分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到7条相关结果,系统用时0.01秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    天然成因金刚石一般产自于金伯利岩筒、钾镁煌斑岩、蛇绿岩体中,少量形成于陨石撞击。金刚石的碳稳定同位素能为它们的生长过程提供关键线索,能够示踪地幔物质循环,尤其是深部碳循环过程。目前金刚石微区碳同位素分析主要仪器设备(纳米)离子探针造价高,且对制样要求较高,迫切需要开发一种快速、准确、高效的测试方法。

    近期,中国地质科学院地质研究所开展激光剥蚀多接收器质谱法(LA-MC-ICP-MS)技术攻关,评估使用LA-MC-ICP-MS测定金刚石碳同位素可行性,取得了系列新认识。一是评估了激光参数对碳同位素分析的影响。按梯度调整激光参数,当信噪比优于4,可以获得跟离子探针类似的精度;采用合金制靶而非环氧树脂,可以有效降低碳的背景值,从而提升信噪比。二是揭示了基体效应的产生机制:通过对ICP中12C+13C/12C和40Ar3+进行了高空间分辨率耦合成像研究,阐明了40Ar3+的离子化动力学,获得了元素之间互相影响电离(基体效应)的直接证据,核素电离过程的相互影响导致元素和同位素分馏,这是产生基体效应的机制之一(图1)。三是确定了ICP中碳同位素分析的最稳定区域以便于高精度碳同位素分析。四是验证了LA-MC-ICP-MS方法的可靠性:对两种金刚石(天然金刚石(D-N-1)和合成金刚石(D-HTHP))分别使用多种技术手段进行了测量,既标定了标样也验证了该方法的可靠性,尽管空间分辨率略逊于(纳米)离子探针,但充分表明LA-MC-ICP-MS是一种快速、精确、准确的金刚石碳同位素分析方法。

    本研究通过样品制备工艺的改进、等离子体性质研究、标样研制等工作,揭示了基体效应的形成机制,评估了使用LA-MC-ICP-MS测试碳同位素的可行性,建立了金刚石激光微区碳同位素分析方法,为后续基体效应的深入研究和其它碳酸盐碳同位素分析方法研发奠定基础。该项技术已成功为珠宝鉴定行业区分出十余种人工合成及天然金刚石,并且已经为地质所深部碳循环等课题组提供了技术支撑。

    图1 等离子体中元素同位素分布(Neptune Plus)

    金刚石激光微区碳同位素分析方法取得新认识

    为深入开展2018年“安全生产月”活动,强化干部职工的安全意识,增强消防工作水平,全面提升预防、扑救火灾的能力和电离辐射防护知识,6月5日上午,中国地质调查局西安地质调查中心特邀请专家就火场逃生、消防器材使用、火灾隐患排查以及电离辐射的危害、防护、铀矿辐射防护特点等内容对职工进行了消防安全知识培训。此次培训活动拉开了西安地质调查中心2018年“安全生产月”系列活动的序幕。

    会议传达了中国地质调查局关于“安全生产月”活动通知和西安地调中心安全生产月活动方案。会议指出,加强对员工的安全教育,是防止安全事故的基础性工作。动员每一位职工,高度强化消防安全意识,重视消防安全,学习消防安全知识,掌握相应的消防技能,把消防安全工作融入各自工作岗位的每一个环节。近年来,西安地调中心组织实施的个别地质调查科研项目,在实际野外工作中会直接或间接接触放射性物质,为了保障这部分野外工作人员的身体健康,西安地调中心对放射工作人员职业健康进行监督管理。组织放射工作人员接受放射防护和有关法律知识培训,依法依规对放射工作人员进行个人计量监测管理。

    会议强调:安全工作,人命关天,安全生产处要组织好安全生产月的安全知识竞赛、送安全到基层、事故和灾害警示教育等各项活动,全体职工要积极参与其中。各部门负责人要始终把安全生产摆在重要位置,加强组织领导。不做口头文章,以实际行动和措施切实做好安全生产工作。

    动员讲话

    培训现场

    西安地质调查中心2018年“安全生产月”系列活动正式...

    2017年10月9日,几内亚地矿部部长顾问Monsieur Lansana CONDE、国家地质局副局长Monsieur Moussa BERETE和国家矿业局副局长Monsieur Vaféré Koulibaly及几内亚矿业地质部来华培训班学员共50余人,参观了国土资源部中南矿产资源监督检测中心并进行了交流活动。

    外宾先后参观了同位素地球化学实验室和岩矿测试实验室,详细了解了Triton Ti热电离同位素质谱仪、MAT253稳定同位素气体质谱仪和Nu noblesse惰性气体质谱仪、X射线荧光光谱仪、电感耦合等离子体质谱仪、电子探针等仪器的用途及运行状况,对样品测试过程、仪器产地、价格及效率等问题进行了咨询。

    近年来,地调局武汉地调中心扎实推进以北非西非为重点地区的境外地质工作并不断取得新的进展与成果,带动了相关国家地质调查事业的发展。几内亚同行参观中南矿产资源监督检测中心,将促进双方在地学领域开展更多更好合作。

    几内亚矿业地质部科技人员参观中南矿产资源监督检测...

    国家重大科学仪器设备开发专项《同位素地质学专用TOF-SIMS科学仪器》项目顺利完成了两台整机的总体装配,并与2016年1月20日通过了国土资源部科技与国际合作司组织的2015年度工作检查,获得专家组的高度评价。

    该项目是由中国地质科学院地质研究所牵头,中国科学院大连化学物理研究所、吉林大学和中国地质科学院矿产资源研究所等单位参加的。整机总体装配的完成标志着TOF-SIMS科学仪器研发取得了突破性进展。

    2015年度,项目组按时完成了规定的阶段性计划,共研发新装置2套、核心关键部件4个、操作软件1个;申请专利11项(其中申请发明专利7项),获专利授权7项(其中授权发明专利3项),软件著作权登记4项,发表论文10篇,取得的进展和技术突破情况如下:

    1、完成两台整机的总体装配,指标为:氧离子源一次离子束斑直径5μm;铯离子源一次离子束斑直径3μm;质量分辨率在质荷比=122时,达到14000。

    2、完成飞秒后电离和激光诱导发射光电子后电离技术的参数优化。对金属靶材Ag,Cu和Pb等测试结果表明,采用飞秒激光后电离技术,可使相应的金属离子信号增强 100-500倍。

    3、为高分辨单次反射质量分析器引入脉冲提取技术,Au+的信号最优分辨率可达11300(10 ns的一次束,每张谱图累计时间20 s)。完成高分辨多次反射质量分析器整机及部件的加工、安装调试,实现机械安装同轴性误差小于0.1°。电离/提取系统的极限真空4×10-5 Pa,质量分析器的极限真空1.2×10-5 Pa。

    4、完成样品传送系统及三维样品台的最终设计、加工和调试。样品台分辨率达到0.1μm。

    5、完成仪器测控系统与整机之间的连调。

    6、完善了仪器参数自动优化软件模块;完成了数据处理软件的开发;形成了完善的仪器控制类库。完善了高压、偏转电压控制、一次离子流检测、三维样品台运动控制、智能真空控制等模块框架结构;引入了脊线法寻峰原理,通过寻找小波系数矩阵中的脊线确定谱峰位置,同时开展了利用TDC定量分析误差校正算法的研究工作。

    2016年,项目组将继续进行两台TOF-SIMS仪器的性能和指标优化工作,完成仪器的整体指标测试,最终形成两套用于同位素地质学的TOF-SIMS专用科学仪器(TOF-SIMS-SI和TOF-SIMS-REE)。

    与会专家现场检查两台TOF-SIMS仪器的总体调试效果

     

    同位素地质学专用TOF-SIMS科学仪器完成整机装配

    近日, 美国普渡大学詹姆斯·奥格应中国地质调查局成都地质调查中心邀请,访问自然资源部沉积盆地与油气资源重点实验室。访问期间,奥格教授面向自然资源部沉积盆地与油气资源重点实验室及重点实验室依托单位成都地调中心科技人员作了题为“综合地质年代表-亮点集锦”的学术报告。

    奥格教授系统介绍了如何利用天文旋回、放射性同位素定年技术、古生物、古地磁等方法建立综合的地质年代标尺,并用以界定全球年代地层单位界线层型剖面和点位,包括我国湖北赫南特亚阶、大坪阶以及浙江的达瑞威尔阶等“金钉子”剖面等。并且,奥格教授还举例阐述了国际上利用综合地质年代标尺对重大地质气候事件进行对比的成功事例。最后他强调,综合地层定年工作需要全球各领域地质学者的共同努力,并希望通过此次交流与成都地调中心开展合作。在报告会后,与会人员就碳同位素正负偏移的指示意义,热电离质谱法(TIMS)等测年技术与综合地质年代表的关系等与奥格教授进行了热烈的讨论。

    此次学术交流使业务人员对“金钉子”剖面有了更系统全面的认识。成都地调中心也通过此次学术活动与美国普渡大学建立了良好的合作关系。

    詹姆斯·奥格是国际著名地质学家,美国普渡大学全职教授,已发表110多篇同行审议的论文(其中SCI论文75篇),包括5篇Science/Nature;12篇EPSL, 4篇Geology, 2 篇Palaeoceanography, 2篇JGR 和1篇PRS。此外,他还发表70篇/部专著章节或深海大洋钻探计划报告。截至目前,他的文章引用达18000多次,高引用指数(H-index)为42,其中《Geologic Time Scale(2012版)》引用率超过8000次。他在全球旋回地层、磁性地层和同位素地层学领域极有建树,他主编的《Geologic Time Scale(2016版)》已经出版,他之前主导或参与编撰的Geologic Time Scale(2004,2008,2012版)已经成为全球地质学工作者地层对比的标准并被广泛引用。

    Ogg教授讲座

    美国普渡大学詹姆斯·奥格到访自然资源部沉积盆地与...

    钻探工作具有环境复杂性与多变性的特点。

    一直以来,我国存在钻探设备陈旧、技术方法落后、钻探效率低下等诸多问题。因此,大力推进钻探技术与钻探装备的现代化,研究开发先进的钻探技术与钻探装备,创新、应用、推广新技术和新设备,培养高素质的技术人员,成为当务之急。

    随着我国社会经济的快速发展,工业化与城镇化建设的步伐也不断加快,使得对地下矿产资源的需求量与消耗量也随之上升,矿产资源逐渐成为了制约我国经济发展的重要因素。作为发现和获取地下矿产资源的主要手段,地质勘查钻探设备的重要性不断上升,其设备的先进性与技术创新已经成为了我国经济发展的重点。

    中国矿业报记者从国土资源部获得的信息表明,经过地质科技工作者的努力,我国在一些关键的钻探技术研究及钻探设备的研发上,已经赶超世界水平,逐步建立起了拥有自主知识产权并具有国际先进水平的现代化深部钻探技术体系、同位素热年代学技术体系,同位素地质研究专用仪器的研发也取得重大进展,进一步拓宽了找矿空间。

     

    深部钻探技术取得长足发展

     

    钻探技术是获取地下实物地质资料信息、建立地下观测与开采通道、验证深部地质推断与解释的唯一技术方法,广泛应用于基础地质、水文地质、能源矿产、地质环境等的调查以及地球科学研究、灾害防治和资源开发利用等领域。

    记者手头掌握的资料显示,在“十一五”初步建立2000米地质钻探体系基础上,“十二五”期间,在国土资源部科技与国际合作司和中国地质调查局的统筹组织下,中国地质科学院勘探技术研究所等单位的科技工作者,充分利用国家“863”计划项目、国土资源公益性行业科研专项、地质矿产调查评价专项等项目的实施,系统地组织开展了钻探装备、技术及工艺方法的研究,全面提升了钻探工程技术与装备的能力、质量和效率,降低施工成本,使得我国的钻探技术与装备取得长足发展,整体技术水平与国际达到同步,部分达到了国际领先水平,对我国的深部地质调查和矿产资源勘探开发起到了有力的支撑。

    一是深化了新一代地质钻探装备体系的研发与应用。完成了3500米地质岩心钻机及 2500米车载水井钻机、3000米电动直驱顶驱钻机、400米轻便钻机、浅层取样钻机和600米反循环钻机等的研发;开展了永磁电机驱动、自动化检测与控制技术在钻探设备中的应用探索,新型泥浆固控离心设备在地质钻探中逐步得到推广应用,对国内钻探设备的现代化发展起到了积极的引导作用,加快了我国地质钻探装备的更新换代。

    二是结合科学钻探施工开发了钻探装备。围绕汶川地震断裂带科学钻探工程和松辽盆地资源与环境科学钻探工程的实施,随钻开展了新技术与装备的研究与应用,开发了KZ3000型深孔取心钻探设备、科学钻探复杂地层高效取心钻具、复杂地层钻进技术、大直径薄壁取心技术、海洋钻探取样技术、铝合金钻杆技术等,推动了我国深部科技钻探技术体系的发展。

    三是地质岩心钻探深孔钻探技术取得了长足的进步。先后开发了XJY-850、XJY-950高钢级钻探管材及绳索取心钻杆,薄壁绳索取心钻杆最大应用深度超过2700米,绳索取心液动潜孔锤技术得以普遍应用(最大深度达到了 4006.17米),深孔钻进用小直径涡轮钻具等研究取得了突破,深孔钻进用金刚石钻头的工作寿命和效率明显提高,深孔用高温磁中靶技术在近 3000 米深孔成功应用,新型孔内事故处理工具的推广应用提升了地质岩心钻探事故处理的能力和水平,极大地推动了我国深孔地质钻探的水平。

    四是复杂地层钻进能力明显提高。通过深入的理论研究和试验应用,开发多种地质钻探用新型泥浆体系,大大降低了复杂地质条件下的孔壁坍塌、漏失、缩径问题,提高了复杂条件下的钻探施工能力;同时开展的小直径膨胀套管技术(实体、波纹及有缝管)在国内深孔复杂地层中成功应用,提供了一种新的复杂体层护壁手段,在国内外处于领先地位。

    五是钻探工程信息化水平不断提升。随着现代化信息技术和网络技术的迅速发展,为钻探工程的信息化提供了良好的基础。“十二五”期间建立了探矿工程(岩土钻掘工程)技术网络服务平台,建成的数据库包括从业机构、装备制造、行业词汇、行业论文等数据库,为开展更深层次的探矿工程信息化和社会化服务提供了基础条件。开展了钻探参数采集与传输技术的研究,初步实现了将钻探施工的各类信息实时记录在统一规范的数据库中,为管理、统计分析及生产和科研工作提供数据服务,对提高钻探工程的管理水平和施工技术优化、促进钻探技术学科进步等具有重要意义。

    记者了解到,“十二五”期间,上述钻探技术成果在地质调查及矿产资源勘探开发领域得到了广泛的应用,覆盖了地质调查、地球科学研究、深部矿产资源勘探开发等领域,解决了深部及复杂地质条件下的钻探技术难题。

    此外,上述钻探成果在汶川地震断裂带科学钻探工程、松辽盆地资源与环境深部钻探工程、中国岩金勘查第一深钻、庐枞及铜陵矿集区深部矿产资源勘查及各类地质钻探工程中均发挥了关键作用。部分钻探新装备与技术与我国地勘单位走出国门,全液压地质岩心钻机由进口转向了对外出口。

    专家称,这些成果对提高钻探施工能力和效率,降低工程风险,增强竞争力,提升地质勘查工程管理水平与效益发挥了重要作用,意味着已成功建立起了拥有自主知识产权并具有国际先进水平的现代化深部钻探技术体系。

    据了解,相关技术成果获得国土资源科学技术奖一等奖1项、二等奖2项,河北省科技进步奖1项,通过国家科技进步奖二等奖初评1项。研发的钻探新装备与新工艺技术得到使用单位的高度评价,大幅度提升了我国深部钻探技术能力和水平,并为相关产品生产企业带来了良好的社会效益和经济效益。

     

    同位素热年代学为找矿新技术支撑

     

    同位素热年代学是一门集同位素年代学、构造地质学、岩石矿物学、计算机模拟技术等为一体的综合性学科。据了解,同位素热年代学方法不仅能够提供地质事件年龄值等时间信息,而且能提供所测定矿物、岩石形成的温度、经历的构造作用以及可能的形成深度等深层次的地质信息,已经成为国际地学界关注的热点之一,近年来在国际上得到了快速发展。

    “十二五”期间,中国地调局中国地质科学院地质研究所同位素热年代学研究团队在中-低温热年代学技术方法研发和示范应用两方面开展工作,完善和新开发了多种同位素热年代学分析技术,初步构建了中-低温同位素热年代学实验技术体系,并在东天山成矿带、南天山造山带、库车含油气盆地等地开展示范性应用研究,取得了一系列创新性研究成果。

    专家表示,这些成果不仅为我国的同位素热年代学研究提供了分析测试实验平台条件,而且揭示出同位素热年代学理论和技术在造山带造山历史研究、沉积盆地热历史研究、金属矿床成矿作用过程和抬升剥露过程研究等方面具有巨大的应用潜力,为我国的地质科研和矿产资源勘查工作提供了新的技术支撑。

    一是建成了我国第一家(U-Th)/He 同位素定年实验室,为我国的低温热年代学研究提供了分析实验技术平台条件。

    二是研制出新生代Ar-Ar同位素定年标准物质,解决了我国长期以来缺少新生代氩同位素定年分析标准物质的问题,为新生代地质样品精确定年分析提供了技术保障。

    三是揭示了天山东段地区晚古生代以来构造热演化历史及金属矿床成矿和抬升揭顶过程。

    四是精细刻画出南天山造山带中段构造热演化历史与隆升过程,重建了南天山中段晚古生代以来的构造热演化历史及隆升剥蚀历史。

    五是库车盆地构造热演化及天然气成藏史研究取得重要进展。

    记者了解到,以Ar-Ar法和(U-Th)/He法定年技术为主构建的中-低温同位素热年代学技术平台,已经成为我国最主要的热年代学分析测试实验基地。所研制的标准物质为国内相关实验室共享,其量可供我国所有的Ar-Ar法同位素定年实验室使用数10年。

    专家称,同位素热年代学在我国是一门新兴的学科,中国地质科学院地质研究所同位素热年代学研究团队开展示范应用研究取得的一系列创新性研究成果,不仅深化了对天山乃至中亚造山带地质演化过程的认识,为了解天山地区金属矿床成矿规律、进行成矿预测及实现区域找矿突破等提供了新的科学依据,对指导库车盆地油气勘探具有重要的实用价值,同时充分显示同位素热年代学理论和技术在造山带造山历史研究、沉积盆地热历史研究、金属矿床成矿作用过程和抬升揭顶过程研究等方面具有巨大的应用潜力。

     

    同位素地质研究专用仪器成功研发

     

    我国大型高端质谱仪器一直以引进为主,受国外技术封锁,一些用于高精度同位素分析和核科学研究的质谱仪器引进十分困难,且价格高昂。

    为了推动我国高端质谱仪器的自主研发,针对目前宇宙样品及地球化学珍贵样品稳定同位素、稀土元素微区原位分析的难题,国家重大科学仪器设备开发专项设立“同位素地质学专用 TOF-SIMS(飞行时间二次离子质谱)科学仪器”项目,由中国地质科学院地质研究所国家科技基础条件平台北京离子探针中心牵头实施。

    据了解,根据记者掌握的情况,项目研制的两台分别用于稳定同位素分析和稀土元素分析的TOF-SIMS-SI和TOF-SIMS-REE仪器,将为岩石成因学、矿床成因学、地球环境、气候变化、月球及行星演化等热点研究领域提供最先进的技术支撑。

    专家称,用于高精度同位素丰度分析的 TOF-SIMS 是一项全新的技术,它的成功研制,将是质谱学技术划时代的里程碑,同时将进一步推动地球化学和宇宙化学向更微的空间发展。像 SHRIMP 的诞生一样,这项新技术的诞生将带来一系列重要的科学成果,特别是将直接为我国探月工程在获得月球样品后的分析研究工作奠定坚实的技术基础。

    据介绍,经过近4年的技术攻关,北京离子探针中心联合中国科学院大连化学物理研究所和吉林大学等单位完成了两台 TOF-SIMS仪器的整体设计,对一次离子源等关键部件进行了设计加工和单独调试,并完成了TOF-SIMS专用系统控制软件和数据处理软件的开发和优化。

    自2014年8月起,项目组开始对两台TOF-SIMS整机进行总装配和总调试工作。2015年6月,TOF-SIMS整机的质量分辨率可达 12000(m=106)。截至2015 年初,项目共取得新装置 12套、核心部件20个;新申请专利 33项,获专利授权8项(其中发明专利2项);登记软件著作权3项;发表论文24篇,取得了重要的阶段性成果。

    一是首次将飞行时间二次离子质谱(TOF-SIMS)技术应用于精密同位素分析和元素丰度测定。近年来,随着离子接收系统在技术上取得突破性进展,北京离子探针中心和相关合作单位在国内率先尝试将 TOF技术应用于高精度同位素分析仪器的研发。

    二是开发了一套适用于珍贵地质样品(如月岩、宇宙颗粒等)高灵敏度、高分辨率同位素分析的小束斑氧离子一次源和离子光学系统。

    三是开发了提高地学样品分析灵敏度的二次中性粒子激光后电离技术。实验结果表明,在优化条件下,飞秒后电离技术可使信号提高60 倍。

    四是研发了高分辨TOF质量分析器。有效解决了双聚焦SIMS质谱的低离子通过率、体积庞大、成本高昂的不足。

    五是开发了一套满足超高真空环境下高精度同位素分析要求的创新型三维样品台及样品传送系统。

    项目组专家表示,该科研项目尽管取得了一定的成效,但该仪器目前尚处于研发阶段,待目标仪器的技术指标达到任务书的设计要求后,项目组将启动以下两项应用示范研究工作:一是应用TOF-SIMS-SI仪器分析金属硫化物(黄铁矿、闪锌矿等)的硫同位素,探讨典型铜矿床铜的富集和矿床形成机理;二是应用TOF-SIMS-REE仪器对月岩和月球陨石样品中锆石的稀土含量和配分模式进行分析,以探讨月岩中锆石的成因;测定月岩样品和月球陨石中锆石的Ti 元素含量,估算其结晶时的温度,从而推算撞击事件的温度。

    据中国矿业报记者了解到,2015年8月,项目组已将TOF-SIMS-REE仪器应用于纯金属样品铜和银的同位素丰度分析,分析精度可达 1%。

     

    技术创新,找矿突破的坚实支撑
      2015年1月27日,国土资源部科技与国际合作司组织有关专家在北京对中国地调局地科院地质所牵头,中国科学院大连化学物理研究所、吉林大学和中国地调局地科院资源所所等单位参加的“国家重大科学仪器设备开发专项”项目《同位素地质学专用TOF-SIMS科学仪器》(编号:2011YQ050069)进行了2014年度工作检查。


    与会专家听取项目组工作进展汇报


    项目组向与会专家现场演示完成总装配后正在初步调试中的TOF-SIMS-REE仪器

      2014年,项目组按时完成了规定的阶段性计划,共取得新装置8套、核心部件6个;申请专利9项,获专利授权4项;发表论文16篇。所取得的进展和技术突破情况如下:

      1. 本年度进行了TOF-SIMS-REE整机的装配和调试工作。完成了TOF-SIMS主腔体的实物加工和组件安装以及样品图像观察系统的安装和调试。一次离子源可正常工作,束斑直径达到15-20μm,氧离子(O-)流强度达到18nA,离子流脉冲宽度达10ns;二次离子质谱测试金元素(Au)的分辨率可达到6000。

      2. 实现了一次离子在样品表面聚焦及离子束脉冲化轰击样品,并检测到二次离子信号。


    任务一现场展示TOF-SIMS-REE仪器的总装配工作情况


    任务二现场演示一次离子源和离子光学系统的性能

      3. 完成多种靶材的纳秒激光溅射产物的飞秒后电离实验。在优化条件下飞秒后电离技术可使测试信号提高数十倍。


    任务三汇报飞秒激光后电离系统的研发和测试情况

      4. 优化了质量分析器的安装精度,增加了用于高能发散条件离子聚焦与激光中性后电离研究的激光溅射电离/换样腔室。设计出一套多次反射质量分析器;搭建了一套用于离子冷却聚焦技术研究的四极杆传输系统。


    任务四现场演示飞行时间质量分析器目前所达到的性能指标

      5. 对超高真空三维样品台和样品传送系统进行加工及安装调试,实测数据达到设计指标。


    任务五现场演示与TOF-SIMS仪器主机集成后的超高真空三维样品台和样品传送系统的性能


    任务五在未封装的超高真空三维样品台和样品传送系统测试平台上现场测试性能指标

      6. 开发了离子束、电极控制单元及TDC数据采集单元,并进行了各单元的实验测试。

      7. 完善了系统控制软件总体设计和结构优化,细化了接口协议,引入了面向对象的程序设计,编制了仪器控制类库,对各控制子程序进行了重写。完成了高压、偏转电压、一次离子检测、样品台、智能真空等控制模块的开发;并完成了氧同位素测试数据处理软件V1.0版的开发。


    任务六和任务七现场演示TOF-SIMS仪器测控系统、控制软件和数据处理软件


    应用任务负责人汇报仪器应用开发工作计划



      2015年项目进入攻坚阶段,项目组将继续做好两台TOF-SIMS仪器的总装配和总调试工作,根据总装、总调的情况对仪器的部分设计和加工进行优化,使其达到项目任务书中规定的技术指标要求;做好重大仪器专项的应用开发工作,在新研发的TOF-SIMS仪器上建立宇宙样品的氧同位素和稀土元素分析方法和金属矿床的硫等稳定同位素微区原位分析方法,促进研发成果的实用化及推广应用。

      项目监理组、总体组、技术专家组、用户委员会和项目组成员40余人参加了此次会议。




    同位素地质学专用TOF-SIMS科学仪器研发新进展