分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到3条相关结果,系统用时0.615秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    近日,由中国地质调查局北京探矿工程研究所研发的“一种弧形板阀式密封装置”获国家发明专利授权(专利号ZL201710706231.8)。

    密封装置是保压取样钻具的核心装置之一,能够在钻探取样作业中保持样品原位压力。该专利设计了简单可靠的驱动弹簧和弧形密封盖,取样完成后密封盖向下滑动翻转并与底座贴合,同时借助弹簧推动上座压紧密封盖,实现对样品管的密封。采用该装置的保压取样钻具已在海洋天然气水合物钻探中获得成功应用,有力支撑水合物资源调查评价。

     

    探矿工程所“一种弧形板阀式密封装置”获国家发明专...

    编者按:作为自然资源的重要组成部分,矿产资源与山水林田湖草资源共同构筑起一幅多彩而珍贵的大自然画卷。在这幅地球馈赠的大自然画卷里,矿产资源不仅要有内在气质,还要有外在颜值,在有力支撑经济社会发展能源资源保障的同时,更注重绿色发展高质量发展的时代担当。对于地矿行业而言,开源是一方面,依靠科技创新和技术进步的“节流”,即矿产资源综合利用,也是不可或缺的另一方面——既提高了资源的利用效率和可持续性,又减少了尾矿排放及环境影响。

    “既要金山银山也要绿水青山”。珍惜自然资源,珍惜矿产资源,方可守护好我们的绿水青山、金山银山。从“三位一体”的综合地质调查,到全国重要矿山“三率”综合调查与评价,新发展理念已在地矿领域落地生根,并贯穿于地质勘查、选矿富集、冶金提取、材料加工的整个矿产开发利用过程。作为专注于矿产资源综合利用的科研单位,中国地质科学院郑州矿产综合利用研究所多年来致力于矿产资源综合利用技术、装备的研发、推广,厚植工艺矿物学、难选冶金属矿产高效利用、非金属矿合理利用和二次资源循环利用等优势学科,在矿产资源综合利用及技术经济评价等方面走在了全国前列。

    值此第49个世界地球日之际,中国地质科学院郑州矿产综合利用研究所干部职工围绕“珍惜自然资源 呵护美丽国土——讲好我们的地球故事”的主题,结合自身矿产资源综合利用工作的实际,从尾矿资源化利用、智能选矿技术研发、矿山地质环境保护、固体废弃物的处置、综合地质调查等方面进行了研究梳理、总结提炼,形成了多篇实用且具有科普价值的文章,现精选一部分,以飨读者,敬请垂注!

    不可或缺的矿产资源综合利用

    张艳娇 刘红召

    矿产资源综合利用目前已作为国策贯穿于地质勘查、选矿富集、冶金提取、材料加工整个资源开发利用过程,强调在开采利用矿床中主要矿产资源的同时关注共生、伴生矿产资源的利用效率。我国已探明的矿产储量中共、伴生矿占很大比例,全国25%的铁矿、40%的金矿、80%的有色金属矿及大多数煤矿都有共、伴生矿产。开展综合利用工作,既提高了资源的利用效率和可持续性,又减少了尾矿排放及环境影响。对部分资源而言,综合利用工作至关重要、不可或缺。

    山东石榴石矿选矿厂改造

    自然界中有部分元素,在地壳中含量很低,大都呈分散状态,很难形成独立的经济矿床。有独立矿物的,可以选矿富集目的矿物再冶金提取。没有独立矿物的,就只能选出其载体矿物再分离提取。这其中,如果载体矿物恰好是该矿床的主矿产,伴生组分可以随着主矿产的选矿富集而富集,其选矿回收成本最低,回收率相对也较高,在冶金提取主金属时作为副产品回收;如果载体矿物不是矿床的主矿产,但也能选矿富集,则伴生组分就可以回收,但需要论证经济可行性。还有一种情况,伴生有用组分分散在脉石矿物中,无法选矿富集,直接冶金加工成本昂贵,目前综合利用的可能性就很小。

    以金属铼为例,它具有高熔点、高硬度、抗蠕变性、抗腐蚀性以及良好的塑性,广泛应用于热电偶、金属涂层和电子工业。用于制造航空发动机涡轮叶片和发动机喷管,是其他金属不能替代的。此外铂-铼催化剂在石油催化裂化重整过程中极为重要。铼是自然界储量最少的金属之一,在地壳中丰度大约为10-9。世界上已探明铼储量2500吨,基础储量近10000吨,我国铼的保有储量237吨。铼没有具有开采价值的独立矿物,主要以类质同象形式分布在辉钼矿和斑铜矿中。开采利用钼矿床和铜矿床时,辉钼矿和斑铜矿的选矿提纯过程也就是铼的选矿富集过程。辉钼矿选矿中钼要富集数百倍,往往在钼精矿中才会检测分析铼的含量。铼随辉钼矿或斑铜矿进入精矿产品后,由于铼氧化物极易升华,在钼精矿焙烧和铜的冶炼过程中,铼与钼或铜分离进入烟灰和废酸,再通过离子交换或者萃取的方式从烟气淋洗液和废酸中提取。我国著名的钼产业基地栾川及金堆城,其选矿产品钼精矿中每吨均含有几十克铼,但长期没有合适的回收技术而无法综合利用。2015年,中国地质科学院郑州矿产综合利用研究所研究成功从钼冶炼的烟气淋洗液中回收铼的工艺,在栾川钼业公司与金堆城钼业公司推广应用,从而使宝贵的铼资源能够在这两家企业回收利用,并由此给企业带来了可观的经济效益。

    共伴生矿产同主矿产资源一样,都是大自然赐予人类的礼物。开展综合利用便是我们接受并珍惜这份分量虽小但极其宝贵的礼物。

    合理处置被放错位置的资源

    吕振福

    联合国环境规划署定义自然资源为“在一定的时间、地点条件下,能够产生经济价值,以提高人类当前和未来福利的自然环境因素和条件。”自然资源通常包括矿产资源、土地资源、水资源、气候资源与生物资源等。作为自然资源的一部分,矿产资源是人类赖以生存的重要基础,是国民经济健康发展的物质保障。矿产资源产业是基础产业,对国民经济发展起到了重要支撑作用,同时不可避免地会产生矿业固体废弃物。如何正确认识和合理处理这些被放错位置的资源?

    矿业固体废弃物通常包括废石和尾矿。废石主要指采矿环节采出的、低于工业品位且未能进入选矿等后续作业的固体物料。尾矿是选矿分选作业的产物之一,是入选物料富集得到精矿和中矿后的固体废弃物。尾矿包括物理选矿产生的固体废弃物,也包括堆浸工艺、全泥氰化工艺提取金、铜等金属后产生的固体废弃物。

    尾矿和废石的排放水平与矿产资源共伴生矿多、品位低的特征分不开。平均入选原矿品位在一定程度上决定了废石和尾矿排放水平。原矿品位低、剥离的废石品位更低,使得矿山废石量巨大。中国地质科学院郑州矿产综合利用研究所“全国重要矿山‘三率’综合调查与评价”项目对2011-2015年全国代表性矿山的废石、尾矿产生情况大数据进行了系统研究,结果表明:一方面我国经济社会发展对矿产资源的需求巨大,另一方面我国矿产资源具有富矿少、贫矿多,独立矿产少、共伴生资源多的特点;我国不仅矿产品产量居于世界第一位,在生产矿产品的同时,排出矿业固体废弃物也非常之巨量。

    废石与尾矿都具有潜在的资源属性。随着技术进步、经济发展,越来越多的废石和尾矿被用于采矿采空区充填、直接用作建材或者用于生产建筑材料。采矿废石、选矿尾矿的综合利用具有越来越好的前景。根据“三率”调查统计,我国20种典型矿产矿山当年排放的废石中有17.77%被消耗利用,当年排放的尾矿中有18.97%被消耗利用。

    2015~2017年,“22种重要矿产资源节约与综合利用调查”项目通过开展1300座尾矿库取样、分析测试,在其中的210座尾矿库中发现具有综合回收潜力的有价组分。如果对这些组分加以回收利用,潜在经济价值达349亿元。

    上述发现的具有综合回收价值的尾矿多为上世纪五六十年代排放的有色金属尾矿,说明技术的时空特征和尾矿的二次资源特征。从二次资源的角度考虑,合理处置和保护固体废弃物更加重要。

    废石与尾矿都具有环境扰动属性。废石和尾矿处置不仅占用土地,而且可能产生有机和无机污染物,并通过土壤、水体、空气和生物链传导。从技术上讲,当前技术经济发展水平条件下排放的废石和尾矿,不可能实现100%再利用。相比较而言,妥善处置可能比试图利用更加迫切。因为矿山废石和尾矿引发的环境问题必须认真面对和妥善解决,同时如果处置和保护得好,在若干年之后废石还有可能成为资源。

    我国尾矿、废石要加强减量化、无害化和资源化工作,需要加强尾矿和废石的分类处置、有效保护、合理利用的标准化工作和技术创新。通过技术经济、环境效应和资源属性三位一体的综合评价方式来确定废石和尾矿是选择利用,还是选择处置和保护。通过不断加强技术创新,提高矿产资源开采回采率、选矿回收率和综合利用率,促进废石和尾矿的源头减量化。

    矿石分拣机器人助推选矿技术智能化

    彭团儿 郭珍旭 陈明文 张继民 贾宇航

    矿石分拣机器人——智能光电拣选机是可以代替人工手选分拣矿石的智能化自动执行工作的机器装置,是集光、电、气、机为一体的具有感知、分析、推理、决策和控制功能的新型高端智能装备。它利用矿石表面特征、导电性、磁性、放射性及矿石对射线的吸收和反射能力等物理特性差异,借助各种探测仪器和执行机构实现矿石中有用矿物和废石分选。矿石分拣机器人可以拓展分拣物料的品种、粒度范围,提高分拣速度和精度,改善劳动条件。

    我国从上世纪60年代开始研制矿石拣选设备,70年代到80年代有了较大进展,但拣选理论和装备技术的发展远远落后于重磁电浮等传统选别技术,只停留在小试和工业试验阶段;90年代后期,光电选别装备——色选机在大米、杂粮等粮食加工领域快速发展,国内制造企业开始半学习模仿半自主开发色选机;从2000年开始,进口设备的市场份额大幅减少,国产光电色选机技术快速发展,色选机的规格、功能越来越丰富,多通道选别、二次复选、双面镜头检出、特殊波长光源等技术逐渐成熟;2012年后,随着矿石拣选预处理技术、高精度快速分拣、大颗粒拣选、规模化处理等行业瓶颈技术的突破,智能光电色选机逐步在非金属矿领域逐步推广应用。

    滑道式智能光电拣选试验机

    履带式智能光电拣选试验机

     

    智能拣选机工作原理及结构组成

    各种智能拣选机的组成都基本相同,主要由给料系统、照射及探测系统、信息处理系统和拣选执行系统四大功能部件组成。智能光电拣选机工作时,被选物料从顶部的料斗进入机器,通过振动器装置的振动,被选物料沿通道下滑,加速下落进入分选室内的检测识别区域,并从传感器和背景板间穿过。传感器将获得图像及数据信息经信息系统处理得出矿块品位或特征量化数据,做出决策输出信号,驱动机械打板或电磁阀工作分拣出目标颗粒至接料斗的废料腔内,而好的被选物料继续下落至接料斗成品腔内,从而达到选别的目的。

    给矿系统由料槽、给料机、滑槽、输送带等组成,使矿块呈单层、单列、多列均匀地给到机器的照射和探测系统。一般采用多级给矿,第一级控制给料量,第二、三级使矿石排队,矿块呈单层稳定离散状态,且矿块间拉开一定的距离。探测系统则通过敏感元件测定不同矿物的光学、磁学、电学或放射性环境下吸收、散射或反射特征参数作为选别依据。信息处理系统主要任务是对来自检测系统的矿块射线活度和光电信号经放大、降噪、整形、分析、转换后得出矿块品位或特征量化数据,与预定值比较后进入主控单元,做出决策,确定是否给执行机构发出命令。执行机构主要有机械挡板或高压气流两种,根据信息处理系统的命令通过使目标矿粒偏离正常运动轨迹,实现拣选分离。

    智能拣选机分类

    根据检测系统中矿物与不同波长电磁波作用吸收、散射或反射特征差异,拣选方法可以分为放射性分选法、中子吸收法、荧光法、X射线吸收法、紫外荧光法、光电法、红外法等。在各种拣选方法中,应用较多的主要是光电分选和X射线分选。根据X射线照射矿石后的不同特征反应,X射线分选法分为X射线荧光法、X射线激光法、X射线反射法、X射线吸收法等。光电法主要通过高分辨率传感器,在可见光条件下对原料进行颜色识别并剔除,从而实现分选。目前国内成熟的光电拣选机主要包括滑道式和履带式两种。

    滑道式拣选机利用斜槽滑道导矿,矿石在沿滑板平面下落完成检测和分离过程,适用于形状规则性的物料,不易翻转、干燥的块矿,具有结构简单、紧凑实用的特点。履带色选机使用皮带对矿石进行加速,使其稳定通过照射检测区域,具有给料平稳、输送物料种类多、色选精度高、破损小、产量高、带出比小、对物料的损伤相对轻微、破损小等特点,并且速度可控,产量可调整,可以具体根据客户的生产实际进行设计,但造价相对比较高。

    智能光电拣选实验室

    中国地质科学院郑州矿产综合利用研究所依托原国土资源部公益性行业科研专项——《基于CCD技术智能光电拣选装备及矿石分选工艺研究》项目,建立了0.5吨/小时~2吨/小时规模智能光电拣选实验室,分拣矿石适宜粒度范围为2~25毫米,适用于钾长石、石英、滑石、硅灰石、方解石、蛭石等非金属矿分拣。项目采用智能光电拣选工艺与传统选矿工艺相结合,研发出光电拣选原矿预处理技术、中粗粒预选抛尾与湿法磨矿磁选精选联合选矿、花岗伟晶岩分质分类差异化分选、光电拣选与干法磨矿联合制粉等绿色节能选矿技术,对河南嵩县、方城、栾川,山西运城,内蒙古察右后旗、乌兰察布市等地钾长石矿进行拣选试验。

    根据项目研究成果,中国地质科学院郑州矿产综合利用研究所在所属原国土资源部矿产综合利用野外试验基地建设5~8吨/小时规模工业试验生产线,目前已投入使用。核心设备LS1200双层智能光电拣选机具备二次复选功能,单台机器即可完成尾矿扫选或精矿精选,实现预选抛尾或直接获得合格颗粒精矿。工业化智能光电拣选机检测识别系统采用云技术相机,深度识别微小而精细的杂质,实现高清扫描、精准识别及高速运算,高速动态捕捉并实时分析显示物料,真正实现分拣目标实时可视化。执行机构采用专用新型高频电磁阀,超低耗气量,实现最优带出比,超高打击精度,拥有完美的自修复系统,维护成本低,使用寿命100亿次以上。光源系统采用高性能LED光学系统设计、光控技术,免维护,降低能耗35%。

    智能光电技术在典型矿种分选中的应用

    河南方城某风化花岗岩钾长石矿主要类型为斑状二长花岗岩和中粗粒花岗岩;主要矿物为斜长石、微斜长石、石英;杂质矿物主要为磁铁矿、黑云母。其中,高品位长石呈肉红色,致密块状,部分白色石英呈大颗粒分布在钾长石矿石中,造成矿石总体长石含量低,产品附加值低。为获得高附加值钾长石,传统选矿方法采用磨矿后在酸性或中性环境下浮选分离长石石英,磨矿能耗高,浮选废水造成一定环境污染。根据长石石英颜色差异及解离粒度,采用智能光电拣选对5~15毫米粒级原矿进行分拣,原矿K2O含量6.3%,Na2O含量3.1%,分拣后获得颗粒长石精矿K2O含量9.7%,Na2O含量3.7%,精矿产率53.6%,回收率82.7%。通过拣选工艺实现粗颗粒长石石英分离,提高湿法制备钾长石粉原矿品质,降低废石入磨量,实现中低品位钾长石高值化利用。

    5~8 t/h智能光电拣选工业试验生产线

    河南嵩县某低品位石英脉型金矿属脉幅窄、贫化率高的矿脉,由于金与黄铁矿呈密切伴生关系,根据判定矿石黄铁矿与脉石矿物颜色和晶体形态差异,采用光电分选技术对不均匀成矿矿脉、均匀成矿矿脉的边界与围岩进行处理,使低于工业品位的低品位金矿通过预选抛废可以经济利用,预选抛尾产率37.37%,尾矿金属量损失率10.18%。该技术可部分取代效率低而成本高的选择性开采方法,提高采矿效率,提高资源利用率。

    自20世纪70年代以来,计算机技术、信息技术、自动化技术与传统制造技术迅猛发展,形成了先进制造技术,促进拣选装备技术向精密化、自动化、智能化、图形化、可视化、集成化快速发展,智能拣选逐渐成为科研院所关注和研究的焦点。以人工智能为代表的智能拣选装备技术作为一种低成本、环保高效的分选工艺,有望成为继重选、浮选、电选、磁选之后又一重要的工业化选矿方法,并在有色、黑色、稀有、放射性、贵金属元素的矿石以及非金属矿领域得到广泛应用。建立和发展完善的低品位矿石拣选资源化利用知识体系已经成为选矿行业发展的主要攻关方向之一。

    (该研究为原国土资源部公益性行业科研专项——《基于CCD技术智能拣选装备及矿石分选技术研究》)

    综合地质调查谱地质新篇

    马亚梦 谭秀民 赵恒勤

    当前,我国矿产资源供需矛盾日益突出。因此,要加大勘查力度,实施找矿突破战略行动。随着矿产资源全球化配置,需要统筹协调的问题逐渐增多,单一传统的资源调查方式已不能适应当今的新时代、大格局。在此大背景下,助推单一资源调查向地质资源潜力、技术经济条件、地质环境影响“三位一体”综合地质调查转变,形成资源环境综合评价及勘查开发布局对策建议显得尤为重要。

    何为“三位一体”

    “三位一体”的综合地质调查是秉承“绿色矿业”的理念,以问题和需求为导向,按照“综合部署、科技引领”的原则,进行的逐层深入研究。其基本研究内容是以资源基地为研究对象,全面梳理资源基地资源、环境、技术经济相关数据及研究成果,在资源条件调查与潜力评价、地质环境条件调查与影响评价、技术经济调查评价的基础上开展的综合评价。

    相较于以往着重于地质找矿的单一传统的资源调查方式,“三位一体”的综合地质调查更加突出成果的集成,在推进实施过程中需要遵循自然规律与经济规律,统筹部署好相关工作,完成新发现大型资源潜力基地从资源基地到适应经济新常态的产业基地的转变,其主要包括:

    地质资源潜力——注重矿集区各类地质勘查资料的收集整理、二次开发和综合分析,注重矿集区找矿预测研究,总结成矿地质背景、成矿规律和控矿因素,开展重点区域靶区优选、野外查证、成矿预测工作。

    地质环境影响——调查评价矿山地质环境现状,着重分析评价地质环境容量,预测矿产资源开发对环境造成的影响及危害;探索矿产资源开发地质环境影响变化机制及防控技术创新,提出矿产资源绿色开发地质环境防治的对策建议。

    技术经济条件——注重资源的综合开发技术研究,提高矿产资源综合利用水平;评估矿集区资源开发利用的前景,对资源开发的经济效益、社会效益、环境效益等做出科学评价和预测,推进当地资源开发的资源-经济-环境的协调发展。

    怎样“勘查开发”

    党的十九大报告中指出,“人与自然是生命共同体,人类必须尊重自然、顺应自然、保护自然”,“为把我国建设成为富强民主文明和谐美丽的社会主义现代化强国而奋斗”,这为我们矿产资源勘查开发工作指明了方向。

    现阶段,制约我国矿业经济发展的因素主要有以下几个方面:自然条件严酷,基础设施落后;矿产资源勘查投入不足,勘查程度普遍较低;矿产选冶加工技术研究滞后。因此,在资源环境综合评价的基础上,提出科学的资源勘查开发布局对策建议,不断提高地质工作服务经济社会发展的主动性和能动性,有助于将找到的矿产资源合理、有序、高效、集约、生态地开发出来。其主要内容是:依据矿集区成矿规律与成矿预测,结合国家和区域相关产业政策,划分矿集区勘查、开发基本区块;理论与实际相结合,构建资源勘查开发布局评价指标体系;建立评价标准,评价勘查、开发各区块的优劣度,提出适宜、科学的勘查开发布局对策建议。

    划分勘查开发区块——根据勘查区和开发区划分的依据,划分矿集区勘查、开发基本区块。勘查区的划分依据包括:不存在法律和其他禁止勘查的情况;矿集区成矿规律与成矿预测最新成果,包括矿床、矿点、矿化点及异常分布,找矿靶区分布等;整装勘查区勘查规划划定的预查普查区;矿产资源规划划定的重点勘查区。开发布局划分的依据包括:不存在法律和其他禁止开发的情况;区内存在已探明并具有一定资源储量规模的矿床;区内有一定的基础设施条件,区域范围有一定的工业基础;矿产资源规划划定的矿产资源开采区域。

    构建评价指标体系——评价的基本框架和指标体系的主体构成具有共同性和通用性,主要依据《矿产资源基地综合地质调查技术要求》中的矿产资源基地综合地质调查评价指标。此外,评价指标体系也应遵循因地制宜的原则,有关评价内容需要根据评价对象所处的经济地理和社会环境的不同而有所区别。也就是说,我国东、中部的矿产资源基地和西部矿产资源基地,在布局评价的指标设计上应该有所不同。

    勘查开发布局评价——主要包括评价指标的权重确定,评价指标的评分标准,评价指标的计算等。评价指标权重一般采用层次分析法来确定,把复杂事情分成若干有序层次,确定每一层次中各元素的相对重要性次序的权重;通过对各层次的分析,进而导出对整个问题的分析,即总排序权重。评价标准是指各级评价指标评价值的判别标准,起着一把尺子的作用,一个评价指标处于什么状态,用这把“尺子”去衡量,就可以清楚这个指标的状态是好还是坏。

    规划布局对策建议——根据区块评价的结果,借鉴国内外已有大型矿产资源基地的开发经验和管理措施,提出适宜的矿产资源基地勘查开发工作布局、资源规划、资源管理的政策建议。唤起全社会资源忧患意识,加强地质矿产勘查工作,实行开源与节流并重、开发与保护并重的方针,依靠科技进步,提高矿产资源勘查、开发利用水平,加强矿业规划管理,促进矿业经济可持续发展,为社会主义现代化强国建设提供安全、稳定、经济、可靠的资源保障。

    蕴藏在尾矿中的宝藏

    王威

    尾矿具有环境危害性和资源性的双重属性。近年来,尾矿的资源属性受到我国各级政府和生产企业的高度重视,尾矿资源化的发展趋势日益清晰,尾矿综合利用将是21世纪矿产综合利用范围最广、潜力最大的领域。因此,从国内尾矿资源的实际出发,开展系统调查评价,厘清尾矿利用、保护和处置的边界和先后次序,提出规模化消纳、资源化利用、无害化处置总体解决方案,实现尾矿资源化利用的同时,最大限度地消除其对周边环境的威胁,有着十分重要的经济效益和社会意义。

    尾矿是矿石经粉碎、选冶形成精矿后的剩余部分。我国尾矿来源按行业划分主要包括黑色金属尾矿、有色金属尾矿、稀贵金属尾矿和非金属矿尾矿。

    根据《中国矿产资源节约与综合利用报告(2016)》,截至2015年度11月底,我国在用或者未治理尾矿库有9565处,尾矿累计量超过200亿吨,占地约100万亩。矿石空场填充是尾矿利用的重要方式,占尾矿利用总量的53%,金矿石、铜矿山的尾矿及其他有色和稀贵金属矿山、铁矿山是尾矿充填利用的主要方向,分别占尾矿利用总量的18%、23.6%和11.4%。

    虽然我国尾矿综合利用起步较晚,但由于各级政府和生产企业的高度重视,我国矿产资源综合利用及矿山环境治理已经快速起步并取得了很大成绩,但还需进一步加强尾矿资源化利用领域研究,提高有价组分综合利用水平,丰富尾矿资源化利用的方法途径,实现尾矿利用由“削足适履”到“量体裁衣”的转变。

    中国地质科学院郑州矿产综合利用研究所在地质调查项目支持下,开展铜、铅、锌、钼、金和萤石矿山尾矿调查评价,完成了1300个尾矿库的调查,形成了尾矿综合利用特征大数据,同时,发现了一批稀有稀散组分高的尾矿。栾川地区尾矿库中赋存高于工业品位的钨金属量>5万吨(估算),达到大型规模;在其他尾矿库中还发现了高于或接近工业品位的金1.1316吨,银114.3604吨,钴3581.4吨,铅36.152万吨,锌21.294万吨,萤石26.685吨(估算)。筛选其中42个尾矿库尾矿进行综合利用技术研发和评价,发现有38个尾矿库尾矿综合利用技术经济合理,这说明尾矿资源化具有广阔的前景。

    铁尾矿、铜尾矿和黄金尾矿分别占我国尾矿的51%、19%和13%,是我国主要的尾矿类型。铁尾矿的综合利用主要体现在铁矿物的回收利用、用作建材原料、用做土壤改良剂和微量元素肥料、进行生态恢复等。铜尾矿综合利用主要有铜尾矿再选、用于矿井充填或复垦土地、用于生产建筑材料等。金尾矿的综合利用主要体现在有价元素的综合回收、生产各种建筑材料、井下充填、复垦造田等。

    由于我国前期选矿技术水平的制约和“单打一、重主轻副”的思想等多种原因,我国尾矿中不仅含有可提取的金属组分,而且存有大量可用的以硅酸盐矿物、碳酸盐矿物为主甚至可直接提取的非金属组分,是我国矿产资源的新的宝藏。

    开展典型尾矿资源综合利用技术研究和推广尾矿资源产业化利用技术研究与推广,不但可使原来资源枯竭或资源不足的矿山焕发青春,而且还能够重新成为新的资源基地,以开辟新的材料科技领域,推动科技进步,同时也可以解决环境污染、改善生态环境,具有巨大社会效益、经济效益和环境效益。虽然我国在尾矿综合利用领域开展了很多研究,但仍缺乏关于尾矿的系统调查评价,尾矿综合利用依然停留在单一的综合利用模式,没有形成区域性整体利用模式。因此,亟须开展系统调查评价,厘清尾矿利用、保护和处置的边界和先后次序,提出规模化消纳、资源化利用、无害化处置总体解决方案,实现尾矿资源化利用的同时,最大限度地消除其对周边环境的威胁。

    揭秘日常生活中的高岭土

    赵恒勤 谭琦

    高岭土,俗称“瓷土”、“观音土”,是一种铝硅酸盐矿物,也是人们日常生活中必不可少的一种矿物材料,其中最广为人知的是用来制作陶瓷。

    我国是世界上最早发现和利用高岭土的国家,远在3000年前的商代所出现的刻纹白陶,就是以高岭土制成。江西景德镇生产的瓷器名扬中外,国际上通用的高岭土学名-Kaolin,就是来源于景德镇东郊高岭村边的高岭山。高岭土在陶瓷中主要用来做坯胎,将高岭土用于陶瓷坯胎中在我国陶瓷史上具有划时代的意义,高岭土在釉料中的作用主要是提高釉料的熔融温度和悬浮性,使釉水不宜沉淀。

    我国历史上闻名的“唐三彩”和“青花瓷”均采用高岭土来制作坯体。唐三彩的釉质,主要成分是硅酸铅,而呈色剂则是在釉料中加入各种不同的、适量的金属氧化物所形成的。青花瓷是我国陶瓷中的珍品,也是瓷器的主流品种之一。目前,陶瓷考古界和科技考古界较为认同的“青花”是指利用含钴的矿物作为着色颜料在白瓷坯上绘画,经上釉后在高温下一次烧成(非低温铅釉)而呈现蓝色装饰的釉下彩瓷器。青花瓷的制作工艺复杂,整个工艺流程主要分为瓷土加工工艺-制坯工艺-釉与料工艺-装饰工艺-烧成工艺等5个部分。其中高岭土主要用于制作瓷胎,高档青花瓷对于高岭土原料要求很高,要求Al2O3含量>21%,Fe2O3+TiO2<0.5%。

    现代人们的日常生活中也处处可见高岭土制品,比如日用陶瓷、建筑卫生陶瓷等。我国是世界上最大的日用陶瓷和建筑卫生陶瓷生产国和消费国,且产品逐步被世界认可和接受。近年来,其生产工艺技术进步迅速,整体已接近世界先进水平,但存在过度消耗高岭土资源、中低档产品居多、污染环境等问题。随着陶瓷行业的不断发展,优质的高岭土资源日趋枯竭,对陶瓷生产质量造成很大影响,故中低品位高岭土成为陶瓷行业的接续矿物资源。

    此外在人们日常生活中用到的各种纸张中也不乏有高岭土的身影。高岭土作为造纸涂布颜料的主体组分,其特性对造纸生产可操作性和涂料特性以及成纸质量有很大影响。国外发达国家高岭土主要用于造纸行业。高岭土既可用于填料,也可用于涂料,在造纸中的要求要比陶瓷用高岭土高。此外,高岭土还能用来制备化肥、农药、杀虫剂载体等。

    我国高岭土资源储量丰富,总储量约30亿吨,主要分布在广东、广西、福建、江苏、江西、湖南、河南、山西和内蒙古等省区,可划分为煤系高岭土、软质高岭土和砂质高岭土三种类型。其中煤系高岭土储量约17亿吨,主要分布在我国北方地区。软质高岭土为热液蚀变型,主要分布在苏州。砂质高岭土属风化型或沉积型矿床,主要分布在南方亚热带多雨地区。根据不同的资源类型,采用不同的加工工艺,煤系高岭土主要采用破碎-磨剥-煅烧-超细解聚-分级,部分磁选工艺,应用方向是油漆、涂料、造纸、橡胶、电缆、陶瓷等;砂质高岭土和软质高岭土主要采用捣浆-螺旋除砂-旋流器分级-离心机分级-磁选-漂白-洗涤-压滤-干燥等工艺,陶瓷土主要采用磁选除铁增白,造纸涂料土主要靠漂白除铁增白。

    现在我国多数高岭土企业的现状是:规模较小、产量不大、产品质量不高,与美国、英国、巴西等国相比,存在较大的差距,甚至全国高岭土总产量不及国外一个高岭土大公司的产量。因此,我们应在资源合理利用与保护、产品和市场开发、工艺技术和装备以及管理和政策支持等方面,共同努力,尽快使我国由高岭土资源大国变为高岭土产业强国。

    高寒荒漠区金属矿产资源开发中的矿山地质环境保护

    张永康 曹耀华 谭秀民

    青藏高原东北部、柴达木盆地西南缘铁铜等金属矿集区,是我国西部地区重要的铜、铁、铅、锌、镍多金属成矿带,目前已发现大型、超大型铁、铅锌、铜、镍等矿产资源多处,其中夏日哈木镍矿资源丰富,镍资源量达106.24万吨,有望成为继甘肃金昌镍矿之后我国又一“镍都”。

    该地区平均海拔在3000米以上,属于典型的高寒、干旱内陆高原盆地气候,区内地势陡峻,沟谷深切,地貌以戈壁滩、沙丘、高山为主,地表处有厚1米左右的土层覆盖,底下为岩石及沙石层,土壤类型主要为灰棕漠土。植被覆盖率一般小于15%,呈现典型的高寒荒漠景观。

    高寒荒漠区金属矿产资源的开发历史悠久。随着国家对紧缺矿产资源需求量的增加,该区丰富的铁铜镍等金属矿产资源的进一步开发将对国民经济发展起到重要作用,可为国家经济安全提供有力保证,带动交通、通信等基础设施发展,提供一定数量的就业岗位,促进工业化和城镇化建设,为更好地实现西部地区脱贫攻坚提供经济支撑。

    金属矿产资源的开发一般包括采矿、选矿、冶炼三个过程。以往粗放式的采、选、冶过程对生态环境的影响主要有矿山地质灾害、地形地貌景观破坏、土地资源破坏、含水层破坏和水土环境污染等。

    那么,高寒荒漠区矿山地质环境灾害如何防治?

    建设绿色矿山

    我国历来重视环境保护。习近平总书记指出:“既要绿水青山,也要金山银山;宁要绿水青山,不要金山银山;而且绿水青山就是金山银山。”这为矿业开发环境保护指明了方向。2017年,原国土资源部、原环境保护部等六部委联合出台了“关于加快建设绿色矿山的实施意见”,详细阐述了绿色矿山的建设。

    绿色矿山是指在矿产资源开发全过程,既要严格实施科学有序的开采,又要将对矿区及周边环境的扰动控制在环境可控制的范围内;对于必须破坏扰动的部分,应当通过科学设计、先进合理的有效措施,确保矿山的存在、发展直至终结,始终与周边环境相协调,是融合于社会可持续发展轨道中的一种崭新的矿业形象。绿色矿山建设是一项复杂的系统工程,代表了一个矿业开发利用总体水平和可持续发展潜力,以及维护生态环境平衡的能力。它着力于在科学、有序、合理开发利用矿山资源的过程中,最大限度保护和恢复治理矿山环境。

    加强矿山地质环境防治

    在高寒荒漠区,这样一个矿产资源丰富、动植物资源丰富、环境又极为恶劣的区域,结合矿山开发对地质环境造成的影响,建议从以下几方面进行矿山地质环境防治及保护:

    针对新建矿山,应按照“加快建设绿色矿山的实施意见”精神,建设绿色矿山,从源头保护矿山地质环境,实行过程控制的保护性开发措施。

    针对已发现的矿山地质灾害,应加强治理与监测工作,加强对不稳定边坡监测和移动规律认识,消除和减小不稳定边坡崩塌滑坡灾害可能对过往行人和车辆的威胁。

    针对高寒荒漠区矿山开发过程中主要造成的影响是土地资源破坏和地形地貌景观破坏这一现状,加强土地资源的保护,尽量减少对原生态土地的占用与破坏,特别是尽量减少对表层土壤的破坏,以地下开采为主,采取以钻代槽、浅钻的绿色勘查技术,对于必须破坏部分土地时,必须对表层土采取保护措施以防止表层土散失和退化。

    锡铁山铅锌矿废石堆上的人工林

    采取封育、地表植被重建,在草皮的种属选择、工艺的采选上要与矿区所处的地理位置、气候条件、土石环境相匹配,以确保植被重建的成效;废石、废矿渣堆覆土绿化;废石、废矿渣堆积台面整治,压实台面,加固边坡、衬砌护坡,在有效部位建设拦挡工程,设计相应的排水、防水工程;地质探槽治理,采取土方回填。

    开展人工现场调查、遥感监测工作,动态掌握矿产资源勘探开发活动对土地资源的破坏类型、面积及破坏程度等,同时监测监督矿山地质环境治理恢复工作情况。

    建设矿山公园

    在青海西部大柴旦地区,西部矿业股份有限公司锡铁山铅锌矿分公司在矿山地质环境保护方面就是一个优秀的典范。该矿山位于青海省柴达木盆地北缘戈壁滩上,常年刮风,沙尘暴天气时有发生,降水量稀少,植被稀少,难以存活。整个矿区及周围只有少许骆驼草和麻黄草生长。经过改造,该矿山在废石堆、厂区内种植了大量杨树、柳树、红柳和草皮,在厂区形成了具有防风固沙能力的人工林,绿化覆盖率达到了可绿化区域面积的80%以上,改变了矿区小环境,降雨量增加,风沙天气逐年减少,逐步形成了适宜人居住的环境。

     

    珍惜矿产资源 助力生态文明

    古元古代是地史上重大地质构造转变时期之一,也是第一个重要成矿期

    瓦尔巴拉超大陆是一个理论上曾经存在的超大陆,自38亿年前开始形成,31亿年前成形,28亿年前分裂。

    前寒武纪地质年表

    今年世界地球日的主题是“珍惜自然资源呵护美丽国土——讲好我们的地球故事”。那么,对于“生物大爆发”之前远古时代的地球,你又知道多少?今天,就让我们请来一位研究前寒武纪50多年的地质专家——来自中国地质调查局天津地质调查中心的沈保丰研究员,请他讲讲从46亿年前地球诞生到距今5.41亿年寒武纪开始近40亿年的漫长时光中,地球经历了哪些重大地质事件。

    1 前寒武纪涵盖40亿年的地球时光,分为冥古宙、太古宙、元古宙三个地质时代

    记者:说起寒武纪,人们会想到地球历史上第一次生物大爆发,大量且门类众多的海生无脊椎动物在几百万年的很短时间内“突然”地出现了。从此,地球逐渐成了一个生机勃勃、丰富多彩的“生命家园”。那么在之前的前寒武纪时期,地球又经历了怎样的演化过程?

    沈保丰:地球的年龄是45.68亿岁,以5.41 亿年的寒武纪为界,之前约40 亿年的地质时代称为前寒武纪。

    前寒武纪又分为冥古宙、太古宙与元古宙三个地质时代,是陆壳形成、生长、壳幔圈层分异耦合并形成稳定陆块的重要阶段。应该说,在这个漫长的时间尺度上,地球发生了一系列决定地球命运的地质大事件。揭示这些事件的性质和过程,对于理解行星演化、大陆的聚合与漂移、矿产资源的形成、生命的演变,以及地球未来的发展都具有重要意义。

    记者:但以往人们了解得并不多。

    沈保丰:的确。尽管它占据了地球生长期近87.7%的时间,但人们对这段时期的了解相当少。这是因为前寒武纪少有化石记录,且岩石已严重变质,不是已经破坏侵蚀,就是埋藏在显生宙地层之下。

    目前,已知地球上地壳的最古老物质记录,是澳大利亚杰克山太古宙沉积砾岩中的碎屑锆石,它的年龄大约是44亿多年。

    2 冥古宙的“黑暗地球”,经历了由天文行星演化到地质演化的质变

    记者:地球形成的初始阶段是没有地壳的?

    沈保丰:早期地球经历了由天文行星演化到地质演化的质变。

    在冥古宙,即距今45.68亿年到40.3亿年,早期地球经历了一段“黑暗时代”,那是一段没有岩石记录的时期。

    冥古宙又可分为混沌代和杰克山代或锆石代两个代,其分界线为44.04亿年。混沌代主要是太阳系及其早期地球等行星形成及演化时期,其间包括太阳系的形成、早期地球的增生、金属地核和硅酸盐地幔形成、月球的形成、一颗“火星大小”的行星撞击等天文行星演化事件。

    距今44.04亿年左右,地球就进入到地质发展时期。在这一时期内,有原始地壳和原始地核起源,初始地幔、水、大气圈和海洋的形成,陆壳、洋壳及生命起源等重大地质发展问题,都需要人类进一步去认识和研究。

    早期地球的研究是当今地球科学研究的热点和难点,因为有关近似火星大小的天体大撞击、全球岩浆海、地幔翻转、陆壳起源、生命出现等大事件都发生在这一时期。但因为在这时期保存的记录极少,又很难得出较完整的结论。因而人类对早期地球的认识程度极低。

    从地质角度对早期地球的研究、获取相关信息的途径,其中对冥古宙碎屑锆石包含信息的研究尤为重要。

    记者:人类都在哪里发现过冥古宙碎屑锆石?

    沈保丰:保存较好的地点是西澳的Mt. Narryer、Jack Hills和Maynard。Mt. Narryer的碎屑锆石年龄为41.5亿年及42亿年;Jack Hills为44.04±0.08亿年,是全球最老的碎屑锆石年龄。

    在中国大陆的西藏三江造山系中的喜马拉雅地块、北羌塘地块、北秦岭西端、北祁连走廊带、天山的东准噶尔和华夏造山系等7个地点,也发现了早于40亿年的碎屑锆石,其中有4个大于40.3亿年,3个接近4亿年。

    3 太古宙是陆核形成、陆壳巨量堆积、许多矿产形成的重要时期

    沈保丰:太古宙是陆核形成、陆壳巨量堆积、高度还原性水圈、大气圈和铁、金、铜、锌矿产形成的重要时期。

    太古宙是陆核和陆壳巨量堆积时期。根据已有的地质资料,地球陆壳的80%~90%是在早前寒武纪形成的,绝大多数形成于太古宙中的中—新太古代。全球陆壳的巨量增生在29亿~27亿年,主要的岩石类型是高钠的长英质片麻岩,其次是镁铁质—超镁铁质火山岩。据推测,陆壳增生与超级地幔柱事件有关。

    太古宙地幔热对流循环剧烈,构造活跃,火山活动速率较大,这有利于早期大陆物质大量产生,并漂浮于紊流状态的地幔之上。随着地球冷却,原始大陆固结为一些小陆块。依据南非卡普瓦尔和澳大利亚皮尔巴拉克拉通的年代学和古地磁研究,在33亿年左右,甚至可早到36亿年,可能有一些陆块增生并形成地球上第一个构造上更稳定的瓦尔巴拉超大陆。有专家提出,在太古宙末期,27亿年左右或25亿年,可能存在一个肯洛兰超大陆。约24亿年左右,肯洛兰超大陆开始裂解,形成了一系列的大规模放射状基性岩墙群,在23亿年左右形成了古元古代冰川事件。

    记者:太古宙已经开始形成矿产资源?

    沈保丰:太古宙形成的大量绿岩带中有着明显的成矿作用。

    根据其规模、形态、形成时代、岩石组合、变质程度以及成矿作用等方面的差别,全球的绿岩带可分为4种类型:巴伯顿型(35亿~33亿年),形成时代较老,主要矿产有金、铁、铬和少量镍;苏必利尔型(27亿~26亿年),主要矿产有铜、锌、金、铁和少量镍;伊尔岗型(27亿~26亿年),产出的矿产有铜、镍、金、铁等;达瓦尔型(26亿~23亿年),与之有关的矿产有金、铁、锰等。

    4 距今26亿~25亿年间,华北陆块发生了一次大氧化事件

    记者:现在的中国大陆在太古宙时期经历了怎样的变迁?

    沈保丰:太古宙地层在中国大陆出露面积为7.4万平方公里。中国大陆主要有三个陆块区,分别是华北、塔里木和扬子。其中,以华北陆块面积最大,变质基底分布范围最广,时代跨度最长——从略大于38亿年到18亿年。

    作为中国最大的陆块,华北陆块的面积约30万平方千米。尽管与世界上其他陆块(克拉通)相比,它的面积不算大,但它不仅具有超过38亿年的漫长地质历史,而且经历了复杂的构造岩浆热事件叠加和改造,记录了几乎所有地球早期的发展的重大地质构造事件。

    在26亿~25亿年,华北陆块是陆壳巨量堆积的高峰期。由于陆壳巨量堆积引起由缺氧到富氧的地球环境的剧变,构造体制重大转折,同时导致了元素的巨量迁移、重新分配和成矿。

    一个有趣的现象是:华北陆块大约30万平方千米面积上,在26亿~25亿年间忽然大规模地形成了几千个规模大小不等的氧化物相条带状铁建造(BIF)型铁矿床,累计查明资源储量已达335.36亿吨,占全国铁矿总资源储量46%。这种在一个不是很大的地区集中产出几千个矿床和矿点,并呈氧化物相条带状铁建造的铁矿床产出,在全球很少见,华北陆块可能是唯一的地区。这也说明在新太古代26亿~25亿年时,华北陆块发生了一次大氧化事件。

    记者:铁矿床的形成与氧化有什么关系?

    沈保丰:铁是变价元素,在自然界有Fe2+和Fe3+两种离子存在。氧化环境中铁呈Fe3+状态存在,Fe3+的迁移能力极小。还原环境中铁以Fe2+状态存在,形成Fe(OH)2、FeCO3、FeCl2等化合物。因而氧化环境有利于铁的沉淀,还原环境有利于铁的迁移。即:在酸性环境下,铁的还原作用增强,促使二价铁被溶解到溶液中去;在碱性环境下,铁的氧化作用增强,促使三价铁从溶液中沉淀下来。

    在华北陆块在26亿年之前,由于强烈的火山和洋底的喷流作用,大气圈和海盆基本是处于强酸性和强还原的环境,在盆地中大量的铁呈二价离子、氢氧化铁或其他络合物形式存在海盆中。在26亿~25亿年由于处于氧化环境,Fe2+便从溶液中沉淀下来,形成了大量的铁矿。

    5 古元古代是地史上重大地质构造转变时期之一,也是第一个重要成矿期

    沈保丰:古元古代是地史上重大地质构造转变时期之一。在此期间,发生了古元古代初超大陆裂解、大量基性岩墙(席)侵位、大量巨厚被动陆缘型沉积建造、大陆壳的快速生长、俯冲—碰撞造山作用的首次出现等。同时,这一时期构造体制发生了本质的变化,由太古宙全活动体制转换为活动带和稳定地块并存的构造格局。出现不同规模、不同构造性质的活动带、裂陷槽、岛弧带、活动大陆边缘、被动大陆边缘等。

    记者:全球古元古代大致发生了哪些重大地质事件?

    沈保丰:24.2亿~22.5亿年在古元古代初期,发育有广泛的冰川活动,产生了全球性的地幔慢速下沉和大气圈的氧化。

    这个时期的古老冰川活动被称为休伦冰川活动。它紧随在肯洛兰超大陆破裂、大氧化事件在全球广布条带状铁建造之后。在24.2亿~22.5亿年全球岩浆活动寂静期之后,从22.5亿~20.6亿年岩浆活动重新活跃,出现以玄武质岩浆活动为代表的全球事件。古元古代中期,也是磷矿产生的重要时期。

    20.6亿~17.8亿年是地球历史上重要的地壳生长期,世界上最大镁铁—超铁镁质层状侵入体以及南非含大量矿产的大规模基性布什维尔德岩浆岩省,就产生于这一时间。这一全球的构造事件还导致了哥伦比亚超大陆在距今18亿年时的形成。

    此时的华北陆块也发生了与超大陆形成有关的造山事件。大量丰富的地质记录证实,在古元古代末18.5亿年完成了最后一次前寒武纪聚合造山和变质作用,完全固结成为一个整体的刚性克拉通。在古元古代末,经吕梁运动,华北、塔里木、华南等古大陆相联,组成一个统一的中国古大陆的结晶基底。

    全球哥伦比亚超大陆形成后,从17. 8亿年开始陆续进入裂解期,形成裂谷盆地和被动陆缘盆地。

    古元古代也是地史上第一次十分重要的成矿期。它以矿种多、成矿规模大、矿床类型复杂著称。比如中国就有大量这一阶段因古大陆裂解离散-造山而产生的矿产,构成了铁、铜、铅锌、金、硼、菱镁矿、滑石、金红石等矿床成矿带和成矿系列。

    6 “雪球地球事件”之后,温室效应导致地球变暖,元古宙进入尾声,显生宙拉开序幕

    记者:从您的讲述来看,早期地球虽然没有大量生物出现,但故事也是惊心动魄。

    沈保丰:的确非常精彩。

    17.8亿~8.5亿年是地球演化过程中相对稳定期,以硫化物发育的深海洋、疑源类的缓慢演化、哥伦比亚超大陆的解体和距今11亿~9 亿年罗迪尼亚超大陆的汇聚为主要特色。

    8.5亿~5.41亿年是地史中由隐生宙向显生宙过渡的重要阶段,也是生命演化最关键的时期。在这时期的开始阶段,即从7.7亿年开始,地球进入了元古宙第二次环境剧变阶段,广泛发生低纬度冰川,整个地球覆盖着冰雪,形成一个雪球,称为“雪球地球事件”。

    记者:“雪球地球”?连赤道也被冰雪覆盖吗?

    沈保丰:当然。全球年平均气温低达-50C°,海洋表面冰层达到1000米厚。整个地球成为一个雪球。

    这也是元古宙休伦冰期后的第二次全球冰雪时期。

    在新元古代中期,罗迪尼亚超大陆裂解。在这一时期,地球构造运动加强,广泛形成陆内裂谷,同时引起大规模风化剥蚀和沉积作用,使大气中CO2的消耗量大大超过火山喷发释放的CO2量,并出现“冰室效应”:全球气温迅速降低,首先在地球两极的海洋上形成冰盖,随着冰盖面积的扩大,冰面对阳光反射增大,加速了地球表面的气温下降,直至全球冰冻,形成“雪球地球”景观。

    不过,有一句话叫物极必反。由于温度极低,水文循环基本停滞,几乎没有降水作用,消耗CO2的化学循环基本停止。但同时,地球上的岩浆作用依然活跃,火山喷发释放出大量的CO2,且不断增加。经过上千万年的日积月累,大气中的CO2终于达到了一个足够高的浓度,便又产生了强大的温室效应。之后,地球迅速变暖,冰雪大片消融,最终出现了另一极端——解冻加速,一场酷热随之而来。

    随之而来的还有生物界的蓬勃孕育。6.35 亿年,埃迪卡拉纪开始,埃迪卡拉动物群首现,至5.41亿年寒武纪生物大爆发,元古宙结束,显生宙拉开序幕。

    7 元古宙是多种矿种大型、超大型矿床形成的高峰期,中国至少有该时期形成的超大型矿床40余处

    记者:看来,中—新元古代是地球演化历史上最重大的变革时期之一,为之后地球成为丰富多彩的生物家园奠定了地质基础和气候基础。

    沈保丰:我今年83岁,是从1964年开始研究前寒武纪矿床。我想要告诉大家的是,地球演化和环境变化也与成矿作用息息相关。如,“雪球地球事件”为我国的华南地区留下了大量的铁矿、锰矿和磷矿,特别是锰和磷,规模很大,品位很高。

    记者:那么,我国前寒武纪矿床主要有哪些矿种?

    沈保丰:中国前寒武纪超大陆旋回与成矿作用关系十分密切,我们曾提出,中国前寒武纪大规模成矿作用的主要控制因素是大地构造背景和大型地质构造环境。我国前寒武纪有包括铁、铜、镍、锌、稀土、金、磷等矿种在内的14个矿种产出超大型和特大型矿床,其中超大型矿床40多处、特大型30多处。

    记者:有哪些是我们现在熟知的大矿?能举个例子吗?

    沈保丰:比如白云鄂博。

    记者:我们知道位于内蒙古的白云鄂博矿赋存着大量稀土,在我国乃至世界稀土工业占据举足轻重的地位。它也是在前寒武纪哪个阶段形成的?

    沈保丰:白云鄂博稀土、铌、铁矿床是我国中元古代一个世界级的巨型矿床。初期,我国开发白云鄂博是开采铁矿石,后来才发现并应用其中的稀土、铌等重要矿产资源。

    如果说中国稀土的资源储量约为世界稀土资源储量一半,其中白云鄂博稀土资源储量就能占到全国稀土资源储量的近九成。如今,人们已在矿区内已发现73种元素,构成160种矿物,有综合利用价值的矿产达26种,除稀土之外,铌、钍资源储量都占世界第二位。

    白云鄂博矿床有着复杂的形成历史。

    据研究,白云鄂博矿床有两次成矿期,是早期中元古代以铁-铌-稀土矿为主的岩浆型和晚期加里东期为铌—稀土矿热液叠加而形成的多成因、复合型的叠生矿床。

    在中元古代早期,大约17.5亿年左右,随着全球哥伦比亚超大陆的裂解,太古宙的华北陆块也开始裂解,形成白云鄂博裂谷,并在裂谷中沉积了白云鄂博地层及有关岩浆岩。在14亿~12亿年,这里火成碳酸岩呈岩床或似层状体和岩墙侵位。就在火成碳酸岩岩浆熔离过程中,形成了岩浆期的稀土—铌—铁矿床。这也是白云鄂博的主矿化期。

    在5亿年~4亿年加里东期,这里又叠加了一期构造热事件,形成了第二期稀土、铌热液矿脉。它们也是地壳深部物质部分熔融的产物。

    沈保丰:总的来说,前寒武纪中的元古宙是多种矿种大型、超大型矿床形成的高峰期。除了白云鄂博超大型稀土—铌—铁矿床外,中国此时形成的知名矿床还有:内蒙古东升庙超大型硫铁—铅—锌矿床、甘肃金川超大型铜镍矿床、海南石碌超大型铁矿床、贵州松桃西溪堡(普觉)超大型锰矿床、贵州松桃道坨超大型锰矿床、贵州开阳超大型磷矿床、贵州瓮安超大型磷矿床、黑龙江柳毛超大型石墨矿床、黑龙江云山超大型石墨矿床等。

    记者:大自然的奥秘真是太多了。谢谢您为我们分享了一段有关早期地球的精彩故事。

    专家出镜

    沈保丰,研究员、博士生导师。1959年毕业于前苏联乌克兰顿涅茨克工业大学地质系,曾任原地矿部天津地质矿产研究所所长(现为天津地质调查中心)。50多年来,主要从事矿床、前寒武纪地质、区城成矿规律和成矿预测研究,专长前寒武纪成矿作用;先后发表论文100多篇,出版专著14部;曾获国家科技进步奖、省部级科技或果奖等多项,1992年起享受国务院特殊津贴等。

    回望前寒武纪