加了锂的电磁炉面板等玻璃制品,可以使其变得更轻、更结实、更耐溶。锂盐可为蔬果进行“健康护理”,防止西红柿腐烂和小麦锈穗病,让人们吃得放心、吃得安心。锂在医学保健方面也有新的应用,不仅可以强身健体,还能防治疾病,是人体健康的“守护者”。国外研究发现,锂与阿尔茨海默病存在关联,一款为中老年市场打造的天然矿泉水“锂水”就此诞生。而锂的用途还在不断拓展中,从交通工具到健康护理,锂的应用遍布我们生活的每个角落,改写了每一个人的生活方式。

    新世纪崭新的“锂”程指日可待。

    2) 铍之应用——让医疗成像、诊断和激光医学走到科技前端的金属材料

    铍,是仅次于锂的轻金属,主要是以铍铜合金和铍金属的形式广泛应用于航空、医学等领域,是新兴产业发展必需的战略性矿产资源。目前,世界上只有美国、中国、俄罗斯等国具有工业规模的从铍矿石开采、提取冶金,到铍金属及合金加工的完整铍工业体系。

    ①提高X射线成像效果

    因为铍金属既可以稳定地处理高温阻抗,又可以实现对X射线的高度透明,铍箔在医疗和科研X射线设备当中已经使用了很长时间。铍箔作为窗口来穿透聚焦的X射线,同时可以保持X射线发生管那一侧的真空环境。

    ②使低辐射成为可能

    铍箔仍是CT扫描和乳腺X射线成像等高分辨率医学成像设备中必不可少的材料。在新一代乳腺癌X射线成像设备中使用低辐射扫描可以得到更精细的肿瘤分辨率,使许多早期可治疗阶段的乳腺癌被及时发现,治愈乳腺癌成为可能。

    ③改善X射线光管强度和稳定性

    作为成像技术的前端科技,铍持续为满足X射线光管高强度、稳定性、抗高温、X射线穿透率等性能要求。

    ④光学激光器的小型化

    使用氧化铍的医学激光器可以帮助眼科医生为数百万患者恢复或改善视力。具有高导热、高强度、介电性能的氧化铍是唯一能控制微小高功率气体激光器的材料。

    ⑤简化外科手术

    铜铍连接器将精确的电信号传送到精密手术器械和最新的非侵入性外科技术的监测装置当中。这种技术减少了对病人的创伤和感染风险,同时加快了愈合和恢复的过程。

    ⑥分析血液

    铍还用于分析HIV和其他疾病的血液分析设备部件当中,给医生和病人提供所需的精确性和可靠性数据。

    3) 铌之新应用——冉冉升起的电子材料之星

    铌行业全球市场集中度非常高,目前全球最大的铌矿企业是巴西矿冶公司(CBMN),占据全球市场80%-85%的产量,主要从事铌产品的开发、工业化和商业化运营,是世界上唯一一家可以生产全系列铌产品(包括标准铌铁、特殊牌号铌铁、真空铌铁、真空镍铌、铌金属和五氧化二铌)的企业,对铌价格的走势具有较强的影响力,控制着全球铌产品扩产计划的进度。

    具有超导性能的元素不少,铌是其中临界温度最高的一种。而用铌制造的合金,临界温度高达绝对温度十八点五到二十一度,是目前最重要的超导材料之一。

    2019年,材料领域国际顶级期刊《自然材料》发表了复旦大学修发贤团队的最新研究论文《外尔半金属砷化铌纳米带中的超高电导率》。文章显示制备出二维体系中具有目前已知最高导电率的外尔半金属材料——砷化铌纳米带,电导率是铜薄膜的100倍,石墨烯的1000倍。此次制备出的材料砷化铌纳米带的电导率是铜薄膜的100倍,石墨烯的1000倍。业内表示,导电材料是电子工业的基础,现在最主要的材料是铜,已经大规模运用于晶体管的互连导线。

    4)钽之新应用——人体“亲金属”的神奇医学材料

    钽作为一种金属材料,具有优异的力学性能和抗疲劳特性,因此被广泛应用于医学领域,尤其是在骨科领域。它可以替代人体骨组织,起到承重作用,目前已在临床取得显著疗效。钽金属材料在与人体组织结合时,具有强度、生物相容性和稳定性等优点。因此,它比传统金属材料的人工置入物更具有优势,在医学领域的发展前景十分广泛。

    研究和临床应用表明,多孔钽金属具有比金属钛和钛合金更好的骨融合和骨传导性能,运用钽金属材料制作的仿生骨骨组织长入良好,骨性生物固定优良。未来,利用3D打印高致密度和高力学性能钽金属核心技术,将为我国在高端骨科植入物、医疗器械和难熔金属工业部件发展领域做出积极的贡献。

    不仅如此,将钽金属与其他金属材料结合应用在临床医学中也取得了十分重要的突破。很多金属材料因其独特的性能可用于医学领域,但是由于缺乏生物相容性,不能将其优点很好地应用在临床。为此,科研人员想到将耐腐蚀性强且稳定的钽金属涂覆在这些金属材料的表面,使那些有独特性能但原先忌于低生物相容性而不能用于临床的金属材料重新用于临床,并取得显著疗效。

    5)铷之应用——超视距精确授时,极佳光电传感器件制造

    全球独立铷矿床非常少,下游应用供应链受限,已成为全球对该元素发展的约束要素。铷是自然界一种最大光电效应的稀有分散元素,其合成材料在智能制造中逐渐开始发力。

    铷因其极佳的光电效应,在光电管、红外辐射仪表、太阳能光电池等器件制造方面均实现了重大革命性变革。据外媒报道,太阳能电池在通往最高效率的道路上正在不断改进中。德国国家可再生能源实验室研究人员开发了一种新的太阳能电池,为了改善用于吸收可见光的钙钛矿与用于吸收红外线的铜、铟、镓和硒的混合物两层之间的接触,研究小组在它们之间添加了一层铷原子,团队让电池的峰值效率达到24.16%。

    铷基设备材料精准计时功能助力集群医用设备同步获取精确时间信号。近年来,基于星载铷钟开发的网络同步时间服务器在国内卫生部门得到良好的推广,为医院提供标准的网络时间统计信息服务,也为局部辐射区域近万台网络客户端提供精度小于5毫秒的时间同步服务器,较大程度地改善了全区医疗机构网络系统,包括:医护人员的办公PC及医疗设备、走廊、大堂子钟系统等授时操作的统一性,充分实现了大数量集群精确医疗设备同步作业中时间的精准性保障。

    铷基量子传感器有望用于诊断房颤。心房颤动(AF)是一种导致心率异常的疾病,发作时心脏中传导的电生理信号易出现紊乱行为。目前,常规用于检测房颤的心电图受到灵敏度、时间等诸多限制。据一项发表于《应用物理学快报》的研究,科学家利用原子磁强计,通过基于铷的量子传感器接受信号,成功对导电率与生物组织相近的溶液进行电磁感应成像,可测出高导电性的区域。这项技术实现了非屏蔽环境下的小体积成像,且灵敏度较传统技术提高了50倍,为房颤的快速临床诊断带来了希望。

    固体废弃物如何变身宝藏?

    邓杰 邓善芝

    几个世纪以来,人类社会的快速发展基于对自然资源的使用与消耗。尤其是第三次工业革命以后,生物科技与产业革命的迅速发展,使人们对能源和矿石的需求量激增。同时,为满足迅速增长的社会需求,各行各业纷纷扩能扩产。2012年,国际民间组织“全球足迹网络”(GFN)及英国智库“新经济基金会”提出“地球生态超载日”的概念。“地球生态超载日”是指地球当天进入了本年度生态赤字状态,已用完了地球本年度可再生的自然资源总量。据测算,约从1970年起,人类对自然的索取开始超越地球生态的临界点。从过去数十年来看,几乎每隔10年这一天的到来就会提前1个月。

    资源过度开采和废弃物的无节制排放,造成越来越严重的生态环境问题。人类用碧海蓝天换来了现代社会的方便快捷和科技的快速发展。随着人们经济水平的提高以及对自身健康的重视,环境的重要性被越来越多的人认识。如何在保障人类需求的前提下,尽可能保护和改善环境,寻求资源环境和谐发展的解决方案,成为时下人们关注的重点。为节约资源、提高现有资源的利用率,资源综合利用的概念逐渐被人们所熟知。

    在资源开发利用及使用消费过程中,不可避免会产生伴生矿石、围岩及选矿尾矿等,比如钨矿中伴生的铜、铅、锌等含有稀有分散元素的矿物,氧化矿中的碳酸盐和硅酸盐类脉石、有机物生产中产生的废水、生活中的废旧金属和电池等,这些生产和生活废弃物中含有大量的有价金属、有机及无机盐类矿物质资源,将其直接排放到环境中,不仅会造成大量的宝贵资源白白流失,还会影响耕地质量、污染空气和水源,破坏生态环境。在资源开发利用和消费过程中,针对这些伴生矿物资源和生产生活中的废弃物开展回收利用,使其重新资源化,从而最大限度地实现现有资源的高效利用,可以称之为资源的综合利用。

    如何实现资源的综合利用?现阶段,资源的综合利用主要从三方面开展:

    一、在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用。

    煤炭被人们誉为“黑色的金子”“工业的粮食”,它是18世纪以来人类世界使用的主要能源之一。煤矸石是与煤伴生的一种含煤高岭土,过去采煤过程中产生的大量煤矸石一直被作为大宗固体废弃物堆放在煤矿周围。正如犹太经典《塔木德》中所说:“世上没有废物,只是放错了地方。”煤的伴生矿——煤矸石也是如此。煤矸石综合利用的途径很多,除了传统的利用途径,如回填煤矿采空区、铺路、土壤改良、做建筑材料和发电等。最新研究表明,煤矸石还可以作为下游精细加工业的原料。如,煤矸石经处理后可以作为橡胶填料,获得与炭黑相当的补强效果;还可以制备聚硅酸铝铁,用于处理造纸综合废水等;此外,煤矸石可以用于陶瓷、耐火材料、橡胶工业、涂料、塑料、4A分子筛、铝硅铁合金等十多个行业。

    二、对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用。

    除矿石中的伴生资源外,矿石资源生产加工过程中还会产生大量的废弃物资源。以铜矿尾矿为例,研究表明,铜尾矿中除了可以回收有价金属元素铜之外,还可以回收非金属组分石榴子石、硅灰石等,并将剩余部分作为植物培养基等原料进行利用,实现铜尾矿的减量化和资源化。部分有色金属尾矿的主要成分为SiO2,且包含大量钙、镁等元素的氧化物,和市场上普遍运用的建筑材料的化学组成非常相似。尾矿用作建筑材料时加工方式比较简洁,能够有效解决成本和能耗问题。

    三、对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    除开展矿山资源的综合利用之外,再生资源回收利用也是开展资源综合利用的重要方面。发展再生资源回收行业可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。中国是全球公认的制造业大国,然而近些年随着人口红利日益消失,以及环保成本的不断抬升,我国资源的对外依存度逐渐走高。在此背景下,大力发展再生资源回收利用产业,具有积极重要的战略性意义。

    现阶段,资源环境和谐发展之路仍然崎岖且漫长,人类需要开展更多的探索与实践。相信在不久的未来,资源综合利用方法和途径会越来越多,资源环境和谐发展之路必将越来越顺利。

    带你了解这朵“云”——地质云

    戴新宇

    “地质云1.0”闪亮登场,魅力初现

    “地质云”是自然资源部中国地质调查局主持研发的一套综合性地质信息服务系统,集地质调查、管理、共享、服务四大功能于一身,面向社会公众、地质调查技术人员、地学科研机构、政府部门提供丰富的各类地质信息服务。经过“地质云”研究开发团队艰辛付出,2017年11月6日,“地质云1.0”闪亮登场,迈出了“地质云”建设三步走的第一步。

    “地质云1.0”刚上线运行,就受到地质调查科技工作者的青睐,局系统内外正式用户达4000多人,日均访问量突破6000次,在地质调查管理和应急事件服务上体现出精准、快捷的特点。例如,在2017年11月18日西藏林芝市米林县发生6.9级地震后,“地质云”首次启动了应急服务工作机制,在2小时内线下完成震区地质图数据制作,仅用10小时就为应急救灾在线提供了震区区域地质图、国家地质资料馆藏涉及震区的地质资料,以及林芝地区卫星遥感影像图、震中300公里范围地质钻孔、林芝专题地质文献库等系列地质信息产品。毫无疑问,“地质云1.0”实现了地质调查数据共享破冰,为75个国家核心地质数据库的互联共享和2382个信息产品提供社会化服务。

    “地质云2.0”华丽转身,飒爽英姿

    在2018年10月18日召开的中国国际矿业大会上,“地质云2.0”宣布正式上线,完成“地质云1.0”云上数据资源和系统功能的全面升级,完成手机版地质云APP国家地质大数据共享服务平台研发,通过数据资源整合和信息系统集成,全面提升地质调查数据采集、汇聚、处理、分析、共享与服务能力,为新时代地质调查工作转型升级提供核心动力,及时、有效地满足政府部门、行业用户、社会公众等各类用户对地质信息的多元需求,以信息化带动地质调查现代化。

    “地质云3.0”鲲鹏展翅,大展宏图

    “地质云”建设三步走设想2020年上线运行“地质云3.0”。为此,地质云研发团队的科研人员做足了功课,全力以赴助推云平台、大数据、智能化“三位一体”建设应用迈上新台阶,为新时代地质调查工作转型升级提供核心动力支撑,建成分布式地质大数据中心,并在以下九个方面提供全方位综合地质服务:

    一是升级完善“在线化”调查系统、研发升级重要专业应用系统,初步实现在线化调查,构建立体式地质信息感知体系。二是显著扩大中大比例尺实体数据共享资源,精准开发地质信息系列产品,提供地质信息专题服务,提升“地质云”服务门户访问便捷性,加快构建地质信息共建共享云生态,基本实现在线化服务,显著扩大地质信息线上共享服务规模。三是升级地质调查业务管理系统,完善地质调查业务管理大数据辅助决策系统,强化在线化管理,支撑地质调查业务管理高效运行。四是推行地质调查在线化办公,支撑远程办公、便捷办公。五是通过攻关实现智能区调矿调、智能识别、智能管理、智能数据搜索引擎等智能地质调查技术突破,示范构建智能化工作模式。六是建立完善地球科学“一张图”大数据体系,更新维护国家核心地质数据库。七是采取优化地质调查网络、规范化运维“地质云”节点体系、加强网络安全建设等措施,建实地质调查基础设施与网络安全体系,保障安全稳定运行。八是完善地质调查信息化制度标准体系,支撑自然资源信息化建设。九是加强信息化人才队伍建设与国际合作,提升中国地质调查局在国内外的影响力。

    这就是中国地质调查局功能强大的地质云(Geocloud)!神奇的地质云(Geocloud)!

     

     

    用好这些珍贵的矿产资源

    土壤资源的前世今生

    郭俊刚 赵恒勤

    前世

    你可知道,松林下松软芬芳的泥土和坚硬巨大的岩石原来是一样的呢。大自然鬼斧神工,又历经数亿年,悄然将坚硬的岩石变成了肥沃的土壤。

    早在几十亿年前,地球的表面都是岩石。地壳表面裸露的岩石,受到风力和水力的侵蚀,在物理、化学、生物、气候等多种因素综合作用下,逐渐被破碎和分解。山一样大的石头变成了小块,小块又变成了细粒。在岩石由大变小、由粗变细的过程中,不仅仅是个头变化了,同时岩石也变成了一种叫“成土母质”的物质,这个过程就叫作风化。要注意的是成土母质还不是土壤。时间又过了数亿年,成土母质在水、空气、腐殖质和微生物的帮助下,逐步形成真正的土壤。成土母质的性质决定了土壤的类别,所以在我国有东北的黑土地,有西北的黄土高原,有云贵川的红土,还有中原的棕色土壤。土壤的垂直剖面从下往上通常可划分为“土壤母质层”“底土”和“表土”三个部分,其中“表土”和“底土”合称为“土体”,是土壤的主要部分,土壤的顶部则是由动植物残体腐烂转化而成的“腐殖质层”。大自然需要300年到1000年的时间才能形成大约2.5厘米厚的土壤。

    今生

    时间来到了人类文明,人类利用和改造世界的能力不断增强,对矿产资源的大规模开发利用,也对土地资源造成了伤害,土壤环境严重恶化,已经威胁到人类的生存与发展。

    一、土地的压占和破坏

    根据有关部门测算,至2009年底,全国有1亿多亩历史遗留工矿废弃地尚未复垦。在全国11.23万座矿山的开采活动中,每年约有300万亩土地遭受毁损。在新增被损毁的土地之中,耕地或其他农用地高达60%以上。耕地的减少,导致失地农民的增多,土地利用效率降低,生态环境恶化,对社会经济的可持续发展造成严重影响。

    二、土壤污染

    土壤污染包括矿产资源开发利用造成的土壤酸化和土壤重金属污染。

    土壤酸化是指酸性物质使土壤变酸的过程。一部分是矿物开采过程中,硫化矿床从地下开采到地表后,矿石中的硫元素会转化为硫酸根离子,硫酸根离子随同降雨、地表径流等水体进入土壤,导致土壤酸化;另一部分是在矿物加工利用过程中,如煤炭燃烧所产生的二氧化硫、氮氧化物等大量酸性气体,进入大气后遇水形成酸雨,使土壤环境被酸化。

    随着矿产资源的开发利用,进入到土壤中的铜、铅、锌、铬、镉、汞、砷等重金属超出土壤承载能力,影响植物正常生长,诱发植物发生病变甚至死亡,也会在植物体表或体内积累,通过食物链进入人体,诱发人类的疾病。

    未来

    伴随着“绿水青山就是金山银山”号角的吹响,我们必须采取一定的措施,将矿产资源开发利用对环境造成的损害降到最低。通过矿山土地复垦,增加可耕地数量,提高土地质量,改善生态环境;通过开采工艺的改进,充分利用采空区和废弃巷道,减少地表塌陷和废石排放;通过生产设备和生产工艺的改进和优化,实现对矿产资源的高效节约集约利用,减少废弃物排放。

    目前,已经涌现出一些重金属修复技术,比如利用钝化剂使重金属的形态趋于稳定,利用超富集作用的植物吸收土壤中的重金属。重要地块被污染又不易治理的话,直接给土壤搬个家,将污染土壤移走,将清洁土壤移来。

    土壤是我们人类赖以生存的资源,要把生态文明理念贯穿到整个土地资源和矿产资源的开发利用过程中不仅要注重土地数量的保持,还要注重土地利用质量的提升,实现经济效益、生态效益和社会效益的统一。

    宜兴保磷矿基地选矿厂实现零排放

    周文雅 吕振福

    磷矿是地球上不可再生的非金属矿产资源,是一种重要的化工矿物原料,是保证粮食安全不可替代的矿产资源。

    根据《全国矿产资源规划(2016—2020年)》,我国规划有3个磷矿资源基地:滇中、贵州开阳-瓮福、湖北宜兴保。中国地质调查局郑州矿产综合利用研究所46种重要矿产资源开发利用水平调查项目组2019年奔赴湖北宜兴保磷矿基地进行开发利用水平调查,考察基地内资源的可持续保障情况、开采选别技术水平、尾矿废石的排放情况。

    2018年全国共有磷矿采矿权证288个,湖北宜兴保磷矿资源基地有磷矿采矿权证62个。磷矿是湖北在全国最具比较优势的矿种,查明资源储量74.96亿吨,位居全国第一。为了提高生产效率和产品质量,大部分企业都会优先使用高品位磷矿,以避免不必要的原材料消耗、减少产生的废渣、提高磷矿的利用率。中低品位的磷矿石一般要通过一些特定的选矿技术,得到磷含量较高的精矿,才能用于后续的生产。宜昌的磷矿资源具有明显的夹层结构,中层为富矿,上下两层均为贫矿。特殊的矿层结构加上历史原因,宜昌当地采富弃贫的现象普遍。

    湖北省磷矿资源管理暂行办法要求对磷矿必须“全层开采,全部入选”;对开采规模实行总量控制;对磷矿石(粉)实行凭准运单运输的准运制度;逐步重组和关闭生产能力在 15 万吨/年以下的磷矿企业,提升资源利用水平。宜昌市继续减少磷矿石开采计划,2018年在1300万吨的基础上又缩减了300 万吨。一系列措施,有效保障了湖北磷矿资源的可持续发展。

    2018年,湖北宜兴保磷矿基地内磷矿企业有62家,在产企业54家,均采用地下开采,运营期间采掘废石不出坑,回填采空区,既可降低采空区上方的开裂、沉降变形,又防止固体废弃物对环境的污染。由于基地磷矿实行开采总量控制,基地内总设计采矿能力3212.5万吨,实际采出矿石1440.795万吨,平均采矿产能利用率46.02 %。

    湖北宜兴保磷矿基地选矿厂普遍采用重介质旋流器进行磷矿选别。磷矿原矿破碎后进入重介质旋流器,品位高的磷矿颗粒在旋流器中下沉,成为精矿产品;品位低的磷矿颗粒在旋流器中上浮,随溢流水排出,成为尾矿产品。所有生产废水净化后全部循环使用,完全实现零排放。

    宜兴保磷矿基地2018年排放磷矿废石70.94万吨,年利用磷矿废石95.87万吨,磷矿废石累计积存量为194.26万吨,2018年磷矿废石利用率为135.14% 。

    宜兴保磷矿基地2018年排放磷矿尾矿41.32万吨,年利用磷矿尾矿37.32万吨,平均磷矿尾矿利用率为90.32 %,累计磷矿尾矿积存量为95.89万吨。

    磷矿属于不可再生资源,缺乏相应的替代品种,被列为我国重要的战略资源,在国家粮食生产安全中占有极其重要的地位。湖北宜兴保磷矿资源基地资源储量大,2016年湖北远安发现一特大型磷矿床,初步探明储量达4.29亿吨,是我国首次发现的单一矿区最大规模磷矿,后备资源丰富。湖北对磷矿实行开采总量控制性管理,可有效保障我国未来磷的供应能力,保障我国粮食安全,助力中国磷业发展。

    材料界的“百变星君”——石墨

    郭理想 张然 刘磊

    地球上的碳分布非常广泛,既可以分布于地壳表层,又可以存在于地壳深部甚至是地球内部更深处的地幔中。此外,碳还是地球上生物体的基本组成元素之一。同时,其存在的状态也很多样,氧化态、还原态以及单质形式的碳均能在各种自然和人为环境中存在。截至目前,自然界中已发现的由碳单质构成的物质有三种:第一种是价值斐然、人尽皆知的钻石,第二种是与我们的日常生活密切相关的石墨,第三种是尚存争议且人们知之甚少的卡宾碳。

    石墨最早由德国矿物学家A.G.Werner(1749~1817)命名。自然界中产出的石墨外观呈现出钢灰色或黑色,形状主要有鳞片状和土状两类,还有部分以块状形式产出。其化学成分主要是碳,天然产出的石墨成分纯净的很少,其中常包含SiO2、Al2O3、FeO以及粘土、沥青等杂质。

    石墨矿床的形成需要具备以下两个主要条件:大量的碳,即碳质要集中,它们是形成石墨的主要原材料;合适的热力学条件,例如相当高的温度,好比是工厂中用于生产的机器需要合适的工作参数和加工环境。

    全球石墨资源分布广泛,美国地质调查局最新发布的《世界矿产品概要2019》中的数据显示,全球范围内的石墨储量主要分布在土耳其、中国、巴西、莫桑比克、坦桑尼亚、印度、越南等国。其中晶质石墨主要分布在中国、巴西、莫桑比克、乌克兰、马达加斯加等地,隐晶质石墨主要分布在土耳其、印度、墨西哥等地。

    我国是传统的石墨生产和消费大国。石墨属于不可再生资源,是我国的优势矿种,我国在2016年12月将晶质石墨列入国家战略性矿产目录。根据自然资源部最新发布的《中国矿产资源报告2019》显示,我国晶质石墨查明资源储量为4.37亿吨,主要分布在黑龙江、山东、内蒙古、吉林和湖南5个省(区)。我国已发现的石墨矿床总体上可分为三种类型:区域变质型,如黑龙江省鸡西市柳毛石墨矿、山东省青岛市莱西南墅石墨矿、内蒙古自治区乌兰察布市兴和石墨矿等;接触变质型,如湖南省郴州市鲁塘石墨矿,吉林省吉林市磐石烟筒山石墨矿等;岩浆热液型,如新疆维吾尔自治区昌吉苏吉泉石墨矿,巴音郭楞蒙古自治州尉犁县托克布拉克石墨矿等。

    石墨的用途也颇为广泛。石墨具备良好的导电、导热、润滑、耐磨,以及耐高温、抗腐蚀、防辐射等诸多优良性能,能用于制造各种产品,被广泛用于国民经济的各个行业,可谓是材料界的“百变星君”。在传统行业中,石墨可作为耐火砖、坩埚、增碳剂等,应用于耐火材料和钢铁工业。由于洁净钢及超低碳钢的发展,以及节能降耗的要求,开发低碳耐火材料已成为必然趋势,石墨在炼钢领域的用量正逐步降低。

    在新能源领域,石墨可作为锂离子电池的负极材料。负极材料对石墨性能要求较高,通常需要将石墨球形化以后,提纯到99.9%以上。在核能领域,天然石墨也发挥着重要作用,球床式高温气冷堆的球形燃料元件中,天然石墨占据64%的比例。

    石墨烯是近年来的热点新型碳材料。英国曼彻斯特大学的物理学家Andre Geim和Konstantin Novoselov于2004年首次发现了石墨烯,他们也因此荣获了2010年的诺贝尔物理学奖。我国目前已经实现以天然石墨为原料,通过氧化石墨-还原法制备石墨烯粉体的工业化量产过程,并在防腐涂料、导热膜等领域有较好的应用效果。未来石墨烯在新能源汽车、海洋工程、能源发展、高端装备、环境治理等领域的应用将进一步深入,有望成为各个重大领域不可或缺的应用材料。

    “工业味精”——锡矿的开发利用

    田敏 张红新

    地壳中锡的平均含量只有0.004%,属于比较稀贵的金属。目前已发现锡矿物和含锡矿物50余种,其中具有工业意义的主要矿物为:锡石、黄锡矿、圆柱锡矿、硫锡铅矿、辉锑锡铅矿。地球上锡矿主要呈带状分布在东南亚和东亚两大锡矿带,东南亚锡矿带北起缅甸的掸邦高原,沿缅泰边境向南延伸到印度尼西亚。东亚锡矿带西起中国云南个旧,延伸至广西,南起朝鲜,经中国延伸至俄罗斯。中国居于东亚锡矿带的主要区域,因此成为全球锡资源储备第一大国。近年来数据显示,全球锡储量共约480万吨,中国拥有150万吨,印尼80万吨,巴西70万吨,玻利维亚40万吨,澳大利亚37万吨。

    我国锡矿资源分布较为集中,主要分布在云南、广西和湖南三个省(区),三个省(区)锡精矿产量合计约占全国总产量的90%。目前,世界上有20多个国家开采锡矿,自1993年以来中国锡精矿产量一直居于世界第一。

    我国锡矿资源按照矿物组成不同分为三类:原生锡矿、砂锡矿和其他类型锡矿石,储量分别为92.88%、0.80%和6.32%。原生锡矿主要分布在广西和云南,合计占总累计查明储量的83.06%。目前,工业生产中锡矿选厂根据资源类型的不同,共有7种方法处理矿石,分别为重选、单一浮选、浮-重-浮、浮-磁-重、重-浮-磁、重-磁-浮、重选-浮选,重选法处理矿石量最多,单一浮选法处理的原矿品位最高。我国资源量最大的原生锡矿和砂锡矿主要采用重选工艺,使用的机械设备有跳汰、摇床、溜槽及离心机等重选设备。我国虽然锡矿储量丰富,但品位较低,主要集中在0.1%~1%之间。国内矿山企业着力提高锡矿伴生资源综合利用水平,通过科学制定选矿工艺,回收共伴生组分11种元素,包括镉、硫铁矿、镍、铅、锑、铁、铜、钨、锌、铟、银。

    锡最大的优点是可以100%回收,符合环保、节能、节约资源的国家战略,国家不断出台多项政策鼓励扩大锡的应用领域。近几年,我国电子产品出口日益增多,在欧盟《关于报废电子电器设备指令》和《关于在电子电气设备中禁止使用某些有害物质指令》发布实施后,欧洲将强制步入无铅化电子时代。中国电子无铅化趋向势在必行,预计我国在锡焊料领域中消费量年增长率将在10%左右;塑料工业生产因环保要求,将扩大锡热稳定剂的使用;硫酸亚锡作为新型绿色环保水泥的添加剂,在近几年发展较快。随着我国汽车、钢铁、机械制造业和矿山工业的发展,锡的使用量会逐步增加,锡产业将迎来长期良好的发展前景。

    你了解氟中毒吗?

    冯乃琦 张永康 曹耀华

    氟在自然环境中广泛分布且与人体健康密切相关,主要分布在人的骨骼、牙齿、指甲和毛发中。氟是与人体健康密切相关的必需微量元素,但若摄入过量就会引起氟中毒,氟污染还可以使动植物中毒,影响农牧业生产。我国地方性氟中毒病区分布广、病情重,遍及29个省、市、自治区。全国有病区县1314个,病区村10万余个,受威胁人口超过1亿人。

    一、什么是地方性氟中毒?

    地方性氟中毒,是指在自然条件下,人们长期生活在高氟环境中,主要通过饮水、空气或食物等摄入过量的氟而导致全身慢性蓄积性中毒。

    二、地方性氟中毒的危害是什么?

    地方性氟中毒是一种慢性全身性疾病,主要表现在牙齿和骨骼上。对牙齿的损害主要表现为氟斑牙。主要危害为7~8岁以下的婴幼儿,一旦形成残留终生。

    对骨骼的损伤会引起氟骨症,主要表现腰腿及全身关节麻木、疼痛、骨关节变形,出现弯腰和驼背,最后发生功能障碍,乃至瘫痪。另外还可能对神经系统产生障碍,对肌肉、肾脏、甲状腺、甲状腺旁腺等产生不同程度的损害。

    三、大气、土壤和水中的氟是从哪里来的?

    大气中的氟:大气中氟的人为来源主要是工矿业的生产过程和煤炭燃烧的排放,以气态和颗粒形式将氟化物释放到环境中。

    土壤中的氟:土壤中氟的来源主要有3个途径:岩石中含氟矿物的风化;火山喷发进入大气的含氟化合物经干湿沉降进入土壤;人类工业活动。据估计,我国磷肥厂一年排放10多万吨氟,砖瓦厂排氟量达50万吨以上。此外,钢铁、制铝、化学磷肥、玻璃、陶瓷、氟化工等工业以及燃煤过程中排放的含氟三废,数量也极高。

    水中的氟:萤石和磷灰石的溶解是地下水中氟的主要来源,黑云母、角闪石以及含蛭石、高岭石和蒙脱石的黏土矿物也是其来源之一。

    四、地方性氟中毒有哪几种类型?

    根据氟的来源和摄氟途径不同,将地方性氟中毒分为三大类:饮水型氟中毒、燃煤污染型氟中毒、饮茶型氟中毒。

    五、地方性氟中毒临床表现有哪些?

    氟中毒最突出的表现是骨骼和牙齿受损害。骨骼损害引起氟骨症,出现全身关节疼痛,四肢或躯干麻木,手足抽搐、僵硬,严重时还有关节活动困难,弯腰驼背,胸廓变形,甚至不能直立行走,丧失劳动能力。

    六、影响氟中毒发病的主要因素有哪些?

    一是摄氟量:摄氟量高,发病率高,病情严重。二是营养条件:蛋白质、钙和维生素有抗氟保护机体的作用。三是饮水中的化学成分及硬度。饮水中的钙和镁可降低人体对氟的吸收,促进氟从体内排泄,减少氟对机体的危害。饮水的碱度增强可使氟的活性增强,有利于氟的吸收和增加氟的毒性。四是抗氟元素的摄入,如钙、镁、铝、硼、锌、硒、铜、钼、铁等,可促进氟由体内排出或增强某些酶的活性,从而提高机体抗氟能力,降低氟的毒性。五是生活、饮食习惯与燃煤污染型和饮茶型地方性氟中毒有着极为密切的关系。

    七、氟中毒的预防措施有哪些?

    饮水型氟中毒病区预防的根本措施是降低水氟含量,使之达到生活饮用水卫生标准。

    一是改换水源。在有条件的地区采用引水、打深井等措施,使病区群众改用低氟水源。二是在干旱地区,可利用物理、化学方法除去水中过量的氟,使之达到生活饮用水卫生标准的要求。常用的方法有混凝沉淀法、活性氧化铝吸附过滤法、骨炭过滤法等。三是饮茶型氟中毒病区要大力宣传高氟茶的危害,使病区广大群众认识到高氟对人体健康危害的严重性,自觉改变不良的饮茶习惯,增强自我防病能力。

    八、地方性氟中毒该如何治疗?

    地方性氟中毒由于发病机理不太清楚,目前尚未研究出根本有效的治疗方法,只能对症或缓解某些症状,减轻病人痛苦。

    一是切断氟源,减少机体摄氟量。根据病区类型和特点,采取不同措施,把环境介质中的氟含量降到或控制在国家标准范围内,减少机体摄氟量。

    二是减少机体对氟的吸收。利用某些元素与氟的亲和力与氟离子结合,形成新的难溶性盐,不能被机体吸收利用,如铝、硼、钙等元素。

    三是促进体内氟的排泄。体内氟主要从肾脏排泄,某些药物和元素能促进氟从机体排出。如甘草和维生素C,两者对增强体内新陈代谢、加强利尿解毒有一定作用。

    四是改善生活条件。生活条件和营养状况对地方性氟中毒的发生与发展有直接影响,改善生活条件,增强机体抵抗力,补充必要的营养,有利于减轻发病和提高疗效。

    五是对症治疗。地方性氟中毒患者常出现疼痛、麻木、抽搐,以及消化系统、神经系统障碍等症状,可给以镇静、镇痛、助消化等药物,解除患者痛苦。

    九、刷牙会导致氟中毒吗?

    我国居民氟的适宜摄入量应在1.0到1.5毫克之间,可耐受最高摄入量为3毫克,超过此安全限值,氟就会在体内积蓄,引起氟中毒。我国牙膏含氟量标准是:成人牙膏0.05%~0.15%。如果使用1克的含氟牙膏(约1厘米长的膏体),每天刷牙2次,氟总量只为2~3毫克。刷牙后吐掉泡沫,已经吐掉了大部分的氟,剩下吞咽到体内的氟只是很少的一部分,不会对人体产生伤害。

    对于儿童,特别是6岁以下的儿童,由于吞咽反射比较差,容易在刷牙时吞入牙膏,要注意防止氟摄入过量。一方面,儿童应该使用含氟量更少的儿童牙膏,并且每天刷牙不超过2次。另一方面,家长要监督孩子刷牙,鼓励他们吐出泡沫,不要吞咽。偶尔发生的吞入不用过于担心,因为即使是使用含氟1500毫克/千克的牙膏,1岁儿童也要一次服下33克才会达到可能中毒量。

    走近资源王国 实现人与自然和谐发展