分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到9条相关结果,系统用时0.039秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    自然资源部中国地质调查局地学文献中心近期出版的内部刊物《国外地质调查管理》2020年第11期对《Nature》杂志2020年2月号发表的一篇题为《通过矿物碳化封存二氧化碳》的述评文章进行了报道,以期为支持和促进我国应对气候变化的行动提供参考和借鉴。

    碳捕集与封存(Carbon Capture and Storage,简称CCS)是指将大型发电厂所产生的二氧化碳收集起来,并用各种方法储存以避免其排放到大气中的一种技术。这种技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法。文章指出,碳捕集与封存技术对于实现《巴黎协定》减缓气候变暖的目标具有关键作用。目前大多数正在进行的CCS项目都是将CO2注入沉积盆地,但此方法捕集时间可能过长,存在二氧化碳泄露的风险。另一种方式是,将捕集的碳注入活性岩石中来封存,激发CO2的矿化作用,从而永久固碳,这样碳返回大气的风险可忽略不计。

    文章对矿物碳化封存二氧化碳的原理、目前完成的实验和现场研究进行了详细的论述,研究分析了矿物碳化的潜力(指出洋中脊的理论封存能力约为100~250万亿吨CO2——这比所有化石燃料燃烧所产生的CO2量还大),重点阐述了使该技术更具成本效益以及探索二氧化碳矿化的限制因素和全球适用性方面的进展。文章就矿物碳化CCS技术的未来指出:(1)在向沉积盆地注入CO2不可行的情况下,原位矿物碳化可以提供一种安全和经济的选择,需要大量努力来通过矿物碳化加速二氧化碳封存的部署。(2)更大规模应用原位碳矿化的最大障碍不是技术,而是对CCS的经济鼓励措施。(3)已经确定了碳矿化的最优选项,但是只有通过加深对这种方法局限性和应用潜力的认识,才能实现其更广泛的适用性。

    地学文献中心报道通过矿物碳化封存二氧化碳技术进展

    17岁进入地质队,到今年他已57岁。四十年山水相依,四十年风雨兼程,周琦说,他仅仅做了一件事——高原寻锰。

    风餐露宿的勘探,日晒雨淋的跋涉,这位贵州省地矿局首席科学家的脸色也基本上成了“锰褐色”。曾几何时,锰矿是南半球的“专利”,而如今,中国“贫锰”的帽子,如同当年贫油的帽子一样,被远远甩向了太平洋。周琦,一个土生土长的贵州汉子,率领团队,在黔东地区发现并探明了4个世界级超大型锰矿床,一举改变了中国锰矿在世界的格局。贵州锰矿资源储量一跃成为亚洲第一,黔东地区成为了中国锰矿资源最丰富的地区和世界级锰矿资源富集区。

    “锰矿,穷毕生精力找到它,作为地质人,我初心无悔。”周琦对笔者说。

    寻找接续资源迫在眉睫 

    进入21世纪以来,贵州锰工业迅速发展,锰矿资源需求量迅速上升,锰矿石供需缺口加大。已探明的老矿区锰矿资源几近枯竭,寻找接续矿产资源迫在眉睫。

    时任贵州省地矿局103地质队队长的周琦,把找锰当成了第一要务。他带领团队在松桃西溪堡地区开展地质普查评价,历尽曲折,未见进展。接着又在笔架山一带布置了两个钻孔,也没有结果。就这样,吃在大山里,宿在大山里,梦在大山里,周琦恨不得钻进地下看个明白,一探究竟。

    2000年春节刚过,第一个钻孔完成,显示无矿;接着打第二个钻孔,结果还是无矿……接连的失败,接踵的打击。矿在哪里呢?如何找到它?

    周琦17岁自昆明地质学校中专毕业后,就分配到103地质队,开始寻锰生涯。原有的专业知识,已有的找矿经验,显然不能回答现实问题。接二连三的失败与打击,对于弱者可能是灭顶灾难,对于强者却是营养和力量。逆水行舟,面对重重压力,必须提升自我,站到巨人肩上去。周琦选择考研,下决心深造。他一边探索,一边研学,由硕到博,完成了嬗变。“后来我才明白,传统的外生沉积成锰理论是导致失败的主因,必须寻求新路。”通过孜孜求学与独立思考,周琦渐渐找到了打开“芝麻开门”的钥匙。看那地表露头的锰矿,已经被开采得差不多了,我们必须目光向下,向深部要矿,必须将目光深入到千米以下,寻找地下的全隐伏锰矿。因为限于当时的技术条件,千米以下找“盲矿”,难度大,风险高;而传统的方法是由浅入深,即从露头的矿体顺藤摸瓜,大致推测一个方向,再打钻孔检验是否有矿。周琦认为,这种方法不适用于攻深找盲,也找不到深部隐伏锰矿。

    周琦在野外踏勘

    关键时刻改变找矿方法 

    细节决定成败,思路决定出路。周琦决心沿着这一思路,探索创建一套适合于我国的锰矿成矿理论和找矿方法。理论的“大厦”,总是生长于一砖一瓦。每当野外勘查时,周琦总是发现,锰矿体中含有沥青,面对这一种奇异的地质现象,问号总在脑子里打转,“锰矿里怎么会有沥青跑进来呢?”周琦白天走路在想,晚上做梦也在思。为了搞明白就里,每到野外,周琦就坐在公路边或者坑道中,用心观察锰矿,用素描将形态画下来,用相机拍下来。饿了不知道吃,累了不知道困。回到家就翻资料,分析研究。看到他如此“痴迷”,不少人都觉得不可思议:矿,本就是那样;人,却陷入了物我两忘。可周琦偏偏就死抓住这一细节不放。他翻遍了相关文献,他到处请教业内专家,拜师教授,上下求索路径,苦苦寻找着答案。

    周琦决定,再次安排技术人员对西溪堡进行更为详尽的地质工作,在不同的区域点上取样,对锰铬比值进行细致地测试分析。通过数据分析发现,在西溪堡地区,预测的矿体由北到南、从厚到薄、从有到无,分布的规律非常明显。于是周琦便决定在盆地的中心位置设计钻孔,安排带钻普查。

    第一个钻孔打下去,到500多米就见到矿,而且品位超过20%,这样高的品位在103队近几年的锰矿勘查中是极少见到的。团队上上下下都感到了振奋。第二个钻孔打下去,却没有见到矿;第三个钻孔打下去还是不理想。是停下来,还是继续勘探?为了证明自己的理论,应当坚持。第四、第五个孔相继见矿了。但整个矿区还不能连成一个整体。周琦经过仔细分析和慎重考虑,决定改变思路,放弃钻探,改为坑道勘探。当坑道打到508米时,主矿体出现了,这是一个相当完整的矿体啊。周琦终于用实践证明自己的找矿理论是科学的!关键时刻,改变找矿方法,变钻探为坑探的思路与决策,无疑是天才灵感之妙笔!

    改变世界锰矿资源格局 

    2008年8月8日,贵州省地矿局与铜仁市政府签订合作协议,按照“战略合作、促进发展、成果共享、风险共担”原则,对铜仁市优势矿产资源开展合作勘查,由此建立了“地方政府、地勘单位、企业”“三位一体”矿产资源合作勘查的“铜仁模式”。随即,他们对锰矿率先实施了整装勘查,开展了空前的找锰大会战。作为锰矿整装勘查指挥长的周琦,深感找锰突破的历史性机遇来了。他有对黔东地区南华纪“大塘坡式”锰矿从事30多年的理论研究与实践探求,也走出了初期找锰的种种困惑,锰矿找矿新突破的曙光就在眼前。

    作为锰矿整装勘查的指挥长和技术总负责,周琦拼了,他带领的找矿团队也拼了。他们不断总结找矿经验,完善找矿理论,使黔东地区南华纪“大塘坡”式锰矿研究不断取得新突破,创立了锰矿气液喷溢沉积成矿原创性理论和隐伏新类型锰矿找矿预测关键技术方法等,用以指导锰矿整装勘查区找矿预测研究和勘查工作。新的找锰理论技术指导和支撑大会战,找矿成果凸显。仅钻探工作量就完成了30多万米 ,若将钻杆相连,可以从贵阳市拉到铜仁市了。就这样,他们先后发现并探明了亚洲最大的锰矿——松桃普觉隐伏超大型锰矿,以及道坨隐伏超大型锰矿、桃子坪隐伏超大型锰矿和松桃高地隐伏超大型锰矿等4个世界级隐伏超大型锰矿,新增锰矿资源量6亿多吨。要知道,全球仅有13个储量超1亿吨的超大型锰矿,贵州铜仁就占4个,不仅改变了世界锰矿资源勘查开发格局,还一举改写了世界超大型锰矿床主要分布在南半球的历史。

    梅花香自苦寒来。历经40年,周琦终于建立起一套较为完善的锰矿成矿新理论,并据此创建了一个新的隐伏锰矿找矿预测方法,使我国找锰实现了历史性重大突破,同时还创造了上万亿元的潜在资源价值。周琦因此于2017年获得了我国地质科学领域的最高奖——李四光地质科学奖;2018年,荣获贵州省最高科学技术奖;2020年5月,获得第二届全国创新争先奖状。

    四十年,周琦只做了这一件事,把青春无悔地献给高原,将论文写在了祖国的大地上。

    他把论文写在祖国大地

    10月26日,从北京传来喜讯:第十五次李四光地质科学奖颁奖,贵州省地矿局总工程师周琦喜获“李四光地质科学奖野外奖”,成为贵州省首位李四光地质科学奖获得者。10月30日,记者采访了获此殊荣的周琦。

    改变格局,摘下中国“贫锰”帽子

    数十年来,54岁的周琦只做了一件事——找锰矿。长期的野外工作,导致这位总工程师的皮肤染上了茶色。

    长久以来,锰矿是南半球的特产,我国曾长期戴着“贫锰”的帽子。

    如今,“贫锰”的标签正在被一点点撕下,而周琦正是其中重要的贡献者之一。

    他率队先后发现了4个世界级超大型锰矿床和1个特大型富锰矿床,这些超大型锰矿床数约占全球总数的1/3,改变了世界超大型锰矿床主要分布在南半球的格局。

    “锰矿是国家十分紧缺的战略矿产资源之一,找到更多锰矿是我们地质人的使命。”周琦经常将这句话挂在嘴边。

    误打误撞,开启40年寻矿之旅

    1978年,14岁的周琦以全县总分第一的成绩从石阡县考入原地质部昆明地质学校,入读地质调查及找矿专业。

    “入校前,我其实不太清楚这个专业是干什么的,真正学了以后,才渐渐喜欢。”周琦回忆道。

    毕业后,在业内资深前辈的引领下,周琦开始接触到了锰矿。

    周琦(左一)在野外现场教学

    “作为国家重要的战略紧缺资源,锰是特种钢不可或缺的合金元素;在新能源汽车电池中,三元锰系电池是主流发展方向……”说起锰的应用,周琦滔滔不绝。

    “由于自产锰矿不能满足国内需求,我国每年需大量从国外进口。2015年,我国锰矿对外依存度高达69%,高于同期石油、天然气。”周琦说。

    从入行时起,周琦便下定决心,一定要为国家找到更多的锰矿,改变依赖进口的现状。

    或许是因为儿时的玩伴——数不尽的群山,一直留在心间。与周琦的交流中,记者发现,无论在深山里待多久,他从未觉得苦。“无论寒暑,做项目八九个月窝在山坳里是常有的事儿,扛着设备和样品满山跑。有时一天下来,肩上和后背上的皮肤都被晒脱皮了,但也不觉得痛。反而是隔上几天不进山,心里就憋得慌。”周琦说。

    就这样,从17岁开始,周琦一直坚持到了今天。

    回炉深造,探究找矿失利原因

    20世纪90年代初,地矿行业发展陷入低谷。周琦当时所在的单位甚至连工资都发不全,同事纷纷另谋出路。改行、调职、下海成了那时很多人的选择,可周琦愣是咬着牙留了下来。

    其实他也很难。彼时他刚结婚,生活负担很重。“那时候我就想着,国家的发展是离不开地质工作的,以后慢慢会好起来的。”周琦的预感没错。没过几年矿业转暖,地质行业开始复苏。就在那时,周琦承接了一项原国土资源部下达的关于黔东地区锰矿资源调查评价的重要项目。

    可项目进行得并不顺利。以前,技术人员通常在初步预测某地可能蕴藏有锰矿后,便会对目标区域进行打孔,以验证是否有矿。2000年2月,第一个钻孔完成,结果无矿;2000年4月,第二个钻孔完成,依旧无矿。“接连的失败对我来说,是个沉重的打击。为什么我没找到矿呢,思来想去,我觉得这是因为缺乏相关的专业知识。”周琦说。

    一次次打击坚定了周琦要继续深造的决心,接着他开始了考研准备。很快,他考入中国地质大学(武汉)攻读硕士学位,毕业后又在该校继续攻读古生物与地层学博士学位。

    大胆求索,提出成矿新理论

    “后来我才知道,传统找矿方法是导致当时失败的主要原因。”周琦在求学中渐渐找到了问题症结。

    “当时在地表露头的锰矿已经被开采得差不多了,只能将目标锁定在完全掩埋于地下的全隐伏矿,也就是‘盲矿’。限于当时的技术条件,传统的老方法是由浅入深,即从露头的矿体顺藤摸瓜,大致推测一个方向,再打孔检验是否有矿。”周琦说,这种方法不适用于找“盲矿”。

    周琦决心创建一套适合于我国的锰矿成矿理论和找矿方法。

    外出勘查时,周琦总能看到,锰矿体中含有沥青等奇异的地质现象。

    “沥青是怎么跑到矿里来的呢?”为了弄明白这件事,每到节假日,周琦就会坐在公路边或者坑道中观察锰矿,甚至会用素描将它们的形态画下来。看到他如此痴迷,很多人都觉得很奇怪,“这个问题就是那样,有什么可想的?”

    可周琦偏偏抓住了这一点。他翻遍相关文献,请教业内专家、教授,上下求索,却一直未能找到答案,直到2005年9月。

    当时还在读博的周琦参加了全国第三次沉积学大会。“当听到台上学者讲到现代海底天然气渗漏形成甲烷礁时,我发现其沉积构造、化学特征等和6亿多年前的锰矿何其相似!”周琦说。

    于是沿着这一思路,他于2008年在其博士毕业论文中给出了一种全新的锰矿成矿理论——古天然气渗漏沉积成锰理论。

    周琦提出,形成锰矿的物质主要来自于地幔。锰和烃类气体、流体融合在一起从地幔涌上来,在裂谷盆地、断陷盆地等中心区域沉积成矿。这也揭开了锰矿中含有沥青的谜底——沥青是古天然气渗漏沉积成锰过程中的伴生产物。

    经过十年的打磨,如今的周琦和团队终于建立起一套较为完善的锰矿成矿新理论,并依据此理论创建了一个独特的锰矿找矿方法。矿床学界的陈毓川、翟裕生、侯增谦和毛景文等院士都对此给予了充分肯定。

    硕果累累,一片向好“锰产业”

    “地质找矿这项调查研究工作带有很强的探索性,没有强大的理论支撑,无异于盲人摸象。”为了扭转这一局面,周琦反复琢磨前辈们留下的资料,利用古天然气渗漏沉积型锰矿床成矿理论建立的锰矿找矿模型这一方法,周琦及其率领的团队把找寻锰矿的特征从3项增加到8项,研究步步深入,多项技术难题被攻克,深部锰矿找矿成果一发不可收拾。在理论的指导下,贵州省地矿局103地质队进行了由表及里、由浅入深的技术调整,将《贵州省铜仁-松桃地区南华纪锰矿成矿条件与预测》、《古天然气与锰矿成矿-以黔东地区南华纪“大塘坡式”锰矿为例》两项科研成果运用到地质找矿中,为地质找矿拨开云雾。

    通过在贵州铜仁松桃锰矿国家整装勘查区实践检验,新发现以世界第五、亚洲第一的贵州松桃普觉隐伏超大型锰矿床为代表的4个世界级超大型锰矿床,新发现超大型锰矿床数占全球超大型锰矿床总数的约1/3,新增锰矿石资源量达6.17亿吨,超过了2011年全国保有资源量的总和(5.48亿吨),经济价值巨大,维护了国家经济安全,实现了我国锰矿这一战略紧缺矿产地质找矿有史以来的最大突破,成为国务院找矿突破战略行动纲要(国办发﹝2011﹞57号)颁布实施以来,全国代表性的找矿重大突破成果之一。

    目前,黔东地区已是国内惟一的世界级锰矿资源富集区,成为国家最重要的锰矿资源基地和战略供应核心区。

     

    找矿40年,他为中国开启富矿之门

    4月24日,由中国地质大学(武汉)和武汉地质调查中心承办的中国地质调查局“地质调查项目管理人员与项目负责人培训班”在中国地质大学(武汉)秭归产学研基地开班。培训按照专业方向,分为管理、水工环、“一带一路”、基础与科技、海洋、能源、基础与矿产共7个方向12个班。该培训由中国地质大学(武汉)地质调查研究院具体承担,而这样的培训,只是地大地质调查研究院积极推动地质科技创新、倾力培养地质调查人才的一个侧面。

    积极投身地质调查,创新引领科技发展

    近年来,中国地质大学(武汉)地质调查研究院强化内涵式发展,共承担中国地质调查局计划项目4项,二级项目3项,工作项目112项,科研经费共计6.4亿元;为武警黄金部队举办11期各类地质培训,900多名业务骨干参加受训;为国土资源部、中国地质调查局等单位举办20多期各类业务培训,累计培训2000多人次;共培养研究生190余人,其中博士生29人、硕士160余人……无论是科学研究、服务社会,还是在人才培养方面,该院为国家地质事业发展,作出了突出贡献。

    也正因为如此,在中国地质调查局组织开展的上一年度省级地质调查院、省级地质环境监测机构、行业地勘单位和高校下设地调院的评优中被评为优秀,是全国高校中唯一获得优秀的地调院。

    2000年,中国地质大学(武汉)为了充分发挥多学科集成和人才优势,拓宽战略布局,全面参与到地质调查工作中,依据中国地质调查局相关规定,成立了地质调查研究院,这也是我国高校中最早成立的地调院。

    地质调查工作是我国国土资源战略的重要组成部分,其核心是地质科技创新。而地大(武汉)在地质科技创新方面有诸多优势,如学科、队伍、平台、技术方法等,这些均是服务地调事业的优势。校长王焰新提出:“把中国地质大学(武汉)地质调查研究院建设成具有科技创新能力、承担国家重大地调项目、培养高水平地调人才的国内一流、国际知名地调院”。10多年来,该院在基础地质、矿产资源、水文地质、工程地质和环境地质等研究领域围绕国家战略需求,结合学科前沿,开展了大量探索性研究和创新实践,取得了一系列具有国际先进水平的成果。

    每一个大型地质调查项目的科技创新,对地调院师生而言,都是一次“赶考”。以中国科学院院士殷鸿福为首的科研团队,完成了中国地调局重大项目《中国西部不同类型造山带区域地质填图方法》,被业内赞誉“启动了我国青藏高原空白区和造山带1:25万填图,是我国地质填图里程碑的一个项目。”该项目组完成的《东昆仑造山带1:25万冬给措纳湖幅》,被评为全国区域地质调查优秀图幅一等奖。其主要研究成果“大地构造相方法”和“造山带混杂岩片四维裂拼复原法”被中国地调局在青藏高原开展的1:25万地质填图中广泛采用,为大力推进我国西部区域地质和国土资源的调查起到奠基和示范作用。

    在传统的地质填图中,地质工作者以手工方法进行,这种方法费时费力,还不便于数据的共享、交流和修改更新。以张克信教授为负责人的工作团队,克服种种困难,完成了软硬件的定型、野外测试,为改进和优化数字填图系统起到了积极的推动作用,并且率先在全球完成了首幅“青海省民和县幅数字地质图”。其成果《1:25万民和县幅数字区域地质调查》,荣获2012年度中国地质调查局优秀成果一等奖。张克信说:“数字填图可以加强多源数据整合技术的研究,建立和完善数字地质填图中的野外地学数据与地球物理、地球化学和遥感空间数据的整合,提高地质调查的科技含量和研究的广度、深度。”

    《西准噶尔克拉玛依后山地区复杂造山带三维地质调查》是中国地质调查局地质矿产调查评价三维地质调查的示范项目,担负着“从传统走向现代、从单一走向综合、从二维走向三维”的研究重任,王国灿、徐义贤教授作为主要负责人,2012~2014年间的夏季,带领师生奔赴天山南北,在茫茫荒原上地从事考察工作。2016年,该项目获得中国地质调查局地质科技奖二等奖。专家们认为,项目以地表地质调查资料为基础,结合地球物理勘探资料和钻探资料,揭示了研究区主要三维地质结构,包括岩石地层单元格架及三维展布、后碰撞花岗岩体三维形态、蛇绿岩带的三维分布、就位机制及石炭系下伏基底属性以及西准噶尔造山带与准噶尔盆地构造关系……

    主动服务国家需求,承担人才培养重任

    国土资源调查的重要任务之一,是在系统的地物化调查基础上,通过成矿理论和勘查技术创新,开展矿产资源远景评价和靶区预测,为新的矿产资源寻找与开发提供科学依据。

    中国地质大学(武汉)地调院师生在当前找矿难度加大、调查地区工作条件艰难的情况下,发扬求真务实、勇于创新、追求卓越的精神,取得成矿理论和找矿突破方面重大进展。如由成秋明、夏庆霖教授团队负责的中国地调局计划项目“覆盖区矿产综合预测”,实施3年来,已经取得具有国内领先的成果:利用非线性矿产资源预测评价理论成功指导福建、内蒙古、新疆等地探矿找矿工作取得突破,该项目的主要成果已获得2015年国家科技进步二等奖。

    在西部国土资源大调查方面,郑有业教授团队先后在西藏冈底斯、北喜马拉雅等成矿带组织发现与评价了冈底斯斑岩铜矿带上第一个超大型驱龙铜矿床,也是我国首个规模超千万吨级的铜矿床。此后,还在发现朱诺超大型斑岩铜矿床、帮布勒大型铅锌矿床等方面起到了关键作用。其有关冈底斯成矿带的找矿成果成为2011年国家科技进步特等奖“青藏高原地质理论创新与找矿重大突破”的重要组成部分。

    地调院在服务地方经济和生态文明建设方面也成果显著。由地调院副总工程师周宏主持的“湖北宜昌兴山香溪河岩溶流域1:5万水文地质调查”项目,是国内南方岩溶地区1:5万比例尺水文地质调查技术方法示范项目,其成果在2015年被评为全国水文地质调查项目第一。马腾教授主持的“江汉平原重点地区1:5万水文地质调查”项目,不仅承担着国内平原区水文地质调查示范、实践及技术要求编制等重要工作,而且担负着探索长江经济带中部地区地质、环境、生态等关键带研究重大前沿科学问题探索任务。他在“汉江下游旧口—沔阳段地球关键带1:5万环境地质调查”项目中,在汉江下游典型区开展1:5万地球关键带环境地质调查,针对典型环境地质问题,查明地球关键带的三维结构特征,建立流域尺度的地球关键带监测网络,构建基于地质—水文—生态多过程耦合的关键带模型,探索我国平原地区1:5万地球关键带环境地质调查方法体系,为我国全面开展地球表层系统关键带研究开辟了新的道路。

    除了承担国家地调科技创新和实践外,地调院还承担为国家地调事业培养地学类专业高级技术人才的重任。在人才培养方面,地调院除了注重学生基本理论知识的学习与研究,还特别强调学生野外地质工作基本技术方法掌握和实践能力提高。为此,地调院利用与中国地调局各地调中心及直属单位的长期业务关系,探索了“产学研”结合的人才培养模式,安排学生到各类地质调查项目承担实质工作,通过系统的地质调查和科研实践活动锻炼学生,达到既出成果、又培养人才的目的。学校主要地学专业,每年有600多名研究生、50多名博士生、100多名本科生参与到地调项目中。“十二五”期间,该院共培养研究生190余人,其中博士生29人、硕士160余人。

    作为高校地调院,该院不仅为学校培养人才,还主动服务社会,积极在行业领域内开展人才培训,积极为中国地质调查局、各省地勘局等单位培训高级技术人才和技术骨干,每年各种培训班人数超500人同时与武警黄金部队开展战略合作,为部队培养了900多名业务骨干。

    构建科学管理机制,质量成果全面丰收

    在各行业竞争激烈的今天,如果管理体制机制不健全,就会被远远甩在后面。

    为此,地调院代表学校全面按中国地调局要求管理和实施各类地调项目,做到科学、规范、严格、制度化。该院重视项目质量管理,主要体现在项目立项审查、项目执行质量、项目质量评估和监督等方面。近几年,制定完善了《地质调查项目管理办法》《地质调查成果奖励办法》等多项用于规范管理、鼓励创新的规章制度;创新用人机制,地调项目负责人和技术人员实行全员专职、兼职相结合的聘用共享制;建设了全国第一家非国土资源部直属单位建设北斗野外安全保障系统,保障项目野外工作顺利开展;建设了全国第一家高校实物地质资料室;筹建了地质调查实验中心等。

    地质调查项目的过程管理是保障项目质量的关键所在。近几年,地调院专门出台《地质灾害危险性评估类、地质灾害治理勘查、设计类等项目成果报出管理工作细则》《中国地质大学(武汉)地质调查研究项目管理工作细则》《中国地质大学(武汉)地质调查研究院科研成果奖励办法》等管理办法,建立了项目立项论证初审、设计初审、野外质量检查、室内质量检查、成果报告验收初审、野外验收预审等制度。针对地质调查项目的设计编写、野外安全、保密、野外填图技术方法、地层、岩石、构造、矿产地质、遥感、水工环等,该院举办多期次培训。在科学管理上下功夫,就是为了提高地质调查研究项目的质量。连续多年,地调院获得中国地质调查局地质调查项目经费报表考核一等奖。

    目前,地调院依据学校的地球科学学科群登峰计划,不断创新管理方式方法,在项目申报与管理方面,朝跨学科跨单位联合承担重大地调项目的协同组织方式转变。同时,实现以自我循环为主的科技成果转化模式,转向社会化公共服务模式,真正实现高校地调院在人才、科技方面的引领作用。

    雄关漫道真如铁,而今迈步从头越。在将来的发展中,中国地质大学(武汉)地调院将继续以国家需求为导向,以地质科技创新和服务国家目标为主要任务,依托学校学科、人才综合优势,通过承担参与地质调查试点、示范、创新类项目,实现地调队伍成长、高水平学术成果和科技奖项的突破,在地质调查中取得更多有影响力的科技成果。

    做地质调查的源头活水

    1 前言

    近年由于常规天然气资源量和产量的下降,特别是在北美洲,非常规天然气得到了高度的重视。一些估计表明,全球非常规天然气资源量(不含水合物)超过30000万亿立方英尺,大约有50%的资源来自页岩气。Julander能源公司的首席执行官Fred Julander认为页岩气(SG)是“自发现石油以来最重要的能源进展”。

    水平钻井技术的进步、水力压裂、相对高的天然气价格(相比2009年之前)和近来在巴内特页岩(Barnett Shale)和美国其他几个页岩气藏的商业成功都使页岩气在美国成为了热门能源,而且页岩气的勘探开发已开始蔓延到加拿大和世界其他几个地区。

    由于页岩气远景的复杂性和广泛性,针对页岩气的应用不能采用普遍用于常规气和煤层气的应用技术,而需专门设计开发工具和方法。多名学者包括Gray等人(2007)和Harding(2008)认为基于确定性解决方案的决议不适用于页岩气开发,因其没有考虑与复杂成藏有关的风险和不确定性,且经常导致过于乐观的结果。

    到目前为止,尽管在北美和欧洲的勘查活动活跃以及近期商品价格下降,页岩气远景分析工作也只完成了极少的部分。商品价格的下降使最高质量远景区的开发至关重要,这些区域的开发不仅最符合公司的利益,并且赋予公司与国外的低成本常规气田(即卡塔尔和沙特阿拉伯相关的天然气)竞争的最佳潜力。Williams-Kovacs和Clarkson(2011)提供了与非常规的远景分析有关的现有工作的回顾,并提供了一种专为页岩气应用而设计的综合的六阶段远景分析及开发评价方法(PADEM)。本文中,作者还展示了一个专门开发用以筛查页岩气远景区并且选择最适合详细分析远景的工具。本文以Williams-Kovacs和Clarkson的工作为基础,致力于远景评价并选择进行更深入分析的远景区的试点位置。

    当前工作的目标是:①开发一种协助页岩气勘探开发阶段的方法和配套的分析工具;②演示已开发技术在加拿大西部致密砂岩/页岩远景区的应用。这项工作的主要贡献是开发与示范一种针对页岩气远景区的严格分析方法。当考虑共存关系时,基于先导试验井输入变量的不确定性,该方法能生成其预测的分布。以前所有的工作一直专注于全域开发方案,然而无法利用勘探开发早期阶段可获取的少量数据快速形成这种全域开发方案。

    2 工具开发

    在这项工作中,开发了一种用于分析页岩气远景的工具。该工具选择使用(以Williams-Kovacs和Clarkson提出的方法(2011)为例的)预筛选的方法。本文将重点放在该工具的开发和应用,分析某一远景区的不同区域,以确定它们是否是适合的试点项目,并描述了图1所示的PADEM工作流程的勘探阶段。勘探阶段的目的是对从更多的详细资料中筛选的远景进行调查,以增加对油藏流动性和碳氢化合物生成能力的了解。在这项工作中,我们对个别类型油井采用概率范围经济学(probabilistic scoping economics)作为勘探标准,以确定该远景区是否适合实行试点项目。表1中完整提供了Williams-Kovacs和Clarkson(2011)详细讨论整体勘探开发方法的总结。

    表1  勘探开发方法概况

    发展阶段

    概述

    靶区筛选

    评估所有潜在的远景区,并选择能提供最好的商业成功机会的远景区

    勘探

    对远景区进行更详细地调查,提高对油藏流体特性和相应碳氢化合物生产能力认识。确定有代表性的试点项目适合的地区

    试采

    继续提高对远景区的认识,集中验证试采区单井的供给能力,评估完井方法

    商业示范

    在项目提交全部资金预算之前,完成开发部分(30%)针对错误的试验结果的测试

    全域开发

    完成全域开发计划,开始制定退出战略

    新的远景/退出

    完成项目详细回顾,评估区域及具体化开发过程中新的远景相关区域。调整和实施退出战略以及任何所需的补充措施

    在这项应用中解析模型比数值模拟更适用,其原因在于应用程序自设置和初始化的时间很短,整合的蒙特卡罗模拟法简单易行,并且在勘探早期阶段不容易获得形成精准的数值模拟所需的详细数据。尽管数值模拟技术已得到改进,但解析方法在工业和文献中依然被大量使用。下文给出了开发工具的关键部分的概要。

    2.1 属性图

    勘查方法最关键的组成部分可能是关键储层、地质力学、岩石物理和地球化学特性的精确属性图的开发。从地质模型、产量不稳定分析(RTA)、压力不稳定分析(PTA)、岩石物理调查等组合中可以推导出这些属性图。这些属性图用于远景的可视化、区块选区以及单一区块的分析。天然气原始地质储量图(OGIP)、Km-h图、压裂脆性图等有助于选择代表性区块以及具备更大开发潜力的区块,甚至高度非均质性区块。区块作为一种评价不同区块远景生产特性的方法,基于地质和岩石物理的观察,比较简单易于操作。采用区块方法不需要针对每个勘探网区块开发一种标准井进行分析,然而通过应用蒙特卡罗法依然解释了其变化性和不确定性。Clarkson和McGovern(2005)采用区块方法评价了煤层气(CBM)远景。通过输入X-Y坐标值以及PetrelTM软件的储层属性Z值可以在Excel中创建储层属性图。随后,数据透视表程序被用于对数据排序,并利用二维绘图应用软件创建属性图。由于早期的岩石物理模型通常利用有限的数据集开发,单一区块在蒙特卡罗模拟中选择不确定的输入数据和参数范围可以解释模型参数的不确定性。这种解释不确定性的方法将在本文所示实例中进行演示。

    2.2 水力压裂模型

    该项工作中,水力压裂裂缝的半长采用Valko(2001)提出的在常规和致密气中应用的简单双翼压裂模型来预测。该模型采用基质渗透率、剪切模量(杨氏模量与泊松比的函数)以及其他储层参数作为输入数据,且如果建模的输入参数不确定,则都必须重新计算每次蒙特卡罗迭代。采用简单的关联(Acm=4xfh)可将裂缝半长转换为与压裂有关的面积。这个压裂模型可能无法代表部分更复杂的页岩气裂缝。为了更好的表示引入到大部分页岩气储层的复杂压裂网,Xu(2009,2010)等人建立了一个更具有代表性的水力压裂模型,该模型将被结合到本次工作中所演示的更新版本的方法中。该区的微地震观测表明,在本文预测的远景区横向双翼压裂的假设是合理的。

    作为所应用的速率预测模型中的关键组成部分必须估算裂缝半长,这一问题将在下面部分开展讨论。水力压裂裂缝半长在随机分析中作为不确定的输入量,其分布主要根据该地区的微地震事件或者其他方法来确定。

     

     

    图1  非常规天然气勘探阶段的勘探/开发方法工作流程

    2.3 速率预测

    Clarkson(2013)提供了关于页岩气井生产分析和速率预测综合全面的概述。在该工作中,我们将页岩气井理想化为一个矩形双孔介质系统,气体从基质岩块流入到裂缝且储层不随着裂缝延展(如图2的概念模型)。该模型忽略了包括体积压裂(SRV)在内的影响,其他作者认为大部分低渗页岩气井在合理的时间内不会发生体积压裂。此外,图2所示的概念模型假设了一个均质的完井——Amborse等(2011)和Nobakht等(2011a)讨论了非均质储层完井的预测。

    在本次工作中,该模型的解决方案首先由EI-Banbi(1998)提出来。人们普遍认为在页岩气藏中占主导地位的瞬时流动状态是从基质到裂缝的线性流。同时,也可能出现一个与水力压裂线性流动相关的线性流动周期,但是通常认为这个阶段持续时间很短,或者被水力压裂清理以及表皮效应所掩盖,而很少可用于分析。本项工作中,我们假设瞬时线性流(从基质到裂缝)之后是边界控制流,该流态与受表皮效应(见等式7)影响的线性流体模型存在早期偏差。压裂段之间的不渗透边界结构导致了边界控制流产生。由Wattenbarger等(1998)首先将早期线性到边界控制流体的假设引入到致密气的应用中,并且该假设被广泛应用于文献和页岩气行业的解析模型。

     

     

    图2  从线性流到边界流的解的概念模型

    2.3.1 瞬时线性流的速率预测

    EI-Banbi(1998)提出通过恒定速率和恒定流体压力来描述瞬时线性流的公式。本项工作中采用恒定流体压力的条件,这也是本文其他部分的重点——该边界条件最接近大部分产生达到最大水位降低值的页岩气井的流动条件。Samandarli等人(2011)采用不同的流体压力迭代方法,对页岩气生产进行分析建模,但是他们表明在大部分情况下采用恒定流体压力的假设就可以了。

    与常用于表征简单横向双翼压裂的裂缝半长(Xf)相比,相关储层面积(Acm)能更好的表示完井措施和增产措施效果以及生成复杂裂缝的能力。因此,在这一分析中,采用相关的储层(气藏)面积(Acm)取代裂缝半长(Xf)。许多业内专家相信由于页岩气藏超低的基质渗透率,复杂压裂对于页岩气的商业生产至关重要。

    无因次时间,tD,Acm,相关储层面积(Acm)依据公式1在恒定压力条件下定义。

                               (1)

    无因次速率,qD,Acm,由无因次时间定义:

                                           (2)

    基于储层特性的无因次速率表达式,如果可获得关于KmAcm估算值,通过公式(3)可确定气体流速。采用不稳定产量分析或者其他的模拟技术可估算KmAcmKm也可以通过实验室技术单独确定。

                                 (3)

    Ibrahim和Wattenbarger(2006)认为线性流的性能受水位下降程度的影响,同时提出水位下降量修正因子(fcp)。此次工作中采用的修正因子(fcp)由公式4给出。

                                (4)

    此处,

     

    Nobakht等人2011a和Nobakht等人(2011b)通过分析中采用校正时间(本次工作未采用)提出一种更严格的校正水位下降量的方法。

    将水位下降量修正因子应用到公式3得出公式5:

                           (5)

    除了水位下降量的修正,这些公式经过进一步修改可直接应用于页岩气井。与致密气井相比,大部分页岩气井在时间曲线的平方根中表现出的较大截距(在致密气井中曲线通常穿过原点),而在流量和时间双对数曲线上页岩气井则呈现出的一半斜率的偏差。多名作者最初认为是裂缝的有限导流能力造成了这种偏差,但是Bello(2009)和Bello和Wattenbarger(2009,2010)认为这种偏差可以通过采用表面效应来更好的解释。Bello(2009)、Bello和Wattenbarger(2009)在恒定流量和恒定流体压力条件下完成了大量的受表皮效应(skin effect)影响的线性流分析,且推导出了恒定流体压力条件下的解析解。在他们的分析中,将表皮效应作为一个常量。Bello(2009)和Bello和Wattenbarger(2009)证明恒定流量情况下表皮是附加量,而恒定流体压力情况下表皮的作用是非线性的。由Bello和Wattenbarger(2009)提出的解析式可以使用下面的近似代数方程:

                    (6)

    从方程(6)可以看出,当tD(t)值大时,包含表皮的项就会变小。

    Nobakht等人(2012)研究了巴内特、马塞勒斯和蒙特利的大量页岩气井(这些气井在相对恒定的流压下产量不断降低),同时得出结论:通常这些页岩气井更多表现出恒定流量的情况而不是恒定流压的情况。作者假设这种意想不到的表现可能是由于Bello(2009)以及Bello和Wattenbarger(2009)提出的表皮模型太过理想化,因此无法代表野外条件。通过假设恒定的表皮效应,模型不能说明由压裂清理、压力敏感地层、变化的压裂导流能力、变化的井底流压、压力相关的流体性质、变化的井筒流体梯度、液体加载等导致的表皮改变。作为这项工作的结果,作者提出了一个可应用于公式(2)的替代表皮修正项:

                       (7)

    包括水位最低量和表皮的影响,公式(1)、(5)、(7)能够利用预测的气体流量,作为时间的函数,在线性流区域可对KmAcm给出独立的估测。

    2.3.2 边界控制流的流量预测

    上面描述的方法适用于有效的储层边界相互接触,边界控制流形成之前。基于图2所示的几何图形,边界控制流紧随着瞬时线性流的末期出现。当外部SRV的影响较为显著时,这一观点较为保守。Clarkson和Beierle(2011)认为如果遇到了其他的瞬时流区,则应采用多重分区的方法,此外,如果多级压裂井需要进行非均质性储层的完井(heterogeneous completion),早期线性流之后不会立刻发生真实边界控制流,且需要更复杂“混合”预测技术。如同下面叙述的,我们选择采用更为保守预测程序,假设线性流之后紧随边界控制流。

    利用公式8计算达到线性流的拟稳态时间(或者是瞬时线性流的结束时间):

                           (8)

    正如图2中看到Ye是压裂到储层边界的距离,计算公式如下:

                           (9)

    多名作者已经提出了页岩气井拟稳态线性流的预测方法。包括Fraim和Wattenbarger(1987),Palacio和Blasingame(1993),Doublet等(1994),Agarwal等(1999)和Mattar和Anderson(2005)认为可采用物质平衡类模拟程序预测边界控制流。Clarkson和Pedersen(2010)将这种方法应用于致密油研究,同时本文也将采用这种方法。公式(10)给出采用物质平衡方法预测边界控制流的生产速度:

                  (10)

    此处qpssi-Linear是边界控制流初始的页岩气流体速度,Pri)pss是边界控制流初始的平均储层压力,且Pwfi)pss边界控制流体初始时井筒流体压力。通过物质平衡计算平均储层实际气体拟压力。对于含有大量吸附气的页岩气开采(application),一般使用Clarkson和McGovern(2005)提出的MBE方法。而在以游离气为主的情况下,则使用定容气藏的常规MBE方法。物质平衡计算需要地质储量和气体特性(比如天然气压缩因子),这两者都是由关键PVT输入量和状态公式(EOS)确定的。

    (a)

    收入总额

    (b)

    收入总额

    扣减

    使用费

    扣减

    使用费

    扣减

    运营成本

    扣减

    运营成本

    得出

    税前运营现金收入(OCIBT)

    扣减

    资金成本补助(CCA)

    扣减

    收入税

    扣减

    加拿大开发费用(CDE)

    得出

    税后运营现金收入(OCIAT)

    扣减

    加拿大勘查费用(CEE)

    扣减

    资本支出

    扣减

    加拿大油气物业费(COGPE)

    得出

    税后现金流(CFAT)

    得出

    生产应税所得

    贴现

    税后贴现现金流(DCFAT)

    生产税率

       

    得出

    应付税款

       

    扣减

    免税额度

       

    得出

    应付净所得税

    图3  现金流分析:(a)现金流;(b)收入税(加拿大税制)

    结合El-Banbi(1998)改进的瞬时线性流的无因次公式和边界控制流的物质平衡模拟方法,可以开发一种综合的预测方法:

    1)        获取Acm(或者Xf)和Km(来源于微地震和/或RTA模拟/已有生产数据或者其他估计)的独立估算值。

    2)        使用公式(1)和(7)作为时间函数计算tD,AcmqD,Acm

    3)        线性流部分的数据利用公式(5)作为时间函数计算qg

    4)        指定排放区(来源FMB模拟/已有的生产数据或者其他估算)。

    5)        使用公式(8)和(9)计算tPSS-LinearYe

    6)        确定

    7)        采用公式(10)通过废弃量(边界控制流)从tPSS-Linear预测产量。

    上面描述的解析模型是假设模型(最小变化)区块内的体积平均值参数是恒量,并从认为是不确定的参数的概率分布中选择一个值。每一次蒙特卡罗迭代将选择不同的值,导致不同的流量预测和不同的主要经济指标值。在许多参数高异质性水平的情况下,存在明显的不确定性,这种不确定性反映在关键输出参数的显著变化。

    2.4 经济模块

    将经济模块与速率预测集成来计算与生产相关的现金流。因为通常行业采用名义美元计算实际(通常的)现金流和名义(现行的)现金流,虽然采用实际的盈利指数计算项目的最低预期资本回收率,且通过不同的通货膨胀率来比较项目。采用图3中的业务流程计算现金流和收入税(加拿大税收制度)。

    该模块中的天然气价格的确定实行了价格操纵,而非价格预测。采用价格操纵表明了项目十分稳定(不论是单独而言还是相较于其他项目),并且不再需要预测极不稳定的天然气价格,该模块中也设置了以价格预测为基础引导经济的选项。

    方法中建立了多个实际盈利能力的指标,包括净现值(NPV)、内部收益率(IRR)和投资收益率(ROI),用来比较项目和公司设定的最低预期资本回收率,同时可给项目进行排序。

    2.5 蒙特卡罗模拟的一体化

    本次工作将蒙特卡罗模拟整合到方法开发中。采用@RISKTM(Palisade Corporation,2010)对关键PVT和储层属性(原始参数)进行概率分布和模拟操作。概率分布的输入变量根据不同项目的数据数量和质量而变化。Clarkson和McGovern(2005),Haskett和Brown(2005)和Harding(2008)认为对数正态分布最能代表PVT、储层和经济特性,因此本文使用了这种分布类型。这些概率分布拟合按P10(低)、P50(中)和P90(高)不同的值输入各个不确定变量。这些输入值可能来自勘探/远景数据、个人经验、模拟数据等。缩减所有输入变量的分布保证每个实现只选择合理的数值(缩减分布将选择少量接近无穷大的数值,从而影响输出变量)。

    上面讨论了@RISKTM输出变量定义的关键经济参数,以及气体速率和累积天然气产量。由于每个输出变量允许量化与项目相关的不确定性,可对其生成一个概率分布,以便做出与远景选取和开发有关的明智决策。

    通过在x轴上找到相应的最低预期资本回收率时的位置,向上垂直移动至曲线处,然后再水平投影到y轴,这样可以从累积概率分布计算出超过设定最低预期资本回收率的概率。用1减去y轴上求出的值,得出超过最低预期资本回收率的概率。这个方法在本文中将作为范例进行演示。

    在这一应用中(如在孔隙度和渗透率之间),采用了拉丁超立方体抽样,如果有必要的话,还可合并相关性(如孔隙度与渗透率)。典型的多相(气+水)页岩气/致密气应用的主要参数如表2.3所示。在某些情况下,参数的依赖关系可使用行业普遍接受的经验模型进行解释,而在其他情况下会使用来自现场数据或者估算得到的基于方向的相关性(如较高的正相关关系)。例如,与压力有关的渗透率(绝对的渗透率比值)使用Yilmaz等人(1991)的方法可与储层压力和岩石力学特性关联。相反,束缚水饱和度与孔隙度密切正相关。可能的参数关系如表2所示。

    蒙特卡罗模拟运用了一个类似于Clarkson和McGovern(2005)使用的煤层气气藏远景分析的方法。

    表2  基本参数、可能的相关性和参数关系

    基本参数

    可能的相关性

    关系

    有效厚度/英尺

    孔隙度/%

    粒径,有机质

    适用于某些情况下和正相关情况的实证模型

    初始含水饱和度/%

    孔隙度

    高度正相关

    束缚水饱和度/%

    孔隙度

    高度正相关

    基质渗透率/毫达西,初始状态

    孔隙度,有机物

    适用于某些情况下和正相关情况的实证模型

    基质渗透率/毫达西,初始比

    储层压力,力学性能

    野外/岩心数据经验曲线

    相对渗透率

    含水饱和度,束缚水饱和度

    野外/岩心数据经验曲线

    初始储层压力/磅/平方英寸

    深度,渗透率(超压)

    气压梯度

    储层温度/℉

    深度

    温度梯度

    天然气比重

    朗缪尔体积/标准立方英尺/吨

    容积密度

    来自岩心/岩屑的线性关系

    朗缪尔压力/磅/平方英寸

    体积密度/克/立方厘米

    流泄区/英亩

    含气量/标准立方英尺/吨

    TOC

    正相关

    井眼半径/英尺

    表面

    增产效果

    高度正相关

    压裂总半径/英尺

    剪切模量(+),渗透率(-),有效厚度(-),井眼半径/英尺

    变化—见括号中相关方向

    井底流压

    井眼长度

    高度正相关

    3 该方法应用于远景勘探

    本文中开发的方法广泛应用于SG远景将其分成区块进行分析的目的,以确定是否适合作为一个试点项目。由于SG试点和开发项目成本高,且其详细分析需要大量数据,页岩气远景勘探至关重要。

    对于远景勘探应用而言,其方法的选择以当前远景数据和模拟数据相结合为基础。理想情况下,对于关键PVT和储层参数情况良好的估计,作为空间坐标的函数可用于远景勘探。如果事实并非如此,可以对模拟气藏或者其他数据源进行估算以获取数据,同时分析该方法带来的不确定性。

    假定整个远景区PVT和其他储层特性不变,输入数据可用于生成主要储层特性图。关键生产指标图如OGIP和基质渗透率乘以可以开发的净投入(千米/小时),可用于区块的选择。区块的选择基于区域类似的关键生产指标的值。对页岩气储层而言,压裂的指标,如压裂指数或脆性也可能用于区块选择,同时许多作者表明建立复杂裂缝网的能力对于页岩气商业开采至关重要。

    选择区块后,开始进行蒙特卡罗模拟,按照P10、P50、P90的概率预测和可以开发累积产气的区块,且结合使用关键经济指标的分析来确定区块能否适合一个试点项目。其他因素比如公司的经验,企业和商业策略,可用的资源和基础设施等都将纳入评估,以便为公司以及股东们确定哪些区域可以作为最佳试点选项作出明智的决策。

    远景勘探方法工作流程见图4所示。

    4 采用两段页岩开发模型的样本示例

    为了进一步说明该方法的应用,对加拿大西部的某处致密砂岩/页岩(假定没有吸附气体)远景区的两段进行了分析。在之前的研究中,PetrelTM开发的远景地质模型采用可用的岩石物性、储层和生产数据。图5所示研究区域内4口井的三维孔隙度模型和孔隙度相关的钻/录/测井记录。在该区域,存在两处可获益的产气水平井段(井段3和井段4)。

     

    输入数据

    关键储层属性的填图属性

    PVT,其他储层和水力压裂属性

    生产数据

    经济投入

    区块选择

    根据OGIP或者其他关键属性确定区块

    蒙特卡罗模拟

    模拟输出

    P10、P50、P90的概率预测和累积产气量

    水力压裂运行情况

    经济参数

    可行的商业区块标志

    其他

     

     

    图4  远景勘探方法的工作流程

     

     

    图5  三维孔隙度模型和孔隙度相关的测井

    模型开发期间这个开发区拥有11口垂直井,2口倾斜井和4口水平井。最初钻完成垂直井,紧随其后的是开始于2008年的水平井。Clarkson和Beierle(2011)在该区选择一系列井进行不稳定产量试井(RTA)。模型开发中使用的水平井的总结显示在下面表3中,同时在图6中(在下面描述)该区域的天然气原始地质储量(OGIP)图上显示了井的近似轨迹。

    表3  研究区水平井概况

    井名

    井向

    进入层位

    完井方式

    1号井

    水平

    井段4

    尾管注水泥

    2号井

    水平

    井段3

    自膨胀封隔器

    3号井

    水平

    井段4

    自膨胀封隔器

    4号井

    水平

    井段4

    自膨胀封隔器

    所做的分析主要集中在大部分是水平井的井段4。为了简化分析,采用孔隙度下限为4%,通过Excel加权平均井段4层位,将PetrelTM多层模型转换成一个单层模型。这一平均化过程是为了完成对基质的孔隙度、初始含水饱和度和渗透率的处理。利用孔隙度下限值还可以计算总有效收益和毛净收益(有效收益假设包括所有孔隙度下限值以上的层)。图7a和图8a显示了OGIP和Km-h属性图。

    模型采用的网格大小如表4所示。在整个开发过程中假设为常量的PVT、储层和生产参数如表5所示。

    表4  网格属性

    网格属性

    数值

    网格尺寸

    135×129

    区块长度,X/英尺

    49.76

    区块长度,Y/英尺

    49.76

    网格区块面积/Ac

    0.057

    对于这种情况,人们认为井筒流动压力(pwf)为常量1750磅/平方英寸,接近开发区水平井最初的井筒流动压力。随着时间的推移井筒流动压力降低,后期模型中压力驱动力低于开发井,模拟气率并不乐观。这种情况下,在可获取日常生产和流动压力期间内,平均两个收益井的流动压力大约是1550磅/平方英寸,因此到开发后期之前,这种假设的影响并不很明显。在实际勘探中,该地区还没有投入生产,由于我们不需要将可用的生产数据与模型匹配,而是采用实际的流动压力估计值尝试得到一个准确的潜在生产能力估计值,所以这种假设的影响不是一个值得关注的问题。

    表5  PVT常数、储层和生产投入参数

    参数

    PVT参数

     

    气体比重

    0.648

    N2/%

    0.46

    CO2/%

    0.2

    H2S/%

    0.0

    温度/℉

    166.5

    Cw/磅/平方英寸-1

    2.9×10-6

    Cr/磅/平方英寸-1

    5.6×10-6

    VL/标准立方英尺/吨

    N/A

    PL/磅/平方英寸

    N/A

    储层参数

     

    Pi/磅/平方英寸

    3500

    排放面积/Ac

    80

    生产参数

     

    Pwf/磅/平方英寸

    1750

    rw/英尺

    0.3

    3个区块中假设关键属性的变化情况如表6所示。各属性的数值是每个区块的各个网格值的算术平均数。由于基质渗透率是蒙特卡罗输入量,且利用基质渗透率值可计算总压裂半径(虽然也可使用压裂分析模型在每次迭代时作为基质渗透率函数计算总压裂半径),故给出了一个基质渗透率值以显示区块之间总值的变化情况。

    表6  储层变量和水力压裂输入参数

    参数

    区块1

    区块2

    区块3

    储层参数

         

    有效厚度/英尺

    102

    74

    58

    孔隙度/%

    7.1

    6.5

    6.0

    Sw/%

    18

    15

    16

    Km/毫达西

    0.0084

    0.0079

    0.0077

    水力压裂参数

         

    剪切模量/磅/平方英寸

    2×106

    2×106

    2×106

    总压裂半径/英尺

    1432

    1477

    1489

     

     

    图6  研究区地质储量图呈现近似水平井轨迹

    4.1 区块选择

    利用从PetrelTM多层模型开发的单层模型,其单层等量地质储量如图7a所示。根据类似颜色为代表的区域具有类似地质特征和岩石物理性质,通过视觉观察可选择区块。虽然已知气藏具有高度的横向非均质性,可以看到关键的地质和岩石物理性质明显凸出部分。该图形显示了更复杂的异质性模式的情况,需要更多的区块并且可能有必要用区块代表具有相似属性的不连续块段。图7b显示基于天然气原始地质储量选择的区块远景区。在计算天然气原始地质储量时,虽然该远景区吸附气体量很容易被包含其中,但还是假设其可以忽略不计。

     

     

    图7  地质储量图:(a)地质储量;(b)选区

    从图7b可以看出选取的三个区块中,区块1具有最高的天然气原始地质储量(红色和橙色),区块2具有的地质储量(光和暗绿色)次之,区块3具有的地质储量(紫色和蓝色)最低。从这幅图中可以推断出区块1将有最理想的属性,因此可能具有最高的产量,而区块3产气物性最不理想,因此可能具有最不理想产气量。如同气藏地质储量图(图7)一样,如果绘制Km-h图我们也可以分辨出三个相似的区块。此次应用区块选区采用的天然气原始地质储量图和Km-h图作为代表资源的程度/密度和储层特性的两个要素,这是工业上常用的评估致密砂岩和页岩远景好坏的关键因素。区块选区的属性根据不同项目而变化,取决于驱动特定资源类型远景的关键要素。

    对于这种情况,假设简单的水平双翼压裂(如所使用的压裂模型所假定的)就足够了,因为微地震数据对同一区域的补充水平压裂井的解译说明复杂程度较低,如果不是水平情况,则进行压裂(图9)。采用水平和垂直观察井用以观察,同时采用双阵列处理会产生一个好的数据集。一般情况下,各个阶段仅出现一个水力压裂裂缝。水力压裂裂缝通常选择北东-南西方向,与加拿大西部沉积盆地(WCSB)部分最大水平应力方向一致。

     

     

    图8  Km-h图:(a)Km-h;(b)选区

    通过比较图6与图7b和8b可以看出在开发区所有水平井部分或全部在区块1范围内。因为这个原因,剩余的分析还将在区块1中开展。对区块1区域的水平井的预测情况而言稍微乐观,因为这些水平井水平延伸超出区块1区域进入地质储量和Km-h更低的区域(该区水平井采用恒定的流体压力与(Pwf)i相比将获得相反的影响)。

     

     

    图9  根据微地震数据解译的研究区内水平井水力压裂裂缝几何图形

    4.2 经济分析

    分析假设只有天然气价格是变量,而所有其他经济参数都保持常量。表7列出了其他主要经济参数的值(基于Magyar和Jordan的估算(2009))和表8介绍了主要的专利权使用费、税和贴现参数。

    在本文的分析中,净现值(NPV)作为重要的收益经济指标且最低资本回报率为0。

    分析远景的工作流程图如图4。

    表7  资本和运营成本参数

    参数

    土地成本

     

    租金/美元/亩

    2500

    代理费/美元/亩

    50

    单井成本

     

    钻井/百万美元

    1.5

    完井/模拟/百万美元

    2

    配套设施/管道/百万美元

    0.35

    储层表征

     

    地震/百万美元

    0

    测井/百万美元

    0

    提取岩心/百万美元

    0

    其他/百万美元

    0

    运营成本

     

    固定成本/美元/月

    5800

    可变成本/美元/千标准立方英尺

    1.25

    表8  使用费、税收和折现率

    经济参数

    费率

    使用费率

    20%

    税率

    30%

    实际贴现率

    15%

    名义贴现率

    18.45%

    通货膨胀率

    3%

    4.3 蒙特卡罗模拟

    在区块选择之后,本文进行了蒙特卡罗模拟研究。蒙特卡罗模拟中,基质渗透率(km)和页岩气价格不断变化,而所有其他的PVT、储层参数和经济参数保持不变。为了更好地进行说明,我们选择了将“不确定”的输入变量的数量显著限制在基本控制远景的油藏性能(储层渗透率)和经济情况(天然气价格)。基于P10、P50和P90值按照对数正态分布模拟参数。在大多数的勘探情况下,许多参数都是不确定的,可以通过这些参数的概率分布(见表2)来定义。对于需要使用概率分布进行定义的一些关键参数,可通过评估给定区块内重大变化的属性图来直接确定,或用更严格的统计技术,如采用区块内部数值计算变异系数(Cv)。由于基质渗透率是基质流动的主要控制要素,以及未来商品价格造成的天然气价格的高度不确定,针对这种情况,我们选择基于视觉观察的基质渗透率。

    基质渗透率按照P10、P50和P90的值计算如下。通常情况下,可以通过岩石物理模型中的参数值拟合分布来生成概率分布,但是因为我们处理的是远景的早期评估,因此我们采用了替代的方法,即最大限度提高模型获取的不确定性来解释其他早期参数估算无法获取的变化性。如果需要,对其他不确定参数也可以使用相似的方法。

    P10——区块1中比第十百分位值的基质渗透率低20%

    P50——区块1中的基质渗透率值居中间数

    P90——区块1中比基质渗透率的九十百分位值高20%

    表9中定义了2个输入变量的分布。将模型内部不确定参数合并关联(见表2)也很重要。虽然孔隙度和渗透率之间的相关性被加入到原始岩石物理模型(幂律相关),并且压裂半径与剪切系数(正相关)、基质渗透率(负相关),净收益(负相关)和压裂模型井眼半径(负相关)相关,但是出于演示的目的,本文对这一方法进行了简化,使蒙特卡罗模拟中的主要变量之间没有相关性。由于压裂半径取决于基质渗透率,压裂模型必须在每次迭代时重新计算。气体流量,累积产气量和净现值被定义为@RISKTM输出变量。

    本文进行了5000次蒙特卡罗迭代,以确保蒙特卡罗输入变量充分覆盖样本空间。要求覆盖足够的样品空间,是为了确保每个模拟输入相同参数运行时,能得出同样的结论。出于演示的目的,用上述方法获得的迭代数并不是最优化。但是,通过将无限大(非常大)的样本输出分布与减少样本数量的输出分布比较,同时寻找要求充分重复“已知”输出分布的最小值,可以获得优化的迭代数。当进行多个模拟时,优化处理可用于减少处理时间和容量。

    4.4 结果

    图10显示了区块1中单口气井的确定产气量和累积产气量预测。这个“确定性”的基质渗透率的值来自于表9所示输入分布的斯旺森平均值(SM),假设这个值代表区块收益的平均水平(静态平均Km=0.0095毫达西)。虽然Bickel等人(2011)指出了斯旺森平均值(SM)的缺点,但它仍然被广泛地用于工业,因此在这种情况下还将使用。此外,斯旺森平均值在输入分布的平均值的5%范围内(使用@RISKTM计算),因此认为在这个例子中的平均值是准确的。另外,可以使用另一个估计的平均值(即分布平均值、区块值的算术平均值等)。图10a显示的产气速率与时间半对数图以及累积气体的产生与时间的笛卡尔曲线,而图10b显示了产气速率和时间的对数分布图。

     

     

    图10  开发模型情况下的确定速率预测:(a)产气速率和时间、累积产气量和时间的半对数;(b)产气速率和时间的对数关系

    图11显示了产气速率与时间的半对数图,图11b显示一个产气速率与时间的对数图和图11c显示预测(约14年)最初5000天累积产气与时间的笛卡尔曲线。

    通过比较图10和图11,可以再次看到确定性预测与P50概率预测相比,具有更大的IP,持续的生产速度和累积产气量,表明确定性预测是比中位数情况稍微乐观,并且明显远超过P10的情况。这些结果再次支持使用概率分析取代非常规应用的确定性分析。

     

      

    图11  开发模型情况中概率速率预测:(a)产气速度和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    随后,P10、P50和P90产量预测与区块1内水平井可获取的生产数据进行对比,以测试开发方法的稳健性和准确性。在这个比较中,由于完井的复杂性,只有井3和井4可用,而井1表现不佳,且井2在此次分析区块外部。井3的产量被缩减了30天,以便使该井产量自然下降的初始时间与概率预测的一致(指修正井3)。生产的前430天的对比曲线如图12所示。

    如图12所示,两口井的生产数据(修正井3和井4)普遍落在P10和P90之间(使用@RISKTM生成的预测)。除了生产的前20天和第300天左右时的大约20天两个时间段(模型没有指出的操作问题导致的结果)外,约80%的数据点如预期处在P10和P90预测之间。初步预测产量可能更高,因为它不考虑压裂清理干扰、启动效应等,该模型增加了表皮效应来提高与IP的匹配程度。但是,在真正的勘探情况下表皮效应的大小无从得知,这是因为无法获取产气远景区域的数据且需要将其作为不确定的输入量以最大限度地提高模型的准确性。

     

     

    图12  3号井和4号井生产数据和概率速率预测的对比:(a)产气速率和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    虽然这不是一个令人满意的统计样本,只有一个关键属性(Km)被认为是不确定的,但结果令人鼓舞。图13显示了净现值的增加的累积概率分布,直方图和回归系数托那多图。图13a再次显示超过最低预期资本回收率概率计算的累积概率分布图。

    从图13a可以看出这个模拟平均净现值为53万美元,可能超过最低预期资本回收率的50%。然后,可将平均净现值和超过最低预期资本回收率的概率与相同远景的其他区块,以及与其他潜在远景的区块进行比较,从而确定哪些远景区域可提供最好的经济成功机会。这一分析显示了积极的NPV平均值和超过最低预期资本回收率的适度概率。基于这样的分析,可以得出结论:区块1的样品远景对于试点项目是极好的备选。这一分析支持了该地区的开发,但是这一测试中所采用的天然气价格网格假设对其结果影响极大。图13C中托那多图表明天然气价格对净现值带来的影响最大,基质渗透率给净现值带来的影响其次(区块1中最小的基质渗透率变化的结果)。这表明假设较高的气体价格(比如该区水平井钻探时期的气体价格)将提高远景的可取性。从图13b直方图可以看出模拟中大部分的净现值在300万美元和350万美元之间,众数等于-1.5万美元,相当于平均数53万美元左右。

     

     

    图13  开发模型应用NPV法得出的经济结果:(a)累积概率分布;(b)柱状图;(c)回归系数的龙卷风图

    此分析程序可在在开发区的其他2个区块内完成,以协助选择最适合公司的试点项目的位置。2号和3号区块的填图属性的直观观察(图7b和8b)表明,这些地区情况没有区块1理想,因此在本次分析所使用的气体价格假设中可能不适合作为试点项目。

    5 结论

    在本文中,开发了一种方法理论和基于excel的方法以协助页岩气和致密砂岩气藏的勘探。这个方法包含了来自不同来源的映射属性、一个用于估算水力压裂半径的简单的压裂模型、目前应用于页岩气井开采的速率预测技术、计算关键盈利能力指标的经济模块以及解释非常规资源中内在的风险和不确定性的蒙特卡罗模拟。本文所描述的方法和工具可被工业界用于评估远景区域内的各个区块和选择适合试点项目的地区。该方法较为严谨,以岩石物理、地质和现在产业应用的分析储层模型为基础,且通过重建现有实例的油藏动态来证明其准确性。由于不需要建立复杂的数值模型和详细的开发方案(所需数据是在开发早期通常无法获取),这种方法既简单又高效。

    感谢代金友副教授对本文提出的宝贵意见。本文受中国地质调查“地学情报综合研究与产品研发”(121201015000150002)项目支持。

    资料来源:Williams-Kovacs J. D., Clarkson C. R. A new tool for prospect evaluation in shale gas reservoirs. Journal of Natural Gas Science and Engineering,2014,18(5):90-103.

    一种用于页岩气藏远景评价的新方法

    鞠星同志于就职于地调局航遥中心安全生产管理处,从事安全生产工作将近4年。在工作中责任心强、严谨求实、兢兢业业,在单位领导和同事的帮助和支持下,获得中国地调局2014年度及2015年度安全生产先进工作者称号。

    一、创新安全生产文化宣传

    安装在洗手间的安全生产宣传框是鞠星在航遥中心的一张安全生产工作名片,安全生产宣传框从2014年2月试安装到今天,这种“角落传媒”已经陪伴航遥中心的每个人度过了三个年头,这是鞠星进入航遥中心工作后对创新中心安全文化宣传体系做出的第一份贡献。这三年,每一个安全生产宣传框都会由其自己设计、印制、安装。在管理心理学中,对于安全管理而言,大家最需要和最容易接受信息和提示的方式和方法是他们想获取的方式和方法,这种方法所应用的法则便是钻石法则。正是基于这些,鞠星在工作中更加注重对于安全生产工作传输的方式和方法,通过广泛的采集各个部门安全员的意见和建议,制作每一期安全生产宣传框,以让安全生产宣传框能够更好的辅助于各个部门安全员的工作。与此同时,他还积极与野外工作组的同事们互动,通过安全检查体会他们的心声,通过观察大家的工作习惯和特点,制作相关的视图,以求大家能够在看到安全生产宣传框时感受到是“自己人”印制的,从而更容易去接受。

    IMG_5032

    安置在洗手间的安全生产宣传框

    IMG_5028

    安全生产月主题宣传海报

    二、构建宣传信息化平台

    在钻石法则的指引下,航遥中心安全生产管理处目前已形成了以安全生产宣传框为纽带的安全文化宣传体系,2016年3月更是与中国职业健康协会地勘安全分会共同开始制作《地质安全》微信公众号。这一公众号可以通过微信向大家宣传地质安全知识,更好的适应大家接受安全宣传的方式。鞠星同志作为这一微信公众号的主编,结合单位实际,对单位所需要的安全生产管理知识结合实际进行编辑,并最终以微信链接的形式推送给大家,收到了良好的效果。从目前大家的接受习惯来看,这样的方式和方法更为符合钻石法则。

    QQ截图20160613115035

    《地质安全》微信公众号

    三、严格管理安全工作细节

    在安全生产管理工作中,需要面对大量繁琐的工作。这其中包括野外工作组人员高原体检、飞行体检是否能够准时进行;野外外聘人员保险是否能准时续保;野外工作组出队前培训是否签到备案;收队后租车合同是否能够准时备案……这些都是鞠星同志在安全生产管理工作中所要面临的细节工作,而这些工作也恰恰是安全生产管理工作的基础工作。面对这些工作时,鞠星同志都能够严格管理,确保日复一日单位安全生产能够做到严谨、高效。也正是凭借着这些细节的规范化管理,单位的安全生产管理工作才能全面的实现规范化。

    四、形成安全管理服务理念

    安全生产是一门管理科学,而如何更好的提升管理效果,做到让管理规定落到实处,让安全规范深入人心?在工作中,鞠星同志采用的是始终以服务大家的理念去开展安全生产管理工作。在中心安全生产管理文件备案工作、地调局地质安全生产管理平台填报工作当中都涉及到各种各样的填报和备案工作,面对这些工作时,鞠星同志能够耐心的对纸质备案材料操作步骤进行讲解;对于大家在系统中填写错误的内容及时发现,进行更正;北斗设备出现问题时,及时联系厂商尽快解决问题。这种管理服务理念的形成,使得越来越多的人意识到安全生产档案规范备案的重要性,懂得并掌握规范使用地调局安全生产管理保障平台科学合理的使用方式,单位的安全生产管理信息化水平不断得到提高。

     

    安全生产工作个人先进事迹材料——航遥中心 鞠星

    为响应国家创新驱动战略,提高国际合作水平,推进Ar-Ar年代学实验室建设,应中国地质调查局武汉地质调查中心邀请,荷兰J.R. Wijbrans教授(Vrije University)和英国Simon Kelley教授(Open University)于2016年1月21日到武汉中心访问并作学术报告。 

    J.R. Wijbrans教授现任职于荷兰自由大学、荷兰莱顿大学,主要从事Ar-Ar年代学研究。在Nature、EPSL、Science发表多篇高水平文章,引用次数超过5600次。Simon Kelley教授现任英国开放大学环境、地球和生态系统学院教授、副院长,研究方向为惰性气体地球化学、Ar-Ar年代学方法及激光提取技术。发表文章300余篇,引用次数超过11000次。 

    J.R. Wijbrans教授作了“荷兰自由大学Ar-Ar年代学实验室研究进展”(Timely developments: Research in geochronology in the Vrije University argon geochronology laboratory)的学术报告,重点介绍了激光Ar-Ar定年技术在地质界线精确厘定、河流物源示踪和变质过程研究等领域的最新应用成果。Simon Kelley教授作了“油气藏及其它岩石中钾长石增生边的定年”(Dating K-feldspar overgrowths in petroleum reservoir and other rocks)的学术报告,介绍了这种方法在沉积岩定年和油气藏演化过程研究中所取得的最新成果。参会人员从科学问题、科研合作、实验测试等方面与两位专家进行了研讨交流,并就合作交流方式和内容交换了意见。会后两位教授参观了武汉中心同位素地球化学研究室Ar-Ar年代学实验室。 

    本次学术交流会为武汉中心科技人员学习、掌握最新的Ar-Ar年代学测试技术和科研成果提供了契机,有利于促进武汉中心Ar-Ar年代学实验室发展,也为加强国际合作交流提供了机遇。会议由泛珠三角地区地质环境综合调查工程首席专家黄长生主持,武汉中心副主任张旺驰、同位素地球化学研究室及水文地质环境地质研究室相关科技人员近30人参加了会议。 

    学术交流

    外宾参观实验室

    欧洲Ar-Ar年代学专家访问武汉中心

     

     

     

     

    “部分地区耕地重金属超标态势仍然比较严峻。在调查区13.86亿亩的耕地中,重金属超标的点位比例占到了8.2%,主要分布在南方。” 6月25日全国土地日当天,中国地质调查局发布《中国耕地地球化学调查报告(2015年)》,再次为中国的土壤污染问题敲响警钟。

     

    土壤危机,是土地危机,也是农业危机,“向土壤污染宣战”直接关系到人民身体健康和国家经济安全,这也大大催生了各类污染治理和修复技术,催生了相关产业的发展和繁荣。

     

    土地日宣传周期间,记者来到位于北京西北郊区的国土资源部生态地球化学重点实验室——国家地质实验测试中心生态地球化学研究室,与多位常年从事土壤污染调查、评价、修复的地质科技人员,面对面地谈起了人们高度关注的土壤污染修复问题。

     

      本报记者:周飞飞

     

    特邀专家:刘晓端 杨永亮 谭科艳 黄园英 刘斯文

     

      土地日专家访谈

    观点1

    具有“廉价、高效、管理简单、无二次污染”等特点的地球化学工程技术,是当前重要且极具应用前景的土壤修复手段。

    记者:随着我国城市化、工业化和农业集约化的快速发展,大量污染物通过各种途径进入土壤环境,导致土壤污染问题越来越严重。那么,按照污染物的来源,我国土壤污染有哪些类别?您觉得最重要的污染源是什么?

    刘晓端:从污染物种类来看,类型大致可分为有机污染、无机污染及两者均存在的复合污染,其中有机污染物主要有多环芳烃(PAHs)、六六六和滴滴涕等有机氯农药、灭蚁灵等杀虫剂、挥发性有机物和半挥发性有机物石油类物质等,而无机污染物主要是砷、铅、镉、铬、锌、镍、汞、铜等各类元素。

    刚刚发布的《中国耕地地球化学调查报告(2015年)》显示,我国耕地重金属超标与地质作用过程密切相关,而人类活动则是造成或加剧重金属超标的重要原因。采矿、冶金、电镀等工矿企业“三废”排放,以及农业生产中污水灌溉、化肥的不合理使用、畜禽养殖等人类活动造成或加剧了局部地区耕地重金属污染。

    近几年,我们实验室一直在应用地球化学工程技术,针对金属矿山进行水土污染方面的研究。

    记者:地球化学工程技术与其他修复技术相比,有着怎样的特色?

    刘晓端:我国的土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。既有重金属、农药、抗生素和持久性有机物等污染,又有放射性、病原菌等污染类型。土壤污染途径多,原因复杂,控制难度大。污染类型多样化和污染原因复杂化导致土壤污染修复工作难度增大。

    采取何种有效可行的污染治理措施,是我国目前土壤污染修复治理的关键和亟待解决的问题。

    污染土壤修复是指利用物理、化学和生物的方法转移、吸收、降解和转化土壤中的污染物,使其浓度降低到可接受水平,或将有毒有害的污染物转化为无害的物质。大致可分为物理、化学和生物3种方法。

    土壤重金属污染传统的治理通常采用物理、化学的方法,如客土换土法、淋滤法、吸附固定法、热处理法、络合浸提法、氧化还原法、电化学法等。虽然这些方法治理效果较好,历时较短,但往往投资大,难以管理,易造成二次污染。

    与传统方法相比,生物修复技术具有成本低、来源广、无二次污染的特点,尤其适用于低浓度重金属的去除。目前,生物修复技术的主体主要包括植物、动物、微生物。其中应用较为广泛、治理效果显著的是植物修复和微生物修复。

    地球化学工程技术,是应用地球化学的原理,通过人工制造的某些地球化学作用或利用地球化学原理制造的产品,实现环境污染治理与管理的途径、方法和技术。地球化学工程技术中常会应用非金属材料作为污染土壤修复的材料,其主要环境技术包括稀释/浓缩、分解/中和、隔离作用和固化作用。这种方法尽可能地不干扰自然界, 依靠元素自然循环来去除有关的化学元素。

    记者:近年来,国家地质实验测试中心生态地球化学研究室针对不同生态系统和不同污染物的环境污染控制和修复技术开展了多项研究,应用的都是地球化学工程技术手段吗?效果怎样?

    黄园英:我们利用地球化学工程技术原理,筛选出了同时对多种重金属具有很好去除效果的矿物材料,建立了对复合重金属污染水体具有特征吸附和固定作用的处理系统,从而阻断了重金属污染元素向生态链的运移。

    与传统物理、化学和生物技术相区别,基于地球化学原理和技术,提出的低成本建造、低成本运行、快速、高效、简单的重金属污染环境的地球化学工程技术,迎合了时代发展对环保技术“廉价、高效、管理简单、无二次污染”的需求。我们已建立的示范工程运行监测数据进一步表明,以黏土矿物作为反应材料对酸性矿山废水中的重金属离子去除是非常有效的,水处理成本约为0.55元/吨,非常适合今后在工程上大规模推广应用。

    刘晓端:我们的目标是,逐步建立基于地球化学工程技术的水、土环境污染控制和修复技术体系和示范基地,强化已有技术方法的推广应用,推动技术方法的产业化进程。

    观点2

    不一定要把土壤中的污染物提取出来,可以通过对土壤中的重金属元素进行吸附、固定、隔离,设置地球化学障,阻断污染元素向生态链的运移。

    记者:国土资源部生态地球化学重点实验室是什么时候成立的?有关土壤污染修复的项目是什么时候开始出现且多起来的?

    刘晓端:重点实验室的前身国家地质实验测试中心生态地球化学研究室,成立于1993年。20多年来,承担了一系列国家、部门重大环境地球化学研究项目,如获国家科学技术进步二等奖的“区域地球化学与农业和健康”、获国土资源科技进步二等奖的“人体硒缺乏与过剩的地球化学特征及其预测”、获国土资源科技进步一等奖的973项目“首都北京及周边地区大气、水、土环境污染机理与调控原理”,以及“地质体对水资源保障的双重作用及其应用”、“典型地区土壤污染演化及安全预警系统研究”、“东北重工业城市地球化学环境生态安全监测与修复治理的技术研究”等。

    中国开展土壤污染修复项目始于1995年,当时采用的是生物修复的方法。我们大约是在本世纪初开始进入污染土壤和水体的环境控制与地球化学修复技术研究领域的。由于国家越来越重视,这几年我们这方面的项目越来越多,如,“我国典型矿山环境污染评价与修复技术研究”、“金属矿山环境污染机理和防治研究”、“纳米铁用于饮用水中砷的有效去除技术研究”、“农田土壤中典型持久性有机污染物的降解与修复”等。通过这些项目的实施,我们在环境重金属污染修复领域获得了许多重要进展和成果。

    记者:请简单讲一下地球化学工程技术修复受污染土壤的思路。

    刘晓端:近10年来,实验室依托《金属矿山重金属污染土壤的地球化学工程控制修复技术开发与示范》、《生态地球化学环境与修复技术研究》,以及多个有关矿山重金属污染控制与修复技术的示范项目。

    我们的整体思路是:依据地球化学原理,充分利用地质体或自然介质的作用,通过对修复材料、修复工艺和控制技术中的关键问题的研究,建立具有对重金属元素有特征吸附、固定、隔离作用的地球化学障,阻断污染元素向生态链的运移,从而保障农作物的健康。这也说明,改善土壤环境质量不一定非要把重金属元素等“毒素”运移出来,只要把它们固化在土壤内,阻止它们进入食物链,就能保障人们的餐桌安全。

    记者:能否具体讲讲有关土壤修复示范区的情况?

    刘晓端:在安徽某铜矿的尾矿坝附近,我们建立了一个重金属污染土壤修复示范区,选用一种或几种黏土矿物,结合一定的环境条件控制技术,对重金属元素进行吸附,使重金属超标土壤上种植的超标蔬菜中的重金属含量达到《食品中污染物限量标准》。如今,该研究成果已经成功用于江西某铅锌矿冶炼厂重金属污染山体的修复,使寸草不生的酸化和多金属污染土壤得以恢复种植功能,山体复绿。

    杨永亮:我们在沈阳进行东北重工业城市地球化学环境生态安全监测与修复治理技术研究时,针对污染地区建立了水—土—植物生态保护与治理技术应用示范点。

    开展了土壤重金属污染修复方法的研究和饮用地下水中重金属离子的去除技术的研究,最终形成了磷酸盐岩化学固定法对铅、锌、镉的土壤污染治理技术,以及纳米铁材料修复浅层地下水和对深层饮用地下水中的重金属元素的取出技术,获得了非常好的效果。修复后土壤上长出的多种蔬菜,原土中所含的多种重金属元素均未超标,可以放心食用。这一成果受到当地农民的肯定和欢迎。

    刘斯文:在赣南地区,我们建立了离子型稀土矿山的环境修复示范区,将地球化学工程技术用于离子型稀土矿山环境污染的控制与修复,即通过在注液坑中设置地球化学障,改善坑内土壤环境,阻止污染物的迁移,保证植物的生长条件,为矿山复绿提供了基本保证。

    稀土矿山污染土壤的修复分为四步:一是通过添加自然黏土矿物,调整土壤地球化学属性,同时,筛选修复植被;二是调整修复场地的土壤地球化学属性,将调整后的好土壤装入生态袋中,利用柔性结构技术将生态袋固定在修复场地上,形成护坡,并在生态袋上进行植被喷播;三是利用地球化学障技术阻断污染,改善土壤环境,并尝试种植林木;四是长期监测修复效果。

    地质工作者在稀土矿区污染土壤的修复实践证明:土壤修复有效地改善了局部土壤地球化学环境,防止了水土流失,降低了潜在生态风险的强度。

    观点3

    自然环境是相互联系、相互作用的整体,解决土壤污染问题不能就土论土。

    黄园英:在江西某铜矿附近,我们建设了酸性矿山废水重金属污染治理示范工程,以对大坞河流域土壤影响最大的重金属污染源——酸性矿山废水为研究对象,利用地球化学工程技术,分别对酸性矿山废水和土壤中重金属污染治理进行了研究,筛选出水体和土壤中重金属修复材料,形成了一整套重金属污染控制与防治技术方案。

    示范工程运行5个月的监测结果表明,以价格低廉的黏土矿物材料——凹凸棒土作为反应介质,能够对水土中重金属具有很好的治理效果,重金属锰的平均去除率为93%。经示范工程处理后的河水能够达到我国综合污水一级排放标准,水体环境和重金属含量都符合《国家农田灌溉水标准》。当地农民可以放心地用处理后的河水浇地,彻底改变了大坞河水“祸害”农田的现状。而且,原来大坞河鱼虾绝迹,经处理水质得到明显改善后,不仅鱼能生存,且可大量繁殖。

    谭科艳:针对示范区内受重金属污染的土壤,我们通过改善土壤pH值,施用土壤改良剂,添加特定的修复材料,对土壤中重金属进行固定。经修复后的土壤种植的蔬菜,测得处理后土壤中可食用部分蔬菜中重金属含量能够满足《食品中污染物限量》的标准。

    在某铅锌矿冶炼厂旧址,我们对受镉、铅和砷等重金属污染的土壤进行了修复,修复后种植的马尾松和红叶石楠生长茂盛,而未经修复土壤种植的马尾松成活率非常低,且难以生长,充分表明了,地球化学工程技术可以大大减少土壤中重金属对植物的危害,能够抑制土壤中重金属的迁移能力,达到保护植物和保障人民健康的作用。

    记者:我注意到大家在介绍土壤污染修复的时候谈到不少水体污染修复方面的研究,两者是什么关系?

    刘晓端:土壤是自然生态系统的组成部分,土壤污染和水体污染、大气污染等问题是一个多系统的问题:地下水和地表水都会跟土壤产生接触,而空气中含有的各种污染物也会通过诸如降雨等形式渗入地表,最终造成土壤和地下水污染物的一部分。因此,土壤修复工作针对的对象不仅是土壤,而且要同时考虑到大气和水体污染的问题。

    解决土壤污染的问题不能“就土论土”,我们的研究是“水土不分家”。

    杨永亮:《中国耕地地球化学调查报告(2015年)》告诉人们,在人类活动强烈地区,工农业活动是造成土壤重金属快速累积和污染超标的原因,尤其是现今情况下,大气中有毒元素的沉降是极其重要的污染途径。

    为了研究污染物传输的季节性变化,我们选取青藏高原东部边缘的阿坝州卧龙高海拔地区及若尔盖高原湿地作为研究对象,研究了不同季节大气、降水、地表水、土壤、植被、牦牛中持久性有机污染物的变化特征,并通过后向气流轨迹分析以及应用铅同位素示踪原理,对近地表大气气溶胶污染来源进行了探讨。

    观点4

    地球化学技术方法不是万能的,应突破专业所局限,因地制宜研究复合型技术。

    记者:看来,土壤污染治理需要具备大环境观。

    刘晓端:不仅自然环境是一个整体,科学也应该没有界限,不要局限在自己的专业中。就土壤修复技术来看,地球化学技术方法不是万能的,应该积极融合诸多相关学科的思路和方法,研究复合型技术。当然,根据我们的学科特点和优势,我们的研究方向是以地球化学技术方法为主,综合生物修复等其他各类手段。

    记者:已经有所突破了吗?

    谭科艳:有了一定的突破。

    我们选择工业污染严重的湖南株洲某地作为研究区,开展了水土重金属污染的地球化学—生物联合技术研究。研究使用不同黏土矿物和微生物修复材料同时修复土壤中重金属污染的效果,探讨其产生作用的机理,为不同类型污染土壤的修复提供理论依据和技术支撑。同时开展了地球化学—微生物法处理工业废水中锰和镉的修复技术研究,综合地球化学工程技术和生物的优势,达到修复的最佳效果和最低能耗的综合治理目的。

    记者:效果怎么样?

    谭科艳:能够高效去除工业废水中的高浓度镉和锰,达到相应排放同时利用该项技术,能够使种植蔬菜中的铅、汞、砷达标。

    在这项研究中,已经完成了大批量的中试试验,采用一级硫酸盐还原生物滤池降低进水镉浓度,使其达到国家《污水排入城镇下水道水质标准》中对镉的排放要求;通过二级生物滤池处理,使水中镉浓度达到国家《地表水环境质量标准》中二至三类水对镉的要求,锰的浓度达到了集中式生活饮用水地表水源地补充项目标准的限值要求。

    在深度去除废水中镉、锰的实验中,我们采用锰氧化一级生物滤池对镉锰严重超标的水进行修复,使其可以满足国家《生活饮用水卫生标准》中对水中金属镉含量和锰含量的要求。

    实验研究了锰氧化细菌深度处理微污染水体中镉的机理,为锰氧化细菌深度去除微污染水体中其他重金属元素提供理论基础。有关专家评价,这项技术解决了环境污染锰和镉修复的难点,是地球化学—生物联合修复重金属污染技术上的一项重大突破。

    在土壤修复试验中,我们也采用了地球化学工程—生物技术——通过添加矿物和微生物,阻隔土壤中的铅、汞、砷进入生物链,使修复土壤上生长蔬菜中的三种重金属含量全部达到了《食品中污染物限量》标准,修复效果显著。

    值得一提的是,该技术对镉有显著的修复效果,对镉的修复率达到了38.71%,可有效降低重金属高污染区人体暴露的风险,为从根本上解决“镉米”等有毒农产品泛滥的社会问题提供了技术支持的可能。

    土壤教室

    中国主要土地污染类型

    中国的城市和农村都面临着十分严峻的土地污染问题,主要包括四大类:

    重金属污染场地。主要来自钢铁冶炼企业、尾矿,以及化工行业固体废弃物的堆存场,代表性的污染物包括砷、铅、镉、铬等。 

    持续性有机污染物污染场地。中国曾经生产和广泛使用过的杀虫剂类持续性有机污染物主要有滴滴涕、六氯苯、氯丹及灭蚁灵等,有些农药尽管已经禁用多年,但土壤中仍有残留。中国目前农药类持续性有机污染物场地较多。此外,还有其他持续性有机污染物污染场地,如含多氯联苯的电力设备的封存和拆解场地等。

    以有机污染为主的石油、化工、焦化等污染场地。污染物以有机溶剂类,如苯系物、卤代烃为代表。也常复合有其他污染物,如重金属等。

    电子废弃物污染场地等。粗放式的电子废弃物处置会对人群健康构成威胁。这类场地污染物以重金属和持续性有机污染物(主要是溴代阻燃剂和二噁英类剧毒物质)为主要污染特征。

    目前较为成熟的修复技术

    当前,修复技术中比较成熟或应用较多的技术有固化/稳定化技术、化学氧化/还原技术、异位热脱附技术、异位土壤洗脱技术、水泥窑协同处置技术、土壤植物修复技术、土壤阻隔填埋技术、生物堆技术等。

    植物修复和微生物修复

    植物修复是一种利用自然生长植物或遗传培育植物修复金属污染土壤的技术的总称,是解决环境中重金属污染问题的一个很有前景的方法,并已在全球得到了迅速的发展和应用。

    根据其作用过程和机理,重金属污染土壤的植物修复技术可分为3种类型:植物稳定、植物挥发、植物提取。

      土壤微生物包括与植物根部相关的自由微生物、共生根际细菌、菌根真菌,它们是根际生态区的完整组成部分。

    微生物在修复被重金属污染的土壤方面具有独特的作用,其抗重金属机制包括生物吸附、胞外沉淀、生物转化、生物累积和外排作用。通过这些作用,微生物可以降低土壤中重金属的毒性,改变根际微环境,吸附积累重金属,从而提高植物对重金属的吸收、挥发或固定效率。

    不过,目前大部分微生物修复技术还局限在科研和实验室水平,实例研究还不多,无法大面积推广,对于微生物修复技术还需作更深入探索。(刘斯文)

    土壤修复的地球化学“魔法”

    在国家重点研发计划“中国中新元古界地层时空格架与地层-沉积事件对比”课题(2016YFC601001)、国家自然科学基金“中新元古代沉积记录-臼齿碳酸盐岩对比与形成机制”(项目号41472082)、中国地质调查局(1212011120142, DD20160120–01)和英国国家环境研究基金 (NE/L002485/1) 等项目联合资助下,自然资源部中国地质调查局地质研究所柳永清研究员、旷红伟教授团队与奥地利维也纳大学Daniel Paul Le Heron教授领衔的奥地利、英国团队合作研究,新近在我国华北新元古代晚期(埃迪卡拉纪)冰川沉积学研究方面取得重要进展,研究成果 “Bird’s-eye view of an Ediacaran subglacial landscape”(鸟瞰埃迪卡拉纪冰下剥蚀地貌)刊发在国际著名学术期刊《Geology》(地质学)上,旷红伟教授为共同通讯作者(Le Heron, D.P., et al., 2019, Bird’s-eye view of an Ediacaran subglacial landscape: Geology. https://doi.org/10.1130 /G46285.1)。

    长期以来,冰川发育或冰期存在与冰川堆积物主要是通过冰筏坠石或者疑似冰缘的流水沉积物(冰碛杂岩)等来证明,但这种方法经常遭到质疑。冰溜面、冰川擦痕等虽是直接反映冰川发育及其属性和运动学机制的证据,但由于地质记录稀少,同时易受风化等作用的影响难以保存。目前国内外典型和大规模冰溜面构造也仅在第四纪和冈瓦纳大陆古生代冰蚀地貌中见及。本项研究成果揭示的华北克拉通南缘埃迪卡拉纪(罗圈组)大型冰溜面构造,无论是从出露面积还是发育的丰富冰蚀地貌类型与精美保存状况都是世界上同时期极为罕见和典型的,也是世界仅存的两处埃迪卡拉纪冰蚀地貌之一(另一处位于澳大利亚西部,且研究程度较低)。

    研究成果重点描述了研究区出露的众多冰溜面之一:豫西鲁山石门沟冰溜面构造。成果揭示,在长达1000米的缓倾斜中元古代石英砂岩层面上发育一系列冰下冰蚀底形(地貌)构造,它们系冰川在冰底融水的介入下刨蚀下伏“基底”岩层而形成的,包括凹、凸面状(阶步、羊背石等)、冰臼、似贝壳断口状、水下磨光面、纺锤状等丰富宏观尺度冰下冰川剥蚀底形构造,还共生着大量、密集冰川擦痕和冰川压实应力作用下的岩石蠕动变形等构造。据似贝壳断口状冰蚀底形、冰川擦痕等指向构造判断古冰川运动方向由北向南,而非之前认为的由南向北。同时,不断变换的擦痕方向又显示冰川在运动过程并非沿直线运动,而是蜿蜒前行。大量裂隙和同期断层的发育加速了冰川下部盆地和冰湖的形成,为冰溜面及擦痕保存提供了有利条件。

    本项研究成果是在传统的野外地质观测和超大比例尺填图基础上,野外调查和后期室内研究分别应用了空中航拍和数字地貌模拟技术,同时,这也是国内外第一次利用无人机航拍、数字地貌高程模拟和传统地质研究相结合的方法对前更新世深时冰下沉积-剥蚀地貌的精细刻画,研究成果不仅对深化理解全球超级温室气候时期的埃迪卡拉纪冰川及其环境、生命演化学术意义重大,同时,基于我国华北发育的全球独特、鲜明的埃迪卡拉纪冰川剥蚀和(沉积)堆积地貌优势,对于进一步研究不同于成冰纪雪球地球时期的非全球性冰川(?)(大陆冰盖或山地冰川)属性、古地理和环境、生命协同发育与演化具有更加重大的科学意义。后续研究成果正在接续发表中。另外该方面的内容已列为2022年北京国际沉积学大会野外考察路线。

    论文链接:https://doi.org/10.1130/G46285.1。

     

     豫西石门沟罗圈组底部冰溜面展面特征(左)及其三维模拟图(右)

    (方向为上北下南,其底部基岩为中元古代三教堂组砂岩)

     
     
    地质所与国外合作研究获得埃迪卡拉纪冰川沉积学研究...