分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到4条相关结果,系统用时0.013秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:
      返航途中,“海洋六号”的工作和生活相对轻松,但甲板部的工作则仍然丝毫不能放松。归途遥遥,对甲板部的驾驶员和水手们来说,只有驾驶海六将大家安全带回国的那一刻,他们才能真正松一口气。
    不开灯的驾驶室
      “怎么不开灯呀?”10月26日晚19点,记者来到位于顶层的驾驶室,见眼前黑乎乎一片,不经脱口而出。白天一上驾驶室就能看见的驾驶台、平日里很想去坐一坐的三个驾驶位都不见了。
      一听我这话,值班的三副李胜勇、水手阿武都不禁笑了,很多第一次晚上来驾驶室的人都会问这个问题。“驾驶室晚上是不能开灯的,就跟晚上开车不能开车内灯一样,为了安全。”经船长蓝明华这么一解释,真觉得自己那个问题问得好幼稚。
      原来,虽然在现代科技的助力下,船舶驾驶工作不像“加勒比海盗”里演绎的那样惊心动魄,但驾驶员的眼睛一刻也不能开小差,看航线有没有偏离、看仪表盘各项数据是否正常、看雷达上面有没有出现异样,甚至从200多度视角的驾驶台看夜晚的海面上有没有出现不明物体,以提前发出警报等等……虽然不需要耳听八方,但眼光眼观六路是实实在在的。如果开灯,光线会影响驾驶员观察外面夜幕下的海面。三副李胜勇手中拿了一个高倍望远镜,那是驾驶员的宝贝。
      “夜晚航行时,船舶只能开航行灯。”记者想起前一阵子的一天晚上,大家欢呼海面来了一条船,跑出去一看,只见天边有一盏比夜幕上的星宿大不了多少的黄色灯光。大概,那就是航行灯了吧。茫茫太平洋上,常常连日连月见不到其他的船舶、岛屿、飞鸟。难怪一盏灯会让他们兴奋不已。这是题外话了。
      其实,不仅驾驶室不能开灯,其他光线也是严格限制——尽可能不影响瞭望。“如果驾驶台以前的舱室有光线外露,不但会妨碍值班驾驶员正规瞭望,而且会影响其他船舶观察我船的号灯。不同的号灯,代表船舶不同的航行状态,比如航行灯亮表示船舶正在航行,锚灯亮表示船舶在锚泊。所以夜间航行,是禁止光线外露的。”蓝明华解释到道。
      难怪驾驶室后侧的两个开放式的工作台,在晚上的时候都会拉上厚厚的帘子围住。
      虽然在太平洋上遇见其他船舶的可能性小之又小,但安全航行的规定还是要严格遵循的。
      现代科技让航海变得更安全
      逐渐适应光线,驾驶室内的一切在眼前渐渐显现。面前三把椅子一字排开,左右两侧的是驾驶位,中间的是水手位,水手位前面是一排操作手柄。
      “驾驶员发出指令,水手则在中间具体操作。以前的船舶,水手是站着操作的。现在船舶设计更加人性化,水手专门配备了位置。”蓝明华扶着水手位说到。难怪水手位比驾驶位会高出来很多,大概是方便水手操作仪器吧。水手阿武目视前方,时刻准备着,一有指令他得立马操作,不能有丝毫犹豫。
      在椅子前方是一排显示屏,上面各种数据在变动。
      蓝船长选其中的几台仪器做了介绍。电子海图显示屏上有红、黑两条线的是航线显示屏。红色的是设定航线,航线终端就是“海洋六号”的母港广州了。黑色的是“海洋六号”实际走的航线。
      在这块显示屏的一侧,有一串各种各样的数据。“6米这个数据显示的是我们现在实际的航线的中线与设定航线中线的偏离距离,一般大洋航行,航线宽度设定为500米,即左右两侧偏离250米。所以,我们现在的航线误差是在允许范围内的”、“255度表示的是我们现在的航行方向,正北为零度,所以我们现在在向西南方行走”……李胜勇、蓝船长耐心地给记者讲解。如果发现偏离,则立马要修正整航线。当然,如果出现天气不好、海况差等情况,预订的航线也会根据需要做一定修正的。
      雷达相当于人的眼睛。能见度不良或夜间航行时,主要靠雷达来辅助瞭望。“雷达的扫描半径有很多种,96海里、48海里、24海里、12海里不等等,扫描半径越大精确度越低。大洋航行过往船舶较少,我们一般设定12海里,如果发现相遇船舶,可以给驾驶员1预留足协调避碰的时间。海洋六号船航经海域,不在商船推荐航线上,水深、船少,通常半个月都很难碰到过往船舶,雷达显示屏上根本没有目标出现。”蓝船长指着雷达显示屏,不厌其烦地讲解。
      说起现代海航技术,电子航海图是倍受赞誉的一项。在电子航海图显示屏上,可以看见密密麻麻的一串数字,那是海底深度。蓝船长说,“这里可以随时显示我们船所在位置的水深,这对于我们设计航线和航行是非常有帮助,设计时避开浅滩、暗礁,航行时可以直接从海图上观察航行时的船位,特别是进出港时,非常直观、方便。以往只能借助纸质海图进行人工定船位,那样的话精确度就会降低。”
      记者看了看,我们现在的位置,水深3000多米。想起之前这上面显示的一连串5000多米的数据,大为过瘾。每次海洋六号跨过马里亚纳海沟时,仪器房都会聚集一大班人来欣赏多波束测深数据跳到“7000至10000多米”的精彩瞬间。而通过电子海图,驾驶员也可以提前预知船过马里亚纳海沟的准确时刻。
      不能有一丝马虎的纸质航海资料
      驾驶室后面两个被厚厚的窗帘围的严严实实的工作区,一个是报务区,这是对外通讯的“沟通台”;一个是“海图作业区”。当然,这是记者根据用途擅自取的名字。
      记者怀着好奇心,掀开布帘。不知什么时候,三副李胜勇已经来到海图作业区。台灯下,他正拿着铅笔、圆规、直尺在几张摊开的地图面前忙碌着。这情景,记者不禁想起抗战前线的作战指挥部。
      “虽然有电子航海图,但是我们每次航线都需要在纸质航海图上画出航线。”蓝船长解释到,“一般航海图在出海前或离开工区时就画好了,但这几天因为天气影响多次修改了航线,检查发现有些地方需要做一下调整。”
      原来,在没有电子航海图之前,船舶需要线做好纸质航线图,然后每小时记下实际船位,再画到纸质航线图看,比较航线有无偏差。记者发现,在海图上,计划航线上或附近每隔一个小时都有用铅笔画的小五角星就是驾驶员们画的实际航行坐标了。“虽然有了电子海图,可以实时测知船舶船位,但仍需要在纸质版海图上每隔一个小时进行定位,如果是近岸航行,还需要缩短定位时间,以发现船舶是否偏离航线航行,以保证航行安全。”
      记者细心发现几张海图的比例尺不一样。“比如,近海的地图比例尺比较大。因为近海的礁石、港口、设施等都很多,需要仔细画图,避开一切障碍物。而在大洋上,水深几千米,障碍物相对较少,海图比例尺不需要太大。”蓝船长介绍到。
      虽然海图比例尺不一样,但要保证航线在每张地图上的一致性。
      “铅笔再削得细一点,笔头太粗了,一笔下去就可能偏离几海里。”蓝船长提醒道,拿出铅笔刀将笔尖削得更细。李胜勇是90后,去年刚到“海洋六号”船。在这里,船长经常对驾驶员言传身教,手把手的“传、帮、带”无时不在。
      除了纸质航海图,重要的还有航海日志。蓝船长说,“航海日志跟飞机上的黑匣子一样,清晰、准确记载船舶的航行状态,具有法律效力。万一有什么事情发生,这上面记录的一切都是追根溯源的原始证据。”
      翻开航海日志,每天航行了多少里、船舶位置、船舶状况都记得一清二楚。每个值班的人员都要在上面郑重地签上自己的名字。
      转眼,就快到交接班时间,李胜勇将航海情况仔细地记录下来,并在右下角签上自己的名字。
      接下来值班的是二副龙春宇和水手蒋学军。太平洋上,在大家安睡的夜晚,他们将用自己的双眼、双手继续守护大家的安全。


    船长蓝明华(右)正指导三副李胜勇作图


    夜航值班
    夜探驾驶台

    日前,由中国地质调查局青岛海洋地质研究所牵头研发的天然气水合物海洋可控源电磁探测系统样机完成了最后的集成、组装,并进行了室内测试。该系统的成功研发将有效提升我国海洋天然气水合物资源勘查水平,为海域天然气水合物调查提供技术支撑。

    据介绍,该系统由青岛海洋所牵头,联合中国海洋大学研发。整机包括可控源电磁发射系统,拖曳式电场接收系统,海底电磁采集站及可控源电磁甲板监控系统等组成。与地震勘探方法不同,可控源电磁探测向海中释放的是电磁波,通过调查船拖曳发射系统,在航行中向海底地层发射电磁波,利用事先投放的海底接收站和调查船同步拖曳的接收系统一起接收海底地层反射回来的信号。海底天然气水合物与周围沉积物相比,电阻率偏高,因此,通过测量海底的电阻率参数,可以识别出水合物的存在。在室内试验的基础上,该系统下一步将转入近海海试阶段。

    据了解,海洋可控源电磁探测技术是天然气水合物勘探的一种重要的手段,该技术与地震勘探技术配合使用,将极大地提高天然气水合物勘查的精确度,在海洋资源勘探中具有广阔的应用前景。

    发射系统样机

    海底电磁采样站样机

    拖曳式电场接收系统样机

    青岛海洋所完成天然气水合物海洋可控源电磁探测系统...

    日前,2.2万余处地质灾害监测预警实验点全面建成进入试运行阶段。至此,自然资源部已连续3年开展的地质灾害监测预警实验,通过提高地质灾害监测技术装备集成化、智能化水平和风险预警能力,扩大地质灾害专群结合监测预警覆盖面,推动我国地质灾害防治加快实现“人防﹢技防”——

    自然资源综合调查指挥中心专家组在青海调研地质灾害监测预警实验进展情况

    “4月25日,广西壮族自治区河池市金城江区平桃屯滑坡先后触发蓝色、黄色预警,经地质灾害防治专家现场核实、综合研判,该滑坡处于强变形临滑阶段。当地政府立即组织112名群众撤离危险区,并采取铺盖防水薄膜等应急措施进行处置,该滑坡在5月6日、6月10日再次加速滑动,目前已损毁威胁区域房屋……”

    这份监测信息是自然资源部中国地质调查局地质环境监测院接收到的众多地质灾害有效预警信息中的一份。据介绍,自去年11月至今年5月底,山西、浙江、福建、江西等17个地质灾害防治重点省份陆续完成了2.2万余处地质灾害隐患点的设备安装,至此2021年地质灾害监测预警实验安装工作全部完成并全面进入试运行阶段,截至目前,已有效预警地质灾害险情11起。

    三年磨剑 地质灾害监测预警技防体系初步建成

    自2019年起,自然资源部在全国范围内启动了地质灾害监测预警实验工作,由中国地质调查局牵头推进并提供全流程科技支撑、省级自然资源主管部门组织实施。2019年,中国地质调查局地质环境监测院联合20余家企事业单位开展集成研发攻关,初步形成了监测地表形变与降雨的6种单测项监测设备,以及1个平台和系列标准,并在29处地质灾害隐患点开展了实验。

    2020年,根据“提高可靠性、提高集成度、减低功耗、降低成本”的研发思路,四川、重庆、贵州、云南、陕西、湖南、甘肃、湖北、广东等9省(市)完成了2512处地质灾害监测预警实验点的设备安装和并网,滑坡仪I代正式定型,建成地质灾害智能预警系统V1.0版,有效预警了重庆云阳县团包滑坡、甘肃省陇南泻流坡滑坡、陕西略阳县小石碑子滑坡等15处地质灾害灾情险情,有效避免了366人可能因地质灾害造成伤亡。地质灾害监测预警实验工作在保障人民群众生命财产安全方面取得了初步实效。

    为进一步加快推进建立人防和技防并重的地质灾害监测预警新工作模式,也为进一步巩固和提高2020年地质灾害监测预警实验的工作成效,2021年自然资源部在山西、浙江、福建、江西、湖北、湖南、广东、广西、四川、重庆、贵州、云南、西藏、陕西、甘肃、青海、新疆等17个省份(区、市)选择险情较大、成灾风险较高、威胁人数较多的2.2万余处地质灾害隐患点继续开展监测预警实验,并于汛期前全面建成运行。截至5月25日,17个省份全部完成仪器安装和并网工作,实际实施监测22609处,达到任务数的102.8%,监测预警实验进入试运行。截至目前,已有效预警了四川广安、广西河池、江西赣州、湖南怀化、重庆彭水、福建南平等地11起地质灾害险情,由于及时组织人员避险转移,未造成人员伤亡。

    中国地质调查局地质环境监测院的专家介绍说,连续3年开展的地质灾害监测预警实验,提高了地质灾害监测技术装备集成化、智能化水平和风险预警能力,扩大了地质灾害专群结合监测预警覆盖面,推动了我国地质灾害监测预警工作科学化、规范化和标准化,初步构建了“人防﹢技防”的地质灾害监测预警新格局。

    倾囊相授 专家团队提供全流程技术支撑指导

    2021年地质灾害监测预警实验建设阶段分为踏勘选点、方案设计、招标采购、安装实施与并网运行等5个关键环节,中国地质调查局利用其强大的技术力量和专家团队,提供了全流程技术支撑服务。

    据了解,在2021年地质灾害监测预警实验工作开展伊始,中国地质调查局调集地质环境监测院、自然资源综合调查指挥中心、天津地质调查中心、沈阳地质调查中心、南京地质调查中心、武汉地质调查中心、成都地质调查中心、西安地质调查中心、航空物探遥感中心、地质力学研究所所、水文地质环境地质调查中心、探矿工艺研究所等12家单位的科技支撑队伍,推进标准编制、方案复核、现场检核与技术培训等各项工作。

    “如何科学合理地选择隐患点”和“如何正确地安装监测设备”是监测预警实验工作建设阶段一直面临的难题,为进一步提升隐患选点和设备布设的科学性,中国地质调查局在实际工作中一直全力提供技术支撑。

    在方案设计阶段,12家局属单位抽调精兵强将对17个省份提交的2.49万处监测方案进行方案复核,对其中1.07万处提出了完善意见,极大提升了隐患勘选和设备布设的科学性。进入设备安装阶段,中国地质调查局选派80余名经验丰富的专家下沉到一线,开展地质灾害监测预警的现场技术指导和技术培训,协助各地及时发现和解决实施过程中出现的问题。

    从3月开始,中国地质调查局各技术支撑单位专家与分省驻守专家组成技术专家组,陆续对17个省的地质灾害监测预警实验工作进行了现场技术指导,主要围绕隐患点选择的合理性和设备布设的科学性等问题,对安装阶段方案设计、现场施工等环节的工作进展和质量进行了详细检查,并对设备立杆不规范、GNSS基站位置不合理、通信标准不统一、数据接入不同步、系统配置不完善等存在的问题提出了进一步的改进建议。

    进入4月,随着部分省份逐步完成了设备安装工作,中国地质调查局又聚焦仪器性能、安装布设合理性与预警机制等关键环节关键问题,按照“市州全覆盖、项目全覆盖、灾种全覆盖、单位全覆盖”的原则,对17个省的监测预警实验开展了新一轮质量检查与技术指导,重点对前期实施过程中发现问题较多的项目和具有区域代表性的地质灾害隐患进行抽检,指出各省份在安装布设、预警机制等方面存在的不足,并给予了技术指导与完善建议。

    6月10日,17个省份的质量检查与技术指导工作全面完成。各专家组对后续工作提出了相关建议,主要包括:一是要继续开展典型地区孕灾环境、致灾模式、成灾机理与风险预警研究,探索形成适合本地区的地质灾害风险预警模式;二是积极推进监测数据的重构与修补、多元数据耦合判定方法、动态预警阈值设定等方面的研究,通过样本积累统计,稳步提升预警准确度;三是通过试设备、试系统、试标准、试运行机制、试管理模式,为设备改进升级、系统优化完善提供理论与实践依据。

    此外,地质环境监测院还对参与实验的省级行政管理部门和技术队伍开展了多次技术培训和指导,规范技术文件、方案设计、报告编制、技术标准和工作流程。各省负责对本辖区内行政管理部门和技术队伍进行具体技术培训指导。据了解,仅地调局系统在各省开展的相关技术培训便多达80余次,各省份组织的各类技术培训达300余次。

    群策群力 环环相扣保障安装运行工作高效完成

    2021年地质灾害监测预警实验工作不仅得到了各级自然资源主管部门的广泛支持,还得到了设备厂商等社会力量的大力协助,在建设过程中逐渐形成了围绕监测预警实验工作,各级自然资源主管部门、地质调查勘察队伍、基层乡镇部门、施工队伍、设备厂商等多方力量共同参与的工作模式。在多方力量的共同努力和协同推进下,今年的地质灾害监测预警实验建设工作如期顺利完成。

    据了解,各省级自然资源主管部门对地质灾害监测预警实验工作高度重视,自监测预警实验开始便建立了专门的推进机制和工作专班负责地质灾害监测预警工作的各项事宜。各省份不仅多次召开项目建设培训会议,还制定了施工组织计划,细化工作任务,层层落实责任,加强项目资金和质量监管,同时利用科技手段强化技术支撑,有序推进各项工作。

    各省实验工作由各省自然资源主管部门牵头推进,涵盖多层级、多单位工作小组,协调指挥调度,充分发挥监督和技术指导作用,有力保障项目实施。据了解,广东省自然资源厅就曾先后派出10余个工作组,前往广东省20个相关地市开展调研指导工作,协调解决推进过程中出现的疑难问题,全面督促广东省加快地质灾害专业监测工作进度。

    地质灾害监测预警实验工作实施涉及设备仪器厂家、地质驻守队伍、设备安装人员众多,信息交互极其频繁。为进一步加强沟通协调、全面推进工作,各省级自然资源主管部门建立了项目统一沟通协调机制,及时传达工作要求和指示,明确工作职责任务,及时解决项目实施中出现的各类问题。同时,实施单位和设备厂商协同推进多项工作,科学合并工作环节,保障项目建设工期。据重庆市地质环境监测总站工作人员介绍,重庆市在工作过程中全面采用了信息化协同办公,统一信息交互平台,既保证了信息畅通,又保障了信息统计的及时性和准确性,做到了繁中有矩、忙中有序、紧中有力,按时高效完成建设任务。

    统一标准 为监测预警工作提供统一技术准则

    地质灾害监测预警实验工作曾面临诸多难题,对于地质环境监测院的研发团队来说,最大的难题就是如何提高监测设备的可靠性与智能化水平。地质环境监测院专家张鸣之介绍,GNSS是地质灾害监测设备中应用较多的一类设备,以前的“测绘型”GNSS设备监测精确度非常高,通过静态解算可监测到毫米级的变化,但是每1~2小时一组高精度监测数据可能漏报一些快速变形的崩滑灾害,此外设备常年保持24小时在线监测,功耗较高,仪器可靠性易受影响。

    地质环境监测院的研发团队根据“两提高、两降低”的思路,提出了“地灾型”GNSS设备研发思路,通过集成微机电传感器实现变频监测与智能唤醒,当监测到倾角、振动加速度测项变化发生时,设备从休眠状态被“唤醒”,进行厘米级高频动态位移数据采集,其他时间设备处于深度休眠状态,每天定时报送1~2组毫米级静态结算位移监测数据。这样,不仅可以最大限度降低设备功耗,而且对于快速变形的滑坡也能实现有效监测,同时使得综合成本大大降低。

    地质灾害监测设备具有精度适当、功能简约、功耗较低、安装便捷等特点,标准化的设备才有可能实现工业化规模化生产。但由于各地标准不同,各生产厂家的仪器设备规格不一,因此也造成设备不能组网混用、无法规模量产的情况。

    为规范地质灾害监测预警“感-传-知-用”各环节技术标准,地质环境监测院目前已联合有关单位共同编制了《地质灾害专群结合监测预警技术指南》《地质灾害监测数据通讯技术要求》《地质灾害监测预警数据库建设标准》和《地质灾害监测预警设备检测检验技术规范》四项行业标准,为监测预警工作提供了统一的技术准则,有利于监测预警设备的统一管理和数据共享,保障了今年的监测预警实验工作得以科学、规范、高效完成。

    地质环境监测院专家说,当前开展的地质灾害监测预警实验不只是适合地质灾害监测领域,形成的系列监测装备与风险预警技术对公路、铁路、电力等领域都有一定的借鉴意义,希望目前开展的工作可以引领全国地质安全监测领域的发展方向。

    研用结合 持续推进预警水平和防灾能力再提升

    今年的地质灾害监测预警实验工作按时完成并初步取得了良好的成效,但实验过程中也发现存在的一些问题。地质环境监测院的专家表示,已发现或梳理出来的问题将会是监测预警实验工作接下来改进的重要方向。

    中国地质调查局专家组在检查过程中发现,目前完成的一些监测点中存在监测不足和过度监测两种情况,个别监测隐患点规模较大,但监测设施较少、对关键位置控制不足,而个别规模较小的隐患点又存在设备安装过密的情况;部分设备安装不够规范,由于部分地区植被茂密或者房屋密集,太阳能板、雨量计受遮挡情况时有发生,从而影响监测效果。此外,个别隐患点还存在设备监测数据采集、上传机制不合理,监测数据不能及时上报的情况。针对存在的问题,各省将进行一次全面自查自纠,确保主汛期到来之前整改到位,监测预警实验工作能够真正发挥实效。

    据了解,地质灾害监测预警实验下一步的工作重点,一是抓紧构建完善“人防﹢技防”的地质灾害监测预警新工作模式,结合原有群测群防工作体系,建立数据分析、预警发布、现场调查、应急处置、信息上报等环节工作机制,形成管理闭环。二是完善监测数据质量评价机制,着手开展监测数据质量评价,查找出问题项目、问题设备,并督促整改,着力提升监测数据质量,为有效预警提供保障。三是加强数据分析和预警模型研究,及时汇总有效预警案例,加强对监测曲线、预警模型的分析和总结,强化机器学习、人工智能等技术的运用,不断提高预警模型的有效性。四是对实验过程中监测设备、预警平台等方面出现的问题进行系统总结,明确方向集中攻关,不断提升监测预警技术水平。

    广西河池地质灾害监测预警设备安装现场

     

    构建地质灾害监测预警新格局

    近日,自然资源部中国地质调查局物化探所申报的“一种可控源音频大地电磁测深数据采集方法和装置”获得国家发明专利(专利号ZL201710574423.8)。本发明可广泛应用于可控源电磁法的数据采集和处理,以获取地下深部地质体的电性结构,支撑服务于能源、资源的大深度探测。

    相较于传统的频域率电磁法,可控源电磁法测深由于采取有源发射信号,具有较强的抗干扰能力,可增强观测区的有效信号。但在人文干扰较大地区,尤其当50Hz及其谐波为主的工频电磁干扰很大时,获取数据的精确度会大幅度降低,不能客观反映地下介质的电性特征。本发明提供了一种适用于可控源电磁法中抗干扰的数据采集和数据处理技术,解决在50Hz基波及其谐波干扰较大时造成的数据不准确问题,可有效提高观测数据质量,提升地质效果。目前,该技术已在京津冀深部地热资源探测和下扬子地区页岩气调查中发挥作用并取得良好成果。

     

     
    “一种可控源音频大地电磁测深数据采集方法和装置”...