分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到23条相关结果,系统用时0.011秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    近日,青岛海洋地质研究所(以下简称“青岛海洋所”)滨海湿地团队在黄河三角洲滨海湿地沉积碳汇稳定机制研究方面取得了重要进展。

    滨海湿地具有较高的碳捕获和储存能力,对缓解气候变化具有重要的意义。然而目前对滨海三角洲盐沼湿地土壤有机碳(SOC)的固存机制尚不清楚。为了弥补这一不足,青岛海洋地质研究所科研人员提出了关于黄河三角洲湿地SOC的分布、来源和降解的新发现。

    针对盐度梯度下的四种植被类型,芦苇、柽柳、翅碱蓬和互花米草,在20~100cm深度范围内,凋落物的输入是影响SOC的主要因素,而在20~100cm深度范围内,微生物降解和粘土含量是影响SOC的主要因素。四个生境的SOC主要由惰性有机碳(81%–99%)组成。

    互花米草的入侵导致易氧化碳(EOC)与SOC的比值显著增加,从而降低了SOC的稳定性,这凸显了治理互花米草入侵的重要性。对于黄河三角洲湿地,盐度上升提高了土壤有机碳稳定性,并且其有机碳稳定性高于我国其它滨海湿地。研究成果对深入理解滨海湿地沉积碳汇稳定机制具有重要意义,可为精确评估全球滨海湿地蓝碳提供数据支撑。

    上述研究成果由青岛海洋地质研究所、美国路易斯安那州立大学和中国海洋大学研究团队共同完成,得到了国家自然科学基金、山东省自然科学基金、国家地质调查专项、自然资源部渤海生态预警与保护修复重点实验室开放基金等项目联合资助。研究成果发表在国际著名地学期刊《CATENA》(中科院一区,TOP期刊),青岛海洋所联合培养博士生尼鑫为论文第一作者,赵广明研究员为通讯作者。

     
    滨海湿地团队揭示黄河三角洲湿地沉积碳汇稳定机制

    为了迎接第55个世界地球日,李四光纪念馆联合多所学校,开展为期两周的主题宣传活动。在弘扬李四光爱国、求实、创新、育人、奉献的科学家精神的同时,向青少年传递“珍爱地球 人与自然和谐共生”的科学理念。

    一、“李四光精神”青年科学家讲师团在行动

    为突出李四光精神在科普工作中的引领作用,营造崇尚科学、献身科学的浓厚氛围,地质力学研究所整合科研成果和优秀科技人才,组建了“李四光精神”青年科学家讲师团,邀请院士、知名专家作为顾问,广泛开展科普宣讲活动。

    地球日活动期间,“李四光精神”青年科学家讲师团专家为同学们带来了多场精彩的地学科普讲座,带领同学们探索地球科学的奥秘。

    二、“科普长廊”带来视觉科普盛宴

    李四光纪念馆联合自然资源部国土卫星遥感应用中心,以《来自太空的眼睛——卫星遥感》为主题,共同制作第55个世界地球日主题科普长廊。该长廊以遥感影像的方式,展示了精选出的十余个特色鲜明、风貌各异的景观,大美中国的壮丽画卷徐徐展开,带领孩子们来到500千米的高空,从卫星视角领略城市规划的精巧布局、交通运输的畅通无阻、工业建设的磅礴气势、农业发展的勃勃生机、重大工程的辉煌成就和地质景观的神奇魅力。

    三、通过“引进来+走出去+数字化”方式丰富宣传手段

    地球日活动期间,李四光纪念馆通过“引进来+走出去”的宣传方式,为京内外多所中小学提供科普服务。

    “引进来”的宣传方式设置了“参观+讲座”的一站式科普体验。首都师范大学附属花园小学,展览路小学、绍兴市越城区柯灵小学李四光中队的百余名师生,分批走进李四光纪念馆。在北京大学地空学院和地质大学珠宝学院青年志愿者们的带领下,同学们学习感受李四光的光辉事迹和卓越贡献,领悟李四光精神内涵。 

    在自然资源部国土卫星遥感应用中心相关负责同志的讲解下,同学们参观了主题科普长廊,深刻感受到伟大祖国的丰富多彩与壮丽多姿,激励他们更加热爱这片土地,更加珍惜自然资源,共同守护我们美丽的地球家园

     

    “李四光精神”青年科学家讲师团成员以《沙子的奇幻之旅》为题,带领花园村二小师生走进小小沙子的世界。通过介绍地球的演化历史,地球上的沉积岩、岩浆岩和变质岩三大岩类的形成过程以及三者之间的相互转化关系,让孩子们进一步了解认识沙子的形成过程。同学们积极参与互动,李四光纪念馆免费赠送图书等科普产品。 

    “走出去+数字化”的宣传方式是在“送讲到校”基础上,引入线上讲座,搭建起“互联网+科普”服务模式。

    “李四光精神”青年科学家讲师团成员走进北京东四九条小学,以“探索石油的奥秘”为主题,向李四光中队全体师生描述了石油在野外和地下的样子,盘点了石油在人们衣食住行等方面的用途,用浅显的语言阐述了远古生物从死亡到降解成石油的全过程,运用丰富的现场素材揭开了地质与石油工作者寻找和开发地下石油的奥秘。报告还详细讲述了“可持续利用石油资源并保护地球”的资源环境生态理念,呼吁同学们提高生态文明建设意识,积极响应环保政策、减少化石能源消耗,共建清洁美丽中国。 

    “李四光精神”青年科学家讲师团成员通过线上讲座的方式,向海口市五源河学校的同学们介绍了南极大陆概况和南极科考历史,带领同学们领略独特的南极风光,结合自己在“雪龙2”号极地考察船上的工作生活,从不同侧面展现南极考察的苦与乐。

    李四光纪念馆开展第55个世界地球日主题宣传活动

    湿地与森林、海洋并称全球三大生态系统,被誉为“地球之肾”。滨海湿地是陆地生态系统和海洋生态系统的交错过渡地带,在调节气候、涵养水源、降解污染物、应对气候变化、维护全球碳循环和保护生物多样性等方面具有重要作用。

    为交流滨海湿地国内外最新研究进展,2019年922日至23日,鳌山论坛—“滨海湿地保护与修复”研讨会暨世界海洋大会海洋生态地质分会在青岛举办。

    会议由自然资源部中国地质调查局青岛海洋地质研究所、中国地质调查局滨海湿地生物地质重点实验室、青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室、中国地质调查局海岸带与大陆架地质研究中心承办。会议主题为“滨海湿地保护与修复”,关注气候变化、水体污染、生物入侵、蓝碳埋藏等影响湿地生态功能的热点问题,研讨滨海湿地保护修复的理论、技术方法和实践经验,为全球科学家搭建国际学术交流平台。来自美国、丹麦、荷兰、西班牙以及国内相关高校和科研院所等50余家单位的200余名专家学者参加会议。代表国际滨海湿地最新研究成果的22个学术报告在大会亮相。

    会议期间,中国地质调查局滨海湿地生物地质重点实验室主任叶思源研究员,介绍了我国首批4个滨海湿地增温研究全球观测网(Coastal-wetland Research On Warming Network,简称CROWN)野外监测站建设运行成果和数据。

    全球变暖会通过与温度有关的环境因子变化影响生态系统中的物质循环,野外自然条件下的生态系统模拟增温试验是进行气候变化相关研究的主要手段之一,有助于解决“气候变化和相关环境因素对滨海湿地生态系统功能的影响”等科学问题。

    中国地质调查局青岛海洋地质研究所于2018年在我国辽宁盘锦、山东东营、江苏盐城新洋港和四卯酉滨海湿地建设了4个滨海湿地增温研究全球观测网野外监测站。这4个监测站布设于我国北方芦苇和互花米草植被类型的滨海湿地,与美国佛罗里达湿地、西班牙埃布罗三角洲以及丹麦斯凯灵恩半岛湿地建设的监测站共同组成了全球典型滨海湿地生态地质环境监测网,可以开展全球不同纬度带、不同生境、不同历史演化阶段的湿地生态系统对比研究,为全球科学家解决滨海湿地重大科学问题提供了平台。

    监测对象包括滨海湿地的大气、地表水、孔隙水、土壤和植物等多圈层多要素。自动监测的内容包括增温和非增温条件下的光合、生态系统呼吸、硫化氢释放通量以及地表高程动态变化。现场调查的内容包括生物量调查监测、表层土壤和孔隙水取样、环境理化参数初步测试,以及芦苇生境区大气下垫面的二氧化碳、水分等物质和能量交换监测等。监测站可持续地产出数据,每站每天可获得46个观测参数的监测数据,自20185月至今4个站累计获得约7600万组数据,总数据量超过30G,大部分数据可以实时在线观测,并通过“地质云”共享下载。监测网运行一年多以来,通过连续观测收集环境气象数据,设置增温情境对比研究增温对生态系统功能的影响,初步掌握了气候变化对湿地生态系统功能和生产力的影响情况。

    监测网获得的长期监测数据将有效甄别人类活动、气候变化和地质过程对滨海湿地生态功能的影响,揭示滨海湿地生物地质演化过程的影响机理,应用于湿地保护与修复实践活动,服务于政府决策和湿地管理部门,助力美丽中国和生态文明建设。

    会议现场

    我国首批滨海湿地增温研究全球观测网建设运行取得阶...
    土壤是人类的衣食之源和生存之本,是最基本的生产要素。土壤的健康质量直接影响动植物和人类健康。为了更好地保护我们的生存之本,今天我们就来认识了解土壤环境问题中较突出的重金属污染。

    土壤重金属污染指的是什么 

    重金属通常是指密度大于5克/立方厘米的所有金属元素,包括汞、镉、砷、铅、铬、镍、铜、锌、钒、锰、锑等,其中前5种元素因其毒性大被称为“五毒元素”。

    顾名思义,土壤重金属污染就是重金属或其化合物通过各种途径进入土壤造成的污染。土壤遭受重金属污染的典型事例最早可追溯到19世纪发生在日本足尾铜矿山的公害事件,由于铜矿山废水排入农田,使土壤中铜含量高达200毫克/千克,不仅造成水稻严重减产,而且使矿山周围农田变为不毛之地。进入20世纪五六十年代,相继发生了举世瞩目的“八大公害事件”,其中发生在日本的“痛痛病”和“水俣病”公害事件就是土壤受到重金属镉和汞污染的两个典型。

    土壤重金属污染的危害 

    重金属可以污染水体、大气、土壤、作物等,但重金属不会像有机污染物那样被降解,因此通过食物链被生物体吸收后,会在体内积累,对人类健康造成巨大的威胁。有毒有害的重金属元素,例如砷、镉、铬、汞和铅,会对人体造成严重的危害,可能导致高血压、语言障碍、疲劳、睡眠障碍、提高攻击性倾向、注意力不集中、易怒、过敏反应、自身免疫疾病、血管闭塞以及记忆力下降等疾病和症状。重金属元素还会对人体细胞酶产生毒害作用。

    土壤重金属污染来源 

    土壤中重金属的来源可分为地质过程内源和人为活动外源两部分。地质过程内源又可分为继承型和次生富集型两类。继承型是指母岩中镉、汞、铅等有害重金属含量本底高,在后期的风化成土过程中,这些有害重金属继续保留在土壤中。资料显示,我国土壤大面积的重金属高异常主要是由成土母岩引起的,这些成土母岩多是富含铜、铅、锌、砷、镉等有害元素的硫化物矿床、黑色岩系、煤系地层等地质体,以及含锰、铬、镍的基性岩等。

    次生富集型是指成土母质中重金属元素含量并不高,但是在母岩风化成土过程中,化学性质活跃的元素,如钾、钠、钙、镁等易进入水体流失。而化学性质不活跃的元素,如汞、铅、砷等有害元素在原地的风化残留物中反而富集了。

    人为活动外源主要是指大量重金属通过人为活动进入到土壤环境中,其中主要是现代化工业,例如电镀、电池、化肥、矿业、造纸、杀虫剂、制革、塑料制品、冶金、采矿、化石燃料等制造、使用、活动过程中产生的含重金属的废水、废渣和废气。

    土壤中重金属的活性 

    土壤中重金属的含量和存在形态,很大程度上决定了其对环境、人体的风险高低。目前,土壤重金属的形态分级可分为离子态(水溶态)、可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态。不同形态的重金属,其毒性、迁移性和生物有效性均有不同差异。

    一般来说,离子态的重金属移动性强,易被植物吸收,多存在于土壤溶液中或土壤黏粒表面,有着较高的生物有效性;而某些重金属离子会与土壤中的盐类(如磷酸盐、碳酸盐、硫化物、铁锰氧化物等)、有机质形成沉淀物、复合物或螯合物,移动性有所降低,生物有效性也随之下降;最为稳定的则是残渣态,一般存在于硅酸盐、原生和次生矿物等晶格中。

    影响土壤重金属形态分布的因素有很多,归纳起来可分为两大类:一类是土壤内因,即土壤理化性质,如pH值、土壤有机质、土壤质地、胶体含量、离子含量、Eh值、营养元素等;另一类是人类活动,如输入到城市土壤中的重金属的数量、种类的影响。

    土壤重金属污染修复的方法 

    根据修复方式以及处理后土壤位置是否改变,土壤重金属污染治理方法分为原位治理和异位治理。异位治理环境风险低,见效快,成本高,环境扰动大,如客土法、换土法、土壤淋洗法等。原位治理中主要包括物理修复、化学修复、生物修复以及农业生态修复。

    物理修复主要包括电动修复、电热修复等。电动修复主要通过电流的作用,土壤中重金属离子和无机离子以电渗透和电迁移方式向电极运输,然后进行集中收集处理。

    化学修复就是向土壤中投入改良剂,通过对重金属的吸附、氧化还原等作用,降低重金属的生物有效性,常用的土壤改良剂有石灰、沸石、碳酸钙、磷酸盐、有机质等。

    生物修复利用生物削减、净化土壤中重金属或降低重金属毒性。1983年美国科学家Chaney提出了利用超富集植物清除土壤中重金属污染的思想,即利用植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理后可将该重金属移出土壤,达到污染治理与生态修复的目的。

    农业生态修复主要包括两个方面:一是农艺修复措施,包括改变耕作制度,调整作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等措施,来降低土壤重金属污染;二是生态修复,通过调节诸如土壤水分、土壤养分、土壤pH值和土壤氧化还原状况及气温、湿度等生态因子,实现对污染物所处环境介质的调控。

    钨尾矿资源,待挖掘的宝藏 

    □郝小非

    钨矿是重要的矿产资源,已发现钨矿物和含钨矿物20余种,最具有开采价值的是白钨矿和黑钨矿,主要分布于江西和湖南。钨矿品位一般在0.1%~0.5%,对钨矿选别后,91%以上的固体废弃物被作为尾矿丢弃。我国每年约有1000多万吨钨尾矿被排放到尾矿库中,未被有效开发利用,不仅占用大量土地,还存在安全隐患。但尾矿不是没有任何利用价值的废物,在技术经济条件达到的情况下也是待挖掘的宝藏。

    随着人们对尾矿资源综合利用认识的提高,人们也越来越注意到尾矿也是一种资源,可以被开发利用。钨尾矿中一般含铜、钼、铋等重要金属矿物及石英、萤石、绿柱石和石榴子石等非金属矿物,随着选矿技术的提高,我们不但可以再次回收利用钨,也可以回收铜、钼、铋、铷、锂和钾等有价元素,还可以回收萤石、石英、石榴子石等非金属矿物。另外,我们还可以利用钨尾矿制备地聚物、微晶玻璃、陶瓷原料、免烧砖、透水砖等环保建筑材料。

    总之,只要我们结合钨尾矿资源特点,因地制宜地寻求钨尾矿资源化利用途径,一定可使钨尾矿变废为宝,实现经济效益、生态效益、社会效益的有效统一。

    “锆”诉 

    □雷晴宇

    对普通大众来说,单纯提到化学元素锆,可能相对比较陌生,但它却与我们的生活密切相关。比如,我们最常用到的卫生洁具、瓷砖等陶瓷产品,就是因为其中含有一定量的锆才让它的外表变得那么艳丽和富于光泽,也让它具有了极强的抗腐蚀和耐磨等性能。

    在工业实践中,由于提炼和加工困难、产量不多,锆被列为稀有金属。

    锆的应用领域非常广泛。其中,63%以上的锆以硅酸锆、氧化锆的形式应用于陶瓷、耐火材料领域,约有13%用在锆化学品领域,仅有3%~4%的锆矿石被加工成金属锆。因其具有惊人的抗腐蚀性能、极高的熔点、超高的硬度和强度等特性,锆还被广泛应用在航空航天等领域。

    锆的元素符号为Zr,锆元素在地壳中的含量仅约为0.025%。

    地壳中大部分锆呈分散状态存在于许多矿物中,已知含锆的独立矿物有38种,锆英石(ZrSiO4)和斜锆石(ZrO2)是主要的具有工业价值的含锆矿物。锆英石主要赋存于海滨砂矿中,是世界冶炼金属锆的主要来源。斜锆石主要产于碱性火成岩中,与霞石、霓石、磷灰石、萤石、钙钛矿、锆石、烧绿石等共生。

    含锆的天然硅酸盐ZrSiO4被称为锆石或风信子石,广泛分布于自然界中,具有从橙到红的各种美丽的颜色,自古以来被认为是宝石,印度洋中的岛国斯里兰卡盛产锆石。

    1789年,德国人M.H.Klaproth对锆石进行研究时发现,将它与氢氧化钠共熔,用盐酸溶解冷却物,在溶液中添加碳酸钾,沉淀、过滤并清洗沉淀物,再将沉淀物与硫酸共煮,然后滤去硅的氧化物,在滤液中检查钙、镁、铝的氧化物均未发现,在溶液中添加碳酸钾后出现沉淀,这个沉淀物不像氧化铝那样溶于碱液,也不像镁的氧化物那样和酸作用,Klaproth认为这个沉淀物和以前所知的氧化物都不一样,是由Zirkonerde(锆土,德文)构成的。不久,法国化学家de Morueau和Vauquelin两人都证实M.H.Klaproth的分析是正确的,该元素拉丁名为Zirconium,符号认为Zr,中国译成锆。

    1808年,英国的H.Davy利用电流分解锆的化合物,没有成功;1824年,瑞典的J.J.Berzelius用钾还原K2ZrF6时制得金属锆,但不够纯。直到1914年,荷兰一家金属白热电灯制造厂的两位研究人员Lely和Hambruger用无水四氯化锆和过量金属钠同盛入一空球中,利用电流加热500℃,取得了纯金属锆。

    锆矿资源是稀有金属矿产资源之一。世界各大洲均发现有锆资源,主要分布在大洋洲和非洲,美洲、亚洲、欧洲也有发现。锆矿床按其成因可分为脉型岩矿和砂矿两种类型,但由于岩矿结构形态复杂,分离共生矿物成本高及开采难度较大等原因,导致目前全球工业开采多以砂矿型为主 。砂矿主要包括滨海砂矿、冲积砂矿以及残积砂矿,其中滨海砂矿最具工业开采价值,规模和产量远大于冲积砂矿及残积砂矿。

    据美国地质调查局数据显示,2012年~2018年,全球锆资源储量维持在7500万吨左右,澳大利亚、南非、肯尼亚及莫桑比克4个国家锆矿储量合计6140 万吨,占全球的84.11%,矿床类型多以滨海砂矿为主; 印度、马达加斯加、巴西、中国、美国、乌克兰、印度尼西亚及俄罗斯等国家锆矿储量1160万吨,占全球的15.89%。

    我国的锆储量和美国基本一致,约有50万吨,仅占全球储量的0.68%。相较于其他国家,我国锆资源非常缺乏,所以,我国的锆资源主要靠进口获得。随着需求量不断增大,近年来进口以每年6%的速度增长,国内每年锆进口需求量达到90%以上。

    锆英砂主要用于生产化学锆、电熔锆、硅酸锆、金属锆等。2019年,我国锆英砂市场需求量为62.02万吨,而我国自有资源产量不足1万吨,近3年的进口量均超过100万吨。

    中国和欧洲是锆的主要消费市场,中国对锆的需求在全球占比高达52%。

    锆矿按照主要用途分为金属锆和工业锆两类。金属核级锆处于锆产业链最顶端,工业锆主要用在化工耐酸碱设备、电子行业等领域。中国是世界陶瓷工业生产和出口大国,硅酸锆则是陶瓷行业的直接和主要原料,陶瓷制品离不开装饰,好的装饰使制品身价百倍,装饰材料是装饰的物质基础,陶瓷色料是最重要的陶瓷装饰材料。由此可见,陶瓷色料在陶瓷装饰中的地位,也可知氧化锆在陶瓷装饰中的地位。同时,随着中国陶瓷产业的迅速发展,锆需求也随之猛增。

    矿山废水变废为宝的秘诀 

    □胡四春

    在矿山开采、矿物富集分离过程中,会产生大量的矿山废水,其中包括矿坑水、露采厂废水、选厂废水、尾矿库和废石场的淋滤水,这些废水不仅被白白浪费掉,而且还污染了地表水和地下水,危害环境。

    根据产生的途径不同,矿山废水性质相差很大。例如,矿坑废水pH值要么是强酸性,要么是碱性;选厂废水可能含有大量的重金属离子和有机药剂,这些都给废水处理及回用造成了巨大的麻烦。因此,根据废水产生的途径和废水处理后的性质进行分类处理和分质利用就成了把矿山废水变废为宝的关键。

    矿山采选废水常见处理方法 

    一般来说,矿山采选废水常见处理方法主要包括七方面:

    自然净化法。自然净化法作为最廉价、最简单的废水治理方法,被我国的选矿厂普遍采用。自然净化法常以尾矿库为构筑物,废水通过管道运输至尾矿库,在库内发生沉淀、水解、氧化、挥发、光照降解甚至生物分解等作用,使悬浮颗粒和残余药剂浓度降低,甚至基本去除。

    自然净化的效果与曝晒时间、光照强度、水体温度、初始pH值、溶解氧等因素有关。通常曝晒时间越长、光照强度越强、温度越高,自然净化效果越好。

    特点:自然净化法具有成本低、管理方便、无二次污染等特点,但存在净化不彻底、耗时长、气候等自然因素干扰大等问题,特别在高寒地区,往往会因为净化效率低下而影响废水的回用。因此,自然净化法通常可作为选矿废水的预处理方法,或用于成分相对简单的重、磁选废水的处理。

    酸碱中和法。酸碱中和法是一种传统的废水治理方法,因简单实用而被广泛采用。这其中既包括酸性废水中的H+(或碱性废水的OH-)与中和剂中的OH-(或H+)发生反应,生成中性水分子,同时矿浆的合适碱度也有利于重金属离子与氢氧根离子反应生成难溶的氢氧化物沉淀,从而消除重金属污染。

    生产实践中,常用的中和剂有石灰、消石灰、硫酸、碱性废水废渣(电石渣等)、酸性废水废气等。在选择中和剂时,应优先考虑厂区周边的废料,以达到“以废治废”的目的。理论上各重金属在一定pH范围内均能沉淀,因此控制好pH值是中和法的关键。

    特点:酸碱中和法具有管理方便、费用较低、操作简便、处理量大、适应性强和运行稳定等优点,但也存在一些问题,如在用石灰中和时,设备及管壁结垢严重、污泥增量较大、易产生二次污染等。

    混凝沉淀法。混凝沉淀法是目前治理选矿废水较成熟的一种方法,常与活性炭吸附或氧化法组成混凝沉淀——活性炭吸附法和混凝沉淀——氧化法。

    混凝沉淀法使用的药剂主要包括凝聚剂和絮凝剂两大类。凝聚剂主要有氯化铁、硫酸铁、硫酸铝、氯化铝、聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合硫酸铁(PFS)等,使用最普遍的絮凝剂是聚丙烯酰胺(PAM)。混凝剂的选择至关重要,它直接关系到净化效果的好坏。

    特点:混凝沉淀法可以有效去除废水中的悬浮颗粒和一些重金属离子,是一种成熟、稳定、高效的废水治理方法,但也存在对有机化学药剂净化不彻底,因药剂用量过大易产生二次污染等问题。

    化学氧化法。化学氧化法是深度治理废水中残留浮选药剂的有效方法,特别是近年发展起来的高级氧化技术(AOP)能彻底去除废水中持久性难降解有机污染物。

    化学氧化法的实质是,氧化剂通过夺取废水中有机污染物中的H原子等途径,将有机污染物氧化成无毒或低毒的小分子物质,或转化为容易从水中分离的物质,从而降低废水的COD、BOD。常见的氧化剂有臭氧、Fenton试剂、双氧水、次氯酸钠等。

    特点:化学氧化法治理废水具有操作稳定、反应彻底、处理效率高并能提高废水的可生化性等特点,特别对于处理高COD的有机废水具有显著优势,但也存在运行费用较高等问题。

    人工湿地法。人工湿地是仿照自然湿地人工修建并参与监督控制的具有流动或静止水体的浅水水域,是以基质-植物-微生物为核心的综合生态系统,可通过基质截留、过滤、吸附,植物吸收、拦截,微生物摄食、分解等途径去除废水中的污染物,充分发挥了物理、化学和生物的协同作用。

    特点:人工湿地法为治理废水提供了一条绿色化、生态化的技术路线,但也存在基质易堵塞、占地面积大、受气候等因素干扰大等局限性。

    微生物处理法。微生物处理法对于矿山酸性废水具有显著的优势。其净化原理是利用微生物的新陈代谢作用降解水体中的污染物,从而达到净化废水的目的。

    特点:微生物法治理废水拥有巨大的发展潜力,具有环境友好、选择性好、二次污染少等特点,甚至还可以回收某些重金属原料,但如何筛选出适应性强的菌种是个难题。

    矿山废水的分步处理和分质利用 

    一般来说,铅锌矿矿山废水的分步处理和分质利用分4步来进行:

    一是将铅精矿和锌精矿的浓密溢流水直接回用到各自的选别流程。

    二是向尾矿水加入一定量的钾明矾和阴离子PAM进行混凝反应和絮凝沉降,将尾矿废水中影响选矿指标的铜、铅、锌、镉、铬等重金属离子去除掉。然后,再加入一定量的椰壳型粉末活性炭,并通过纤维球过滤塔来去除掉影响选矿指标的部分有机残留药剂,适度处理后的废水大部分回用到选矿流程。

    三是采场废水一部分用于厂区绿化用水和尾矿干堆库区降尘喷淋用水。

    四是加入一定量的纯碱来降低水的硬度,通过砂滤和膜滤工艺来降低水的浊度等,然后将深度处理后的水分别用于陶瓷过滤机的槽洗水、酸洗水及浮选药剂的配制溶解用水。

    根据其性质及成分存在差异,选用合适的废水处理技术及回用方法,可提高选矿废水循环利用率,实现废水的清洁排放,真正做到变废为宝。

    生态画卷 资源综合利用有新突破

    海洋资源是海洋环境中可以被人类利用的物质、能量以及空间,包括生物、矿产、海水、空间资源及海洋能源。人类对海洋资源的调查、开发和利用是从近岸到远岸,再至深海。随着人们对海洋资源环境重要性认知程度的加深,海洋环境调查和影响评价成为提高海洋资源开发利用价值、维护海洋环境功能的重要方式。

    环境基线值指研究区环境参数的当前水平值,即环境现状值,它是环境影响评价工作中最基础的内容。环境基线调查需要记录包括物理海洋学、化学海洋学、地质地貌、生物群落等方面信息。其中,生物基线调查的主要内容包括:采集原生动物及后生动物群落数据——巨型动物、大型动物、小型底栖动物、微生物群落、底栖鱼类和食腐动物以及与资源直接相关的生物区系的数据;记录观察到的海洋哺乳动物,近水面大型动物和鸟群;记录和描述沉积物的生物扰动活动和混合状况;摄影记录手段建立图像背景资料档案;等等。

    近期,自然资源部中国地质调查局广州海洋地质调查局首次依靠自身力量完成了西太平洋工区的生物和环境调查外业工作,采集了浮游生物、底栖生物、微生物样品,并利用海底摄像记录大型底栖动物与底质环境的图像资料,为建立深海环境基线打下了基础。

    合理的技术路线和科学的技术方法是航次任务顺利完成的重要保证。下面,我们来围观本航次生物与环境调查过程与方法。

    浮游生物调查取样

    浮游生物是指生活在水中缺乏有效移动能力的漂流生物,分为浮游植物和浮游动物。它们体型细小,大多肉眼不可见,且其游动速度往往比它自身所在的洋流流速慢很多,因此它们常常“随波逐流”。浮游生物种类和数量繁多,且时空变化明显,是水域中其他生物生产力的基础。浮游生物调查研究有重要的科学价值,它们有的可以作为海流指示种,有的具有富集放射性同位素的能力并可以作为污染的指示种,硅藻、有孔虫和翼足类等死后沉积在海底,成为海洋底质重要组分,能助力古海洋环境研究。

    我们使用深水浮游生物拖网(图1)来获取大洋浮游植物(藻类)、小型浮游动物和大中型浮游动物样品。

     

    图1 深水型浮游生物拖网

    采样之前,需要准备3个润洗好的广口瓶,记号笔分别标记大、中、小和站位号,对应收集浮游生物拖网中的样品,同时备好甲醛溶液、镊子,手套等工具。每次下网前检查三个网的网具是否破损,网底管是否处于闭口状态(图2)。

    样品采集时,拖网的落网和起网保持匀速和慢速,速度0.5m/s左右,钢丝绳倾角不得大于45°,直到拖网设备出水。使用水泵抽海水,从凌空的网外侧自上而下冲洗,使粘网的标本集中于网底管,确保网中样品全部收入样品瓶,采集的样品使用中性的甲醛溶液固定,最后将样品放入阴凉避光的样品库保存。

     

    图2 浮游生物拖网采样

    底栖生物调查取样

    海洋底栖生物是指栖息于海洋基底表面或沉积物中的生物。它们多为无脊椎动物,也包括以绿藻、褐藻、红藻等为主的典型植物。按生活方式,底栖动物有固着、附着、穴居、爬行、游泳、共栖、共生及寄生等多种类型,其种类多样性极其复杂,分布范围从潮间带直至万米水深的深海底。按体型大小,底栖动物可分为大型、小型和微型底栖动物。底栖生物分别处于不同的营养层次,并且与底质环境之间存在耦合关系,因此,阐明底栖生物的数量变动规律及其与本底环境、资源间的联系,对海洋环境调查研究有重要意义。

    本航次底栖生物调查对象以底栖动物为主。按体型大小,调查对象分为大型底栖、小型底栖和微生物。大型底栖和小型底栖(以能否通过0.5mm孔径的筛划分)调查工具包括箱式采样器、定量框、样品筛、PC管等。

    采样之前,准备好硅胶软管、3个广口瓶、定量框、量杯、PC管、铲子等工具,样品筛的最上和最下层孔径没有要求,可以选择粗孔径的网筛,中间三层由上至下按孔径从大到小的顺序排放。

    底栖生物调查可以使用底拖网和箱式采样器等方式,本航次以箱式采样为主。箱式采样器出水、去上覆水后,观察沉积物的表层有无大型生物体,若有可用自封袋留存,拍照记录样品位置和站位名称;挑选未扰动或扰动少的地方,将备好的定量框和PC管插入箱式采样器中;待箱式采样器中的泥样脱离箱体,拍照并记录;取出插管,处理后两头加管堵,贴好标签根据实验目的置于普通冰箱冷藏或冷冻保存,待检测小型底栖生物;取出定量框并进行过筛处理,过筛时顶层可以加盖一层筛子防止冲水时水泥溅出,同时也防止高压水枪直接冲破样品,最底部垫一层筛子,有利于泥水尽快排空;过筛后将筛子上的剩存物分别装到样品袋,处理后置于普通冰箱保存,待检测大型底栖生物(图3)。

     

    图3 底栖生物调查取样

    微生物调查取样

    海洋微生物是来自海洋环境,可在寡营养、极端环境(低温、高压、高盐等)下长期存活并能持续繁殖的微生物,主要包括真核微生物(真菌、藻类和原虫)、原核微生物(海洋细菌、海洋放线菌和海洋蓝细菌等)和无细胞生物(病毒)。海洋微生物在生物地化循环中起非常重要的作用。深海微生物由于长期处在极端环境条件,使之形成了特殊的生物结构、基因类型和代谢产物,是重要的深海生物资源,也是深海环境基线调查的内容之一。

    本航次微生物调查内容为:水体/沉积物样品中的微生物群落多样性组成及空间分布特征等。调查工具包括箱式采样器、活塞重力采样器、无菌袋、无菌注射器、无菌瓶、去离子水、缓冲液、液氮等。

    箱式取样器出水后,用软管和无菌广口瓶收集上覆水,立即冷藏和沉淀;用润洗过的花泥铲或不锈钢勺刮取表泥(未扰动,水平方向不紧挨着插管和箱式壁)装入无菌袋,由于微生物样品对光照和温度变化十分敏感,为了防止其降解,现场处理完成后可将其置于超低温冰箱(-80℃)保存;将事先冷藏的上覆水样品取出,润洗所有过滤工具,包括空瓶、镊子、滤膜夹等器具(膜除外);滤膜夹装膜并过滤,过滤过程需注意水要从膜具的中孔流出,且螺纹口处不漏水。过完膜后,用镊子将圆形滤膜折成小扇形过液氮,置于EP管中超低温保存(图4);重力柱的上覆水/泥样品以类似的方式处理。

    图4 微生物调查取样

    海底摄像影像资料采集

    如果你认为4000米水深以下的海底是一望无边的黑暗和寂静,那你就错了。利用海底摄像系统,我们能揭开海底原貌的神秘面纱。淡定摇尾的鱼、落荒而逃的芒虾、看似不动的蛇尾、海参和海葵、固着海底的海绵、一张一弛的头足类......在镜头下一览无遗。

    本航次海底摄像调查内容为:记录底质环境状况;记录大型生物多样性。深海高清摄像系统主要由甲板单元、水下拖体及光电复合缆组成,可满足最大摄像作业深度为6000米。

    通过海底摄像可以现场记录底质环境状况;现场记录摄像大型底栖生物出现的时间、数量、种类(图5,图片依次为芒虾、蛇尾、海参、鱼类、海葵、海绵、快速游动的头足类);根据班报记录情况统计底质环境状况和底栖生物多样性。

      

     

    图5 深海大型底栖生物影像

    初步认识

    本次调查收获满满,所获浮游生物样品肉眼可见桡足类、端足类(钩虾)、水母、浮游幼体等浮游动物;大型底栖生物样品肉眼可见生物栖管、海绵骨针;微生物样品从上覆水过滤和表层泥样中提取,需进一步实验室检测分析其群落结构和多样性;海底摄像拍摄到的生物超过200个,主要生物类型有:海绵、蛇尾、鱼类、虾类、海参、头足类、海葵等。

    当前,服务支撑海洋生态环境保护,实现海洋资源绿色勘探是自然资源统一管理的重要内容。新时代新职责赋予海洋调查研究工作新使命,也要求基层海洋工作者不断学习和参与实践,丰富原有知识体系,跨学科交流和融会贯通,才能提高履职尽责能力,适应职能转型的新要求。

    广州海洋局:西太平洋航次生物与环境调查手记

    地球是人类唯一的家园。人类生存在地球上,受惠于大自然的馈赠,无时无刻不依赖于自然生态系统。而对自然资源的过度索取,终将导致环境的破坏和生态的失衡。

    人类属于大自然。实现人与自然和谐共生,要尊重自然、善待自然、循自然之道。今天,我们邀请地质专家解读滨海湿地、黄土高原、青藏高原、东北黑土地、岩溶地区等不同生态系统中的“人与自然和谐共生”之道。

    青藏高原 

    敬畏高原 和谐共生 

    张璋 任淑珍

    青藏高原被誉为“世界屋脊”,是全球海拔最高的地区,是我国西南地区的重要自然屏障,拥有得天独厚的生态资源环境系统。

    高原上有海拔7000米以上的山峰50多座,其中以珠穆朗玛峰和乔戈里峰这两座世界第一、二高峰最为出名。除了巍峨的群山,还有气势磅礴、一望无垠的高原平原,配以广布的冰川、深邃的峡谷,以及丘陵和宽谷盆地,使得青藏高原地貌景象万千,繁而不杂。它们共同勾勒出了世界第三极的轮廓。

    较高的平均海拔,使得青藏高原大部分地区年平均温度低于5℃,相较地球同纬度其他平原地区低15℃左右。北部的羌塘地区更是有明显的冰封期。同样由于海拔较高的缘故,高原上空气稀薄,因而日照充裕,紫外线强烈,同时也导致了最高可达30℃的日温差,因此只有较少动植物能够适应。但是这些极端的气候环境特征,随着地势由西向东下降而逐渐缓和,到藏东南部地区气候已经较为适宜,因而这里的居民数量也相对较多。

    青藏高原经历了复杂的地质演化过程,又具独特的气候环境,因此孕育了丰富的矿产、能源资源。全球重要的东西向特提斯构造域贯穿整个青藏高原,复杂的原—古—新特提斯洋演化历程使其具有十分优越的成矿地质背景,涵盖了冈底斯—喜马拉雅、羌塘—三江和秦岭—祁连山—昆仑山三大国内成矿域,是我国矿产资源集中蕴藏区。同时,青藏高原的地热蕴量居全国第一位,水能、风能、太阳能等也具有丰富的储量和良好的发展前景。

    位于西藏拉萨市区以北90千米的羊八井地热发电站,在被系统开发以前,由于不断涌出高温的泉水,使其周围动植物稀少,偶有路过的牧民也会多一份小心以免被烫伤。而在地热发电站建成之后, 曾经被认为是“麻烦”的地热水变成了清洁能源,随着发电量的逐步提升,惠及的用电居民范围也持续扩展。

    除了对地热资源的利用,青藏高原西北部地区发展游牧经济、中部地区种植农业、东南部地区开发利用自然资源等,都是高原人民尊重自然、合理利用资源的真实写照。

    请善待自然,为子孙后代留住这片高原净土!

    (作者单位:中国地质调查局成都地质调查中心)

    黄土高原

    山沟里打坝 山坡上种田

    徐永

    在黄土高原水土流失地区,为拦泥、淤地、蓄水、建设农田等,往往在各级沟道中修建坝工建筑物——淤地坝。

    规模较大的淤地坝,淤积范围大,设施齐全,尤其是具备完备的排水设施。这种淤地坝造价较大,修建需要一定的技术含量。但在黄土高原,更多是广大农民自发修建的比较小的淤地坝。有些地方还有微型坝,因为形似燕子窝,俗称“燕窝”。上世纪六七十年代,响应国家号召,村村修梯田打坝。山顶上或者半坡上修梯田,保证水不下山;山沟里打坝,保证泥不出沟,治理水土流失效果显著。可以说,在遏制黄土高原水土流失和减少入黄泥沙方面,淤地坝发挥了巨大作用。

    淤地坝在保障生态效应的同时,经济效益也非常可观。因为坝地中水分和养分条件较好,农作物产量较高。一般在坝地中种植玉米等相对高产的作物,同等条件下淤地坝产生的经济效益是梯田的3倍、坡耕地的6倍。

    其实,淤地坝在很久以前就有,最早的淤地坝可以追溯到明清时期。但当时的淤地坝不是人为有意修建的,而是滑坡和崩塌形成的堰塞湖,水逐渐排干后形成的坝地。当时,人们将这种地稍加改造后进行耕种,发现这种地不仅产量大,而且方便耕种,于是就充分利用。后来慢慢由被动改为主动,在黄土高原普遍推广。现代最早人为修建的淤地坝是1945年在白鹿原鲸鱼沟中修建的。黄土高原广大地区20世纪五六十年代开始逐渐发展淤地坝,到20世纪七八十年代达到高潮。目前黄土高原存留的大部分淤地坝都是在这个时期修的。

    当然,淤地坝也面临一定的生态环境问题。如遇到大暴雨时可能会发生连续溃坝。此外,淤地坝还有一个比较明显的问题,就是两侧边坡崩塌滑坡频发。近年来,修建淤地坝或者治沟造地时,为了扩大坝地面积多利用机械开挖两侧边坡的坡脚,无疑增加了地质灾害的发生几率。

    当前,黄土高原淤地坝面临的一个困局是,最初修建淤地坝多为了耕种,但现在随着社会经济和城镇化的发展,对淤地的需求明显衰减。新时期,淤地坝的作用到底是什么?淤地坝的社会经济效益如何?什么地方适合新建淤地坝?这将是迫切需要科学家解决的问题。最近几年在调查中发现,部分地区将淤地坝和旅游、生态农业、养殖等结合起来,不仅有生态效应,而且经济效益可观,应当是一个不错的发展模式。

    (作者单位:中国地质调查局西安地质调查中心)

    岩溶地区

    治理石漠化 石窝里生“金”

    喻崎雯

    我国西南地区是我国碳酸盐岩层分布最为集中的地区,也是世界三大岩溶集中连片区中面积最大、岩溶作用发育最强烈的典型地区。这里,山岩裸露,土层浅薄,地表水严重缺乏,生态环境十分脆弱。在人类不合理的社会经济活动的作用下,脆弱的生态系统更是不堪一击:植被破坏、土壤退化、岩石裸露,土地生产力严重退化。

    在自然因素和人为因素的双重作用下,石漠化成为我国西南地区最为严重的生态问题之一。

    造成石漠化的自然因素包括岩性、土壤、气候、坡度等。岩性方面,纯质碳酸盐岩地质背景条件下,石漠化更容易发生。由于碳酸盐岩坚硬、持水性低、孔隙度小,加之岩溶裂隙、溶洞等岩溶通道发育,普遍具有地下地表双层空间结构,不利于水土资源保存,导致岩石裸露率高。而碳酸盐岩自然成土速度慢,缺土、少水的生态环境下植被生长速度较慢,也加快了石漠化的进程。

    导致石漠化的人为因素有:过度开垦、过度放牧、矿山开采等。过去迫于人口压力,人类在原本贫瘠的土地上将林地、草地辟为耕地,种植玉米、土豆等粮食作物,且牛、羊以放养为主,毁坏林草植被,导致土壤易被冲蚀。而矿山开采活动,由于强烈的人为扰动造成局部的水土流失和植被破坏,造成大量的山体剥离,形成岩石裸露。

    人为因素是造成缓坡地段石漠化的主要原因。单一的农业结构致使石漠化地区土地生产力低下,农民增收困难,于是形成“越穷越垦、越垦越穷”的恶性循环。据统计,石漠化引起的水土漏失、植被退化、岩石裸露以及耕地流失,导致了4200万缺水人口和5000万贫困人口。

    进入新世纪以来,中国地质调查局会同省级人民政府及相关部门,组织岩溶地质研究所等单位,向西南岩溶地区石漠化“宣战”,形成了以岩溶流域为单元—地质调查为基础—岩溶水开发为龙头—选择适生植物发展生态产业为突破口—人与自然协调发展的石漠化综合治理科学思路,以及试验先行—示范带动—辐射推广的行动方略,在广西建立了果化、弄拉等石漠化综合治理示范区。

    通过开发表层岩溶泉、配套修建水柜等方式,1000多万人喝上了“自来水”,同时也解决了当地部分耕地灌溉用水问题;通过土壤种子库植物调查和特色植物引进培育试验,筛选出火龙果、金银花、苦丁茶、赤苍藤等多种适生特色植物,最终形成具有代表性的特色生态产业,带动周边县市百姓脱贫致富。如今,示范区内曾经的石山已被葱茏的树木覆盖,弄拉示范区基于优美的峰丛地质景观还发展了新型岩溶景观生态旅游业,人民收入大幅增加,成为我国乡村振兴和生态文明示范村建设的样板。

    尊重自然、顺应自然,是实现人与自然和谐共处、协调发展应遵循的基本原则。岩溶地质工作在石漠化综合治理区取得的显著成效,正是推进人与自然和谐共生的生动实践。相信随着科学研究的不断深入和科技水平的不断提升,岩溶地区的山水景观将更加秀丽,人民生活也将越来越幸福。

    (作者单位:中国地质调查局岩溶地质研究所)

    滨海湿地

    抢救性保护 合理化利用

    杨士雄 叶思源

    湿地,被誉为“地球之肾”,仅覆盖地球表面的6%,却为地球上20%的物种提供了生存环境。

    我国湿地面积占世界湿地面积的10%,位居世界第四、亚洲第一。其中,滨海湿地是连接海洋和陆地的重要过渡地带,兼有水、陆两者的生态功能。滨海湿地拥有着盐沼、滩涂、红树林、珊瑚礁、海草床和浅海水域等多种类型,被认为是地球上生物多样性最高的生态系统。

    滨海湿地不仅蕴藏着丰富的水资源、土地资源和生物资源,还具有保护生物多样性、为生物提供栖息地、涵养水源、控制海岸侵蚀、降解污染物、调节气候等重要作用。

    我国滨海湿地总面积为579.59万公顷,占全国湿地面积的10.85%,分布于我国东部沿海11个省(市)和港澳台地区。但在过去的半个世纪里,受人类经济活动的影响,在海平面上升、海岸侵蚀、近岸环境污染、滩涂围垦等自然与人为因素的共同作用下,大面积的滨海湿地资源遭受破坏,并逐渐退化,甚至消亡。截至目前,中国已经损失了53%的温带滨海湿地、73%的红树林和80%的珊瑚礁。仅有24%的滨海湿地被列为保护地,远低于全国湿地平均43.5%保护水平。

    要抢救性地保护滨海湿地,必须科学制定滨海湿地利用政策,合理布局滨海区域生产、生活、生态空间,加强沿海区域水污染治理,建立滨海湿地保护网络体系,加强对敏感物种的针对性保护。近年来,我国对湿地保护工作非常重视,湿地保护工作不断得到加强。在湿地调查和研究、立法和规划、自然保护区建设、湿地恢复重建、国际合作和宣传教育等方面都取得了显著成就,但是湿地保护工作依然任重而道远。

    古往今来,受惠于大自然的馈赠,滨海湿地充当人类宜居环境的天然“空调”,维持了海岸带的生物多样性。绿水青山就是金山银山,实现人与自然的和谐共生,是新时代赋予我们的新使命。朝霞与鹭鸟齐飞,碧水共蓝天一色。保护湿地,建设湿地,就是在保护和建设我们赖以生存的家园。

    (作者单位:中国地质调查局青岛海洋地质研究所)

    东北黑土地

    破解生态密码 保障粮食安全

    戴慧敏

    黑土地是大自然给予人类的得天独厚的宝藏。全球仅有四大黑土区,分布在我国东北地区、美国密西西比河流域、乌克兰大平原和阿根廷潘帕斯草原,总面积约9.16亿公顷,仅占地球陆地总面积的6%左右。

    我国东北黑土区总面积约100多万平方千米,其中典型黑土地以弯月状分布于黑龙江、吉林两省,面积约17万平方千米,目前已开垦出耕地700多万公顷,粮食产量占两省的60%以上,是中国最大的商品粮生产基地。

    由于黑土土壤生境湿润寒冷,微生物活动较弱,有机物分解慢,腐殖质含量高,人们常用“一两土二两油”来形容黑土地的肥沃。但人们在黑土地开垦初期错误地认为,肥沃的黑土地可以在没有任何投入的情况下可持续利用,进而以掠夺性生产方式开垦黑土地,导致黑土地质量下降。

    有调查研究显示,黑土区平均每年流失0.3~1厘米厚的黑土表层,土壤有机质每年以1/1000的速度递减。由于多年水土流失,黑土区原本30~100厘米厚的黑土层有的只剩下20~30厘米,有的地方甚至已经露出黄土母质,基本丧失了生产能力。按这一流失速度测算,黑土地现有的部分耕地再经过40~50年的流失,黑土层将全部消失。

    中国地质调查局沈阳地质调查中心实施的黑土地质量地球化学调查,截至2019年完成东北黑土地耕地覆盖区50万平方千米。调查结果显示,黑土地土壤基本无重金属污染,黑土地环境质量依然优越,土壤质量以良好和优质为主。而且,还在黑土地分布区发现了大量的连片富硒土壤。

    黑土地关乎国家粮食安全与生态安全,黑土保护刻不容缓。但如何实现对黑土地保护性开发,以及如何对退化的黑土地进行修复,都是亟待解决的问题。

    所幸,有关致力于破解黑土地生态密码的地质科学研究项目正在进行。中国地质调查局沈阳地质调查中心已获取了东北黑土区不同时期(1985年、2000年、2017年)土地利用变化、水土流失影响因子、生态问题专题因子等,开展了土地利用类型相关转换的研究,初步构建了数量与质量相结合的黑土退化动态监测体系。这些成果详细介绍了当前黑土区土壤的厚度、剖面构型等特征,以及土壤中有机质、氮、磷、钾、微量元素和稀土元素等化学元素的含量,反映了黑土地的最新状况。

    摸清资源家底,明确保护方法,并做好土地可持续利用规划,方能实现黑土地的保护性利用,夯实国家粮食安全的“压舱石”。

    (作者单位:中国地质调查局沈阳地质调查中心)

    循自然之道 享地球之美

    探索资源环境和谐发展之路

    邓杰 邓善芝

    资源的综合利用,主要是指在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用;对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用;对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    资源综合利用的重要性

    矿产资源综合利用不仅是解决矿产资源短缺的重要途径,而且是实现矿业经济可持续发展战略目标的现实选择,对有效利用和合理保护自然资源起着积极的推动作用。矿产资源综合利用是矿产开发的一项重要政策,也是合理开发、保护环境、维护生态平衡的一种有效手段。在矿产资源综合利用过程中,倡导低碳经济不仅有利于缓解我国经济发展的资源约束矛盾,调整优化结构和转变经济发展方式,而且对于减少污染排放、改善环境质量具有重要意义。

    1.矿产资源低碳开发

    就我国有色金属工业来说,每年排出废石上亿吨、尾砂7000多万吨,占用大量土地;数亿吨废水只有少部分复用或处理达标后排放。有色金属材料生产过程的许多材料含有一定量的有毒金属,如汞、镉、钍等,产生的废弃物已成为环境污染的重要因素之一。有色金属采选回收率仅为50%~60%;矿产资源综合利用率达70%的矿山仅占7%,综合利用率达50%的矿山不到15%,75%的综合型矿山企业综合利用率不到2%~5%;选矿回水利用率65%~70%;尾矿综合利用率为20%左右;冶炼的资源综合利用率为40%~60%,许多共、伴生矿没有综合回收;工业水重复利用率为72.8%;固体废物资源综合利用率为7%~8%;SO2的利用率约70%左右,致使每年排放大气中的SO2高达50余万吨。因此在有色金属工业的采、选、冶、加工过程中,对尾矿及“三废”进行综合利用显得格外迫切。

    2.再生资源回收利用

    除开展矿产资源的综合利用之外,发展再生资源回收利用也是非常重要。

    发展再生资源回收行业,可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。业内预计,到2020年末,我国再生资源回收行业整体产业链产值将达3万亿元。

    资源综合利用的途径

    综合利用固体废物生产的产品包括:利用煤矸石、铝钒石、硼尾矿粉、锅炉炉渣、冶炼废渣、化工废渣及其他固体废弃物生产建材产品、电瓷产品、肥料、土壤改良剂、净水剂、作物栽培剂;利用制糖废渣、滤泥、废糖蜜、淀粉废渣、造纸污泥等生产造纸原料、建材产品、酒精、饲料、肥料、赖氨酸、柠檬酸、核甘酸、木糖,碳化硅、饲料酵母,及多种有机糖类。

    综合利用废水(液)生产的产品包括:利用化工、纺织、造纸工业废水、制盐液(苦卤)及硼酸废液,生产银、盐、锌、纤维、碱、羊毛脂、多种无机盐类、粘合剂、酒精、香兰素、饲料酵母、肥料、制冷剂、阻燃剂、燃料等;利用酿酒、酒精、制糖、制药、味精、柠檬酸、酵母废液生产饲料、食用醋、酶制剂、肥料、沼气,以及利用糠醛废液生产的醋酸钠;利用石油加工、化工生产中的废硫酸、废碱液、废氨水以及蒸馏或精馏釜残液,生产硫磺、硫酸、硫铵、氟化铵、芒硝、硫化钠、环烷酸、肥料,以及酸、碱、盐等无机化工产品和烃、醇、酚有机酸等有机化工产品。

    再生资源生产的产品包括:回收生产和消费过程中产生的各种废旧金属、废旧轮胎、废旧塑料、废纸、废玻璃、废旧家用电器、废旧电脑及其他废电子产品 ,从中提取金属(包括稀贵金属)非金属和生产的产品;利用废棉、废棉布、废棉纱、废毛、废丝、废麻、废化纤、废旧聚酯瓶和纺织厂、服装厂边角料,生产造纸原料、纤维纱及织物、无纺布、毡、粘合剂、再生聚酯产品;利用废轮胎等废橡胶、废塑料生产的胶粉、再生胶、轮胎、防水材料、橡胶密封圈、塑料制品、建材产品、装饰材料、保温隔热材料;利用杂骨、皮边角料、毛发等生产骨粉、骨油、骨胶、明胶、胶囊、磷酸钙及蛋白饲料、氨基酸、再生革、生物化学制品。

    城市矿产垃圾:放错地方的资源

    据测算,每回收利用1万吨再生资源,可节约自然资源4.12万吨,节约煤1.4万吨,减少6万吨~10万吨垃圾处理量;每利用1万吨废钢铁,可炼钢8500吨,节约铁矿石2万吨,节能0.4万吨标煤,少产生1.2万吨废渣,减少86%的空气污染。

    在“城市矿产”回收体系当中,垃圾分类处理是废弃资源再生回收利用中重要的一个环节。通过分类投放、分类收集,把有用物资,如纸张、塑料、橡胶、玻璃、瓶罐、金属以及废旧家用电器等从垃圾中分离出来回收利用,既提高垃圾资源利用水平,又可减少垃圾处置量。按照一般城市特点,我们将城市可能产生的垃圾进行分类,主要分为:动物尸体、人畜粪便、可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾。

    垃圾分类处理大致分为三个步骤:湿垃圾(有机垃圾)在有机垃圾加工利用厂被加工成有机肥或有机复合肥,用于绿化或农业施肥;干垃圾(无机垃圾)在生活垃圾分拣中心被进一步细化分类为废纸张、废塑料、废玻璃、废金属等可回收利用成分,再由相应的再生利用厂进行再生利用;有害垃圾在有害垃圾分拣处置站分拣,可回收利用物送去回收利用,残渣进行焚烧或安全填埋处理。

    对垃圾进行分类收集,有以下诸多优点:

    一是减少占地。生活垃圾中有些物质不易降解,使土地受到严重侵蚀。垃圾分类,去掉能回收的、不易降解的物质,能减少垃圾数量达60%以上。

    二是减少环境污染。废弃的电池中含有金属汞、镉等有毒的物质,会对人类产生严重的危害;土壤中的废塑料会导致农作物减产;抛弃的废塑料被动物误食,会导致动物死亡。

    三是变废为宝。中国每年使用塑料快餐盒达40亿个,方便面碗5亿~7亿个,一次性筷子数十亿支,这些占生活垃圾的8%~15%。1吨废塑料可回炼600公斤柴油。回收1500吨废纸可生产1200吨纸。1吨易拉罐熔化后,能炼结成1吨很好的铝块,可减少开采20吨铝矿。生产垃圾中有30%~40%可以回收利用,应珍惜这个本小利大的资源。

    石墨,缘何脱颖而出?

    曾小波 徐明

    2008年,英国曼彻斯特大学两位学者因发明石墨烯材料获得诺贝尔奖,在全球引发“石墨热”;欧盟宣布石墨烯入选“未来新兴旗舰技术项目”,并设立专项研发计划;日本将石墨作为重要战略性矿产资源进行储备;美国将石墨列为高新技术产业的关键矿物原料,实行立法保护。2015年10月,习近平总书记考察访问英国莫彻斯特大学石墨烯重点实验室;2015年10月,华为与曼彻斯特大学石墨烯研究所签订石墨烯合作战略协议;2016年,《全国矿产资源规划》将晶质石墨列为我国战略性非金属矿产资源。

    石墨烯晶体结构模型

    石墨到底是一种什么样的资源,为什么会在众多矿产资源中“脱颖而出”?在中国经济面临新常态、产业转型升级的关键时期,晶质石墨资源开发及高科技利用将会带来怎样的机遇与挑战?

    一、晶质石墨是什么

    石墨,别称“石涅、石黑、石螺、石黛、画眉石”,是C元素的结晶矿物之一,素有“黑金子”的美称,呈钢灰色、黑灰色,具半金属光泽,有滑感,易污手。

    石墨分为天然石墨和人造石墨,天然石墨可分为晶质石墨和隐晶质石墨。晶质石墨特别是大鳞片晶质石墨是高端石墨产品的重要原料,工业价值较大。

    中国石墨矿产分布及生产加工基地示意图

    二、晶质石墨的战略地位

    1.晶质石墨的性质

    晶质石墨具有金属和非金属两种特性,同时是碳结晶矿物,具有优异的导电、导热、自润滑、耐高低温、高化学稳定性、密封、抗辐射及可塑性型强等特点,使其在光学、微电子、热力学等方面具有独特的优异性能。

    2.晶质石墨的主要产品

    耐火材料:鳞片石墨大量应用于冶金工业中的石墨坩埚和镁碳砖生产等。

    高纯石墨:高纯石墨材料要求C≥99.9% ,用于核能、半导体等高新技术产业的材料,则要求C≥99.99 %。

    铸造工业用石墨:用石墨作铸模涂料,增加铸件的光滑度,减少铸件的裂纹和孔隙。对石墨原料的要求一般粒度0.074mm,含碳70%~80%。

    柔性石墨:具有较高的化学稳定性、耐高低温、耐腐蚀、耐辐射、导电、导热、安全无毒,且具有良好的柔韧性、自粘性和润滑性,广泛应用于石油、化工、冶金等领域。

    胶体石墨:拉丝用石墨乳粒度小于10μm,含碳98%~99%;模锻用石墨乳呈鳞片状,含碳要求在80%~99%以上,粒度+0.15μm。

    锂离子电池负极材料:目前成熟应用的主要是碳石墨材料,是电子、新能源汽车等新兴产业的关键性材料。

    各向同性石墨材料:是核能、半导体、电火花加工等高新技术产业发展急需的高端石墨产品,大量用于单晶硅、多晶硅等半导体材料的制造设备。

    电气工业用石墨:利用石墨制作电极、电刷、碳棒、碳管、阳极板、石墨垫圈等。对石墨原料的要求为粒度43μm,含碳94%~97%。

    石墨烯:是目前发现的最薄最轻、硬度最高、韧性最强、导热性和导电性最好的纳米材料,被誉为“21世纪的新材料之王”。

    3.晶质石墨的战略地位

    晶质石墨是多种工业必需的关键性原料:在航空航天方面,用于制造远程导弹或者航天火箭推进器的材料、宇宙航行设备的零部件等;在国防军工方面,用于制造新型潜艇的轴承,生产国防用高纯石墨、火药、石墨炸弹、隐形飞机和导弹的鼻锥等;在化工方面,用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、泵等设备,用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业;在电子方面,用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层、电磁屏蔽的导电塑料等;在新能源汽车方面,可用于锂离子电池负极材料;在核能工业,高密度的高纯石墨和氟化石墨,用作核反应堆中子减速剂和防原子辐射的外壳;在光伏产业,石墨烯是一种较好的储氢材料,用于制作大比电容的超级电容,提高锂电池的充放电效率,石墨烯也是太阳能电池较好的备选材料。

    晶质石墨将带动新能源、新材料等领域的技术革命。石墨烯将带来诸多工业革命性的技术进步,是未来科技竞争的核心。计算机及互联网领域的技术革命:石墨烯芯片的主频可达1000GHz,是普通晶硅电脑芯片的数百倍;通信领域的技术革命:石墨烯制成的天线以1000GHz的频率正常工作,远超目前常规的天线;新能源工业技术进步:石墨烯制成的超级电容器,充电时间只需1 毫秒,新能源汽车电池有望充电10分钟,连续开行1000公里;国防军工:石墨烯强度比钢强200倍,是现有测试材料中轻度最强的,这将带来武器工业的技术革命。

    4.晶质石墨的需求

    未来,传统领域石墨需求保持稳定,新兴产业石墨需求将快速增长,需求增长集中在晶质石墨。据中国地质调查局预测,2020年晶质石墨需求将达到95万吨,新兴产业需求占比将超过45%,其中,新能源和新能源汽车领域需求约23万吨,核电领域需求约14万吨,高端制造和电子信息等领域需求10万吨以上。预测到2030年,晶质石墨需求将达到135万吨,新兴产业需求占比将进一步提高。

    三、晶质石墨产业发展机遇与挑战

    1.我国石墨资源丰富,资源保障程度高。

    据美国地质调查局(USGS)统计,2017年,全球石墨储量2.7亿吨,80%集中分布于土耳其、巴西和中国。矿石种类上,晶质石墨主要分布在中国、乌克兰、斯里兰卡、马达加斯加、巴西等国;隐晶质石墨矿床主要分布于土耳其、印度、韩国、墨西哥、奥地利、中国等地。多数国家只产出某一类型石墨,中国是少数几个石墨资源种类齐全的国家之一。

    中国石墨资源丰富,总保有量长期位居世界前列,其中晶质石墨资源量约2.6 亿吨。晶质石墨以大、中型矿居多,占矿产地总数的70%,全国晶质石墨保有矿物储量约88%集中分布于大型矿中。目前,我国已形成六大石墨生产加工基地,产量占全国的80%以上,其中晶质石墨主要产地有黑龙江鸡西、黑龙江萝北、山东平度、内蒙古兴和等;隐晶质石墨主要产地有湖南郴州、吉林磐石等。

    2.晶质石墨深加工技术相对落后,尚未成为资源强国。

    长期以来,我国晶质石墨深加工技术相对落后,大量出口低附加值产品,高端深加工产品主要依赖进口,开发利用粗放。

    石墨产品一般分为高纯石墨(固定碳含量>99.9%)、高碳石墨(94%~99%)、中碳石墨(80%~93%)和低碳石墨(50%~79%)四大类,国内企业主要生产低碳、中碳石墨产品,高碳和高纯石墨产品较少。球化石墨、柔性石墨和氟化石墨等深加工产品占比有限,深加工技术相对落后。出口的石墨产品80%为初加工产品,同类产品进出口价格相差悬殊,如球化石墨进口价格是出口价格的两倍以上。

    石墨矿石中含有大量的杂质矿物,晶质石墨矿石的品位较低,一般为3%~15%,但可浮性很好。在选矿过程中,需采用多段磨矿多段选别,通过筛分或水力旋流器分级,及时将已解离的大鳞片石墨分离出来,避免受到反复磨损。

    我国中小型采选企业数量多,生产规模小而散,技术设备落后,采富弃贫、采易弃难等现象突出,晶质石墨利用率仅为40%,资源浪费严重。

    四、结语

    晶质石墨不仅应用于耐火材料、电极电刷、铅笔、铸造、密封、润滑等传统工业领域,更是高端装备制造、新能源、新材料等战略性新兴产业及核电领域的关键资源,被誉为“21世纪支撑高新技术发展的战略资源”,素有“黑金”美誉。随着技术发展和应用领域的不断拓展,晶质石墨资源的战略地位越来越受到重视。

    我国是世界石墨资源大国,第一大石墨生产国、出口国和消费国,但长期以来石墨加工技术落后,大量出口低附加值产品, 高端深加工产品主要依赖进口,资源优势未能转化为技术和经济优势。未来,随着我国石墨资源战略地位凸显,科学利用和保护天然石墨资源,开发深加工技术和发展高端产品,将成为石墨产业发展的必然趋势。

     

    绿色引领 科学高效利用资源

    为迎接第50个世界地球日,4月10日,自然资源部中国地质调查局水文地质环境地质研究所联合挂靠所内的中国地质学会水文地质专业委员会、中国地质学会地热专业委员会、自然资源部地下水科学与工程重点实验室、自然资源部地下水矿泉水及环境监测中心、自然资源部地下水科学与工程野外试验研究基地、自然资源部地下水科学与工程科普基地、河北省\中国地质调查局地下水污染机理与修复重点实验室、中国地质调查局地热资源调查研究中心、中国地质科学院年轻沉积物年代学与环境变化重点实验举办了以“珍爱美丽地球,守护自然资源”为主题的科普宣传活动。通过参加河北省自然资源厅和河北省电视台节目录制、发放宣传页、展出主题宣传图板、自然资源部地下水环境应急监测车进校园等系列活动,积极引导全民节约利用地下水资源,加快创建节水型、清洁型社会。

    活动现场举办了水资源与生态保护主题展览,通过展览干热岩资源分布及潜力、浅层地温能开发利用、水热型地热资源开发利用、地下水资源合理利用、土地质量调查与大米挑选等图板,依靠生动活泼的图例,通俗易懂的语言向广大市民详细介绍了水资源与地热资源在保护生态环境、服务民生、保障民众福祉等方面发挥的重要作用,为广大学生和市民上了一堂生动的科普宣传教育课,激发了群众保护自然资源、提升资源利用效益的强烈意识。为让民众对水资源保护有更加直接的认识,自然资源部地下水与环境应急监测车还开到了活动现场,科研人员现场为民众展示了各种水样测试方法,耐心细致地为大家讲解生活用水常识,引发了公众的高度关注。

    4月20日,水环所面向社会公众开放了自然资源部地下水科学与工程重点实验室、地下水科学与工程野外试验基地、地下水矿泉水及环境监测中心等各类平台。河北正定中学的200余名师生参观了同位素实验室、纳米修复实验室、第四纪地质与环境实验室等。实验室研究人员为参观者耐心讲解了实验操作程序及仪器原理,了解了如何测试水的来源、水的好与坏,在一定程度上激发了大家对地学科普知识的兴趣。现场还为广大师生发放了具有纪念地球日环保主题的笔和本,为市民群众发放了宣传手册。在地下水科学与工程试验基地,师生们参观了多功能试验样方,工作人员讲解了水面蒸发、土面蒸发、不同岩性界面水分动力学过程模拟等试验。接着参观了大型蒸渗系统,蒸渗仪是测定土壤水分蒸腾蒸发、大气降水入渗补给和地下水蒸发耗损的标准仪器,讲解了其组成和功能,使到访师生对水文地质研究工作有了初步了解。在重点实验室,参观了稳定同位素在地质、环境等方面的应用,及样品的前处理和测试方法、放射性同位素氚和碳14在地下水测年方面的应用,以及测试方法。在地下水污染修复实验室,重点介绍了实验室的紫外可见光分光光度计,冷冻干燥机,高速离心机和恒温振荡器,并对在仪器中进行过硫酸盐降解条件实验和微米级活性炭粉吸附降解地下水中石油烃的模拟实验进行详细讲解,学生们十分感兴趣,对为什么用锡箔纸包裹,碳粉悬浮方法提出的疑问进行了耐心解答。

    4月23日,为扩大科普受众范围,进一步传播地质科普知识,水环所赴石家庄四十二中学举办了第50个地球日科普行活动,吸引了近300名师生参与其中,并发放了第50个地球日科普宣传手册。活动伊始,首先向在座师生播放了“地下水的朋友圈”和“水文地质钻探工艺”等2部科普视频,以师生喜闻乐见的动画卡通形式形象展示了地下水属性、地下水分布特征、地下水分类、地下水开发利用以及地下水保护等基础水文地质科普知识,开展了“地热-身边的清洁能源”和“全球变化与第四纪地质”等科普讲座,以视频、音频、动画等多种形式生动宣传了地热资源与节能减排、全球变化研究历史与第四纪及其意义,讲座贴合中学生心理特征和知识结构,在普及地质知识的同时,激发了同学们学习科学、探索科学、热爱科学的热情与兴趣,提升了科普工作的科学意义和社会意义。

     

     

     

     

     

     

     

     

     

     

     

     

     

     
     
    水环所举办第50个世界地球日系列活动

    近日,自然资源部中国地质调查局北京探矿工程研究所钻井化学研发中心申报的“一种水基钻井液及其制备方法”获得国家发明专利(专利号ZL201610320011.7),为深部热能绿色勘查再添利器。

    随着我国高温地热、深部科学钻探及深部油气资源开发,钻遇的高温地层越来越多,井内长期处于高温环境,钻井液疲劳现象时有发生。油基钻井液抗高温效果较好,但成本高,更为要害的是废浆处理剂困难,易造成环境污染。而环境友好型的水基钻井液中各组分在高温下会发生分散、聚结及降解、交联等反应,从而导致钻井液流变性能发生剧变,严重时甚至会导致钻井作业无法正常进行。保持钻井液高温流变性稳定已成为高温井钻探面临的技术瓶颈之一。本发明专利提供的水基钻井液,在220℃高温下流变性能相对稳定,解决了钻井液在高温下流变性控制难的问题,可为我国干热岩勘查、深部科学钻探及深部油气开发提供有力技术支撑。

     

     
    北京探矿工程研究所新获国家发明专利强力支撑深部热...

    2018年12月3日,为更好地面向国家重大需求,推进科技创新引领新时代地质调查工作,自然资源部中国地质调查局武汉地质调查中心泛珠三角工程首席黄长生一行7人,应邀前往中国科学院武汉岩土力学研究所开展学术交流与业务合作调研。 

    交流座谈会上,中科院岩土所薛强副所长围绕“资源、能源、环境领域国际一流的研究机构”战略定位,介绍了中科院岩土所面向国家重大工程需求、面向国民经济主战场,在环境岩土、特殊土力学、城市地下空间开发、深部资源探测等领域提供的全套解决方案。黄长生介绍了武汉地调中心业务发展、中南地质科技创新中心建设、长江流域水文地质与水资源调查、粤港澳大湾区及海南生态文明试验区综合地质调查、武汉多要素城市地质调查等方面的工作情况和取得的重要成果。

    中科院岩土所刘磊副研究员系统讲解了固体废弃物安全处置与生态高值化技术,重点就温纳-偶极探测技术、好氧通风降解技术、多参数一体化远程在线监测系统等自主研发技术,以及在生活垃圾原位隔离、市政污泥固化稳定、矿山生态修复、污染土及河湖底泥处置多领域的应用情况。张先伟副研究员汇报了岩土所在特殊土方向科学研究、土体性质分析、指导工程应用的研究成果,提出了双方在土力学结合地质调查支撑服务地方发展的合作设想。李琦研究员介绍了岩土所自主研制的重大试验设备,包括岩石动三轴试验系统、微米CT、核磁共振成像、真三轴、岩石渗透-流通反应-波速成像室内测试系统。

    黄长生一行对中科院岩土所依托国家重点实验室开展基础研究,依托长江经济带固废产业技术研究院开展技术开发与集成,通过中宜生态土研究院实施技术输出及成果转化的全链条形式表示赞赏。并就压性构造带找水、岩石破裂应力空间拓展过程与岩土所科技人员展开学术探讨。黄长生一行还参观了岩土力学与工程国家重点实验室、能源与废弃物地下储存研究中心实验室、污染泥土科学与工程湖北省重点实验室。

    双方认为,要充分发挥各自优势,围绕粤港澳大湾区、长江经济带等国家重大战略,强强联合、共谋发展,多角度推动战略合作,并探讨了优先合作领域。

    武汉地调中心与中科院武汉岩土力学所开展业务交流

    泰晤士河是英国伦敦的母亲河,但在19世纪中期以后,河流污染严重,生态环境不断退化。从19世纪中期至今,英国政府与社会对其开展了长期治理。在治理过程中,以英国环境研究理事会及英国地质调查局为代表的地球科学研究机构做出了卓越贡献,提供了大量基础数据和地球科学认识。泰晤士河的治理,形成了在法律、机构、资金、产业、科研、技术等多方面的经验,可为我国江河污染治理和生态修复提供借鉴。

    工业革命以来的严重污染

    泰晤士河全长约346千米,为英格兰最长河流,全英国第二长河,也是全世界水面交通最繁忙的都市河流和伦敦地标之一。泰晤士河流域面积13100平方千米,占英国国土面积的5.4%;形成了许多城市,除去伦敦之外,还有牛津、雷丁和温莎等,是全国经济发达地区,人口占全国的1/5。泰晤士河是伦敦的主要水源,占总供水的2/3。直到18世纪,泰晤士河水产丰富、野禽成群、风景如画,是著名的鲑鱼产地。

    泰晤士河整个流域的大规模污染主要由工业化引起的人类活动增加所致,且随着社会发展,污染的类型和分布不断变化。

    英国地质调查局的泰晤士河流域三维综合建模

    1780年代,抽水马桶开始流行可看作是污染的开始。因为泰晤士河是伦敦居民的主要水源,污染使伦敦市霍乱相继爆发,导致1832年死亡5275人,1849年死亡18036人,1854年死亡11661人。

    1878年9月3日,“爱丽丝公主号”沉船事件发生。船上800名乘员中有 650人溺毙,这一事件让英国社会高度关注排污口以下河段的污染问题。

    战后即上世纪50年代,合成洗涤剂的广泛使用导致附着在水体表面的污染物难以被降解,河水溶解氧(DO)几乎为零,形成严重污染,几乎没有鱼类能生存。甚至发生了停靠在泰晤士河码头船体的镀层被污水腐蚀而变黑事件,造成了恶劣的国际影响。

    泰晤士河污染所导致的严重后果,迫使英国政府经历了一百多年的治污历程。

    实施全流域治理修复

    泰晤士河流域的治理修复过程可分为三个阶段:转移污染、流域修复和监测巩固。

    1. 转移污染——隔离排污,终端处理

    1848年英国议会通过了《都市排污法》,测量、设计并改进了伦敦下水排污系统。建立起“隔离式”排污系统方案。方案从1834年就已提出,但政府部门间的博弈和讨论不断,一直无法实施。

    直到1858年夏,泰晤士河“恶臭”大规模爆发,迫使在河边工作的英国议会和政府迅速行动,通过一项法案以“改进下水排污系统,尽最大限度防止污水直排泰晤士河”。从1858年到1885年,伦敦泰晤士河相继建成隔离排污系统,加上排污口污水处理,基本奠定了英国泰晤士河水污染治理的“隔离排污、终端处理”的百年规划理念,影响直至今天。

    2. 流域修复——统一管理,系统治理

    1955年至1975年,泰晤士河开始了第二阶段的治理,主要是将治理的范围扩展到了全流域,并采取了系统方法进行修复。这一时期,英国水资源经历了从地方分散管理到流域统一管理的历史演变。

    从1960年代起,英国对河段实施统一管理,把泰晤士河划分成10个区域,合并了200多个管水单位,建成一个新的水务管理局——泰晤士河水务管理局,实现了全流域统一管理的可能。

    这次治理秉承全流域治理的理念。大伦敦地区的180个污水处理厂缩减合并为十几个较大的污水处理厂,各类下水和污水处理设施合理布局,升级改造污水处理设施技术,并采取了对河流充氧的措施来提高河流的溶解氧。 目前,泰晤士河全流域建设污水处理能力几乎与给水量相等。沿岸的生活污水须经处理后才能排放,污水处理费计入居民的自来水费。

    到上世纪80年代,河流水质已恢复到17世纪的原貌,达到饮用水水源地的水质标准。鱼类绝迹百年后,多种鱼重返泰晤士河。

    3. 监测巩固——全域监测,科技助力

    1975年后,泰晤士河的治理进入了巩固阶段,水资源全流域管理的方法不仅解决了污染治理资金不足的难题,而且促进了城市经济的发展。在此阶段,英国政府一方面不断投资对污水处理设施进行技术改造,如对污水的处理已采用超声波监测控制、污泥密度和包膜电极监测溶解氧等新技术,此外遥测技术也得到使用。另一方面严格控制工业污水的排放,对沿河两岸的工矿企业严加监督,规定除了经过净化处理的水以外,将任何东西排进泰晤士河都是非法的。此外政府利用科研机构开展了全流域多要素的水质监测,并实施了生态净化。

    经济转型和产业升级也是治污的有力措施。近年来,随着英国产业的升级改造和大伦敦区的经济模式转换,重污染工业企业相继关闭,代之以各类文化和服务机构,大大缓解了泰晤士河的污染压力。今天泰晤士河已经重现昔日的碧水蓝天。

    针对一直以来下水道雨污不分流导致的问题,英国政府宣布将耗资20亿英镑,于2020年前在伦敦地下80米处修建一条长达32千米的排污水道,进一步改善污染物在河道外的输送条件。

    环境科研机构的重要作用

    英国环境研究理事会(NERC)下属的各科研机构,如英国地质调查局(BGS)和生态水文中心(CEH)与全国环境保护机构合作,在泰晤士河流域开展了大量的调查研究工作,有力地支撑了系统治理和生态恢复。

    1. 调查监测——提供治理所需的地球科学基础数据

    BGS在泰晤士河口开展钻探,测量汞异常,以确定污染程度和深度,并对防洪和排污进行河道调查,内容包括人居环境调查、河道周围地形图测制、水文调查、水位和河道容量调查等。

    BGS通过河流栖息地调查,形成了流域基底数据,包括地质、地形、水质、水流量等;通过水生微生物分析,揭示季节、年份变化。同时,为了保障城市建设需要,BGS还开展了多个图幅的 1∶2.5万砂石资源调查。

    NERC和环保机构合作开展了水源地监测,在饮用水水源区、重要物种区、娱乐水域、营养敏感区、保护区内布置了上千个监测点,从源头和末端进行水质监测。

    2. 研究评价——深入研究地上地下水相互作用和污染物的运移机理

    BGS研究了地下水-地表水相互作用,通过地下水体、基本流量、硝酸盐、过渡区域、观测站数据、洪泛区、水质、气候变化等因素的分析,揭示泰晤士河流域的地下水体化学状况、灰岩含水层水质量等。

    CEH在上游对影响水资源的土地利用、气候因素、人为磷输入源进行研究,并通过历史水位和全球变化引起的海平面上升模拟,积极评估防洪设施的防洪水平,为达千年一遇水平,确定需加固的区段。

    3. 模拟预测——以三维地质建模和时序分析支持水管理的科学决策

    BGS建立了伦敦地区和泰晤士河流域三维地质模型,包含基本构造、地层、城市地下空间、地质灾害、土地利用、含水层特性数据、水位数据、钻孔地球物理数据、海岸和海洋等数据,从而构建跨学科、多要素、面向决策的整合科学研究基础。

    BGS使用过去120年的降雨、径流、蒸散等数据进行水流模拟,形成基于时间序列分析的预测成果。

    CEH通过藻类和磷集成模拟的流域研究,对一系列缓解和适应战略的成本效益进行了评估,认为最有效的策略是将化肥用量减少20%,同时对废水进行高标准处理。其结果可使水质接近欧盟水框架指令的指标。

    CEH通过区域气候模式获得的降雨量和潜在蒸发量,模拟了泰晤士河流域未来流量的变化。

    4. 支持修复——机构主动作为,助力保护修复

    NERC的各科研机构主动参与并实施伦敦各河流行动计划(2009),恢复和改善伦敦的各条河流,改善洪水管理;改善野生动物栖息地,支持可持续发展;帮助城市适应不断变化的气候,为伦敦人提供更好的生活。

    我国可以从中借鉴什么

    1. 建立权威的流域管理机构对流域实施统一管理

    1960年成立的泰晤士河水务局,被赋予流域管理机构的权力后,治理产生了立竿见影的效果。这种大胆的体制改革被欧洲称为“水工业管理体制上的一次重大革命”。从泰晤士河流域的治理经验来看,一个强有力的具有综合决策和协调手段的流域管理机构是整治流域水污染的基本条件。

    我国当前应改变流域用水、管水、治水等工作的分散局面,解决无权过问行政及经济方面受到制约的局面,可成立治理专门委员会,对流域进行统一规划与管理,提出水污染控制政策法令和标准,并建立相关治理项目。

    2. 加快完善水污染治理相关法律法规

    从泰晤士河的治理历程来看,逐步完善水污染防治相关法律法规发挥了举足轻重的作用。内容涉及水资源保护、污染源管理和控制、水环境管理、水质监控等方面。其中,《污染控制法》明确了对各种违规行为的处罚规定,对污染城市河流及其他水环境的行为,起到令行禁止的作用。

    我国可在目前水资源保护标准上,充分考虑水环境保护、水资源管理和水污染防治三者的历史依存关系,坚持水资源开发利用和水环境管理监督职能应完全分开的原则,适时出台一些法律。

    3. 重视科技创新,以地球系统科学引领规划治理

    在泰晤士河治理过程中,科学技术的支持作用非常突出,特别是泰晤士河的第二次治理是在有关科学研究的前提下实施的。科学研究帮助水务局制定了科学合理、符合生态原理的治理目标,根据水环境容量分配排放指标,并及时跟踪监测水质变化。在此过程中,英国环境研究理事会和英国地质调查局发挥了专业优势,提供了十分有价值的地球科学数据和知识。

    我国在水污染治理中既要持之以恒,同时也需要科学的研究与规划。尤其是要发挥中国地质调查局的地球系统科学优势,持续不断地提供调查、监测数据,深入研究地表水和地下水的关系,适时提供关于流域的研究评价成果,为治理和修复提供地球系统科学解决方案。

    4. 建立资金保障机制,开辟多种融资模式

    为了解决资金缺口问题,泰晤士河采取了多种融资方式,这些融资方式成功的一个主要特点是市场化运作。如泰晤士河水管理局通过向排污者收取排污费,并发展沿河旅游娱乐业,仅1987年~1988年,其总收入就达6亿英镑,这不仅满足了水环境治理的需要,还向政府上交盈利2亿英镑。我国可充分调动政府、企业与社会的积极性,为私营部门进入污染治理领域创造制度与政策环境,从而造就多元化融资模式。

    5. 加快促进沿岸产业结构的转型升级

    泰晤士河在治理过程中并没有强迫关闭沿岸企业与工厂,而是提高了排污相关指标。全面实行“污染者付费”原则,并制定了相关法律,加快促进沿岸产业结构的转变。因此,我国可探索构建政府部门与流域企业的和谐关系,引导、鼓励其实现转型升级、绿色发展,从源头上减少污染,并在治理中加强政府管理。

    6. 掌握先进的污染处理技术和生态防治措施

    泰晤士河在治理过程中结合了工程治理措施与生态防治措施,采用了先进的污水处理技术,以及如芦苇床处理系统为代表的湿地污水处理工艺,以实现人工净化加自然净化的效果。我国也应该应用这些污水处理技术,引进或探索适合于我国气候条件的生态净化措施,寻找可检测污染物水平的化学、生物指标。

    (作者单位:中国地质调查局发展研究中心)

     

    地球科学机构在泰晤士河流域治理中的支撑作用

    一、可燃冰的概念是什么?

    可燃冰,学名“天然气水合物”,是一种气体分子和水分子在低温高压下形成的结晶物质,分解为气体后,甲烷含量一般在80%以上,最高可达99.9%。

    可燃冰外貌极像冰雪,遇火可以燃烧,又称“气冰”、“固体瓦斯”等。自然界中多呈块状、层状、透镜状、结核状、脉状、浸染状、分散状等形态。2007年起,在我国海域陆续发现了多种形态的可燃冰,2009年我国祁连山冻土区发现的可燃冰则以裂隙充填型为主(图1)。

    图1 我国可燃冰产状特征

    二、可燃冰的结构是怎么样的?

    可燃冰主要有三种结构类型。I型由甲烷、乙烷、二氧化碳、硫化氢等较小直径的气体分子和水分子结合而成;Ⅱ型由甲烷、乙烷等小分子,丙烷及异丁烷等较大分子和水分子结合而成;H型由气体组分中有异戊烷等较大气体分子和水分子结合而成(图2)。

    图2 I型、II型和H型水合物结构类型示意图

     

    在自然界,Ⅰ型可燃冰最常见,Ⅱ型次之,H型较为罕见。我国南海北部的可燃冰以I型为主,甲烷含量最高达99.5%。祁连山冻土区的可燃冰以II型为主,甲烷含量为54%~76%,除甲烷外,还有乙烷、丙烷等其他烃类气体。

    三、形成可燃冰的气体来源有哪些?

    可燃冰的形成需要大量的烃类气体,这些烃类气体有的来自于微生物的分解,也有一些来自于深部油气田的热降解,当然也有两者混合形成的。相应的可以分为三种类型,分别是微生物气型、热解气型、混合气型。

    在海域发现的可燃冰绝大多数为微生物气型,我国南海北部海域发现的主要属于这种类型。在陆域发现的可燃冰以混合气型、热解气型为主,如我国祁连山冻土区发现的可燃冰。可以利用碳同位素的比例关系,来判断可燃冰的气体来源(图3)。

    图3 可燃冰气体来源判别图

     

    (中国地质调查局油气资源调查中心,“青南藏北冻土区天然气水合物调查”项目供稿)

    可燃冰是什么?