分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到80条相关结果,系统用时0.008秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    引言 

    习近平总书记在2016年全国科技创新大会、两院院士大会、中国科协第九次全国代表大会明确指出“向地球深部进军是我们必须解决的战略科技问题”。李克强总理最近多次批示“推动开展地球深部探测研究”,“可以列为重大专项”,“两个方面,一是地下资源能源问题,二是城市地下基础情况问题。”《“十三五”国家科技创新规划》对地球深部(深地)探测研究也有明确的表述。这表明党和国家对地球深部探测研究高度重视,并指明了方向。

    2012年10月~2014年3月,在科技部原部长徐冠华和科技部基础司的倡导和支持下,以“地球深部过程与成矿作用”为主题的调查研究开始进行。这项研究耗时一年半,参与人员达150余人,含院士8人、教授和研究员30人。为保证调研工作的顺利开展,成立了专家组,组长为莫宣学院士,副组长为马福臣研究员、赵振华研究员,成员包括李曙光院士、金振民院士、张国伟院士、朱日祥院士、华仁民教授、邓晋福教授。秘书为朱弟成、杨立强、王银宏教授。研究完成并提交了《地球深部过程与成矿作用》战略调研总报告及5份分报告(造山带、克拉通、花岗岩省、地幔柱、实验)。在此基础上,于2014年3月召开了以“地球深部过程与成矿作用”为主题的483次香山会议,由孙鸿烈院士、翟裕生院士、滕吉文院士、莫宣学院士、马福臣研究员担任执行主席,来自各方面的40多位专家参加了会议。会后发表了会议简报,向国家有关主管部门提出尽快对“地球深部过程和成矿作用”立项,并列入优先资助领域,给予长时间、大强度的支持。2015年4月瞄准国科发资〔2015〕52号文件中第7个重点方向(面向国家战略需求的基础研究)中的“深地”战略性研究,提出“地球深部过程与成矿作用”的立项建议。

    本文仅对地球深部探测研究与地下资源的关系作一些探讨。

     

    莫宣学院士简介:莫宣学,岩石学家,中国地质大学(北京)教授,中国科学院院士,1938年12月出生,1960年毕业于北京地质学院。1981年~1983年美国伯克利加利福尼亚大学及劳伦斯伯克利国家实验室访问学者。曾任中国地质大学(北京)副校长、中国地质大学研究生院院长、国家自然科学基金委员会第六、七、十、十一届学科评审专家组成员、第30届国际地质大会学术委员会副主席、经济地质学会(Society of Economic Geologists)Fellow及负责亚洲区域的副主席。现任《 地质学报》主编及《Geoscience Frontiers》主编。曾获国家科技进步奖一等奖。

    莫宣学首次提出任意压力下岩浆氧逸度计算公式及含Fe2O3硅酸盐熔体密度预测模型,为建立岩浆演化综合热力学理论模型发挥了关键作用。他几十年长期研究青藏高原构造-岩浆作用,在揭示印度-亚洲大陆碰撞时间、青藏高原巨厚陆壳成因与增厚机制、深部壳幔物质运移等方面,取得了系统成果。他长期坚持“岩浆-构造-成矿”方向,研究青藏高原及金沙江-澜沧江-怒江成矿带的成矿规律与具体找矿方向,为开拓西南“三江”和西藏冈底斯国家级矿产资源新基地做出了贡献。

    “地球深部过程与成矿作用”研究的必要性与紧迫性 

    确保矿产资源供应是实现我国“两个一百年”发展目标不可缺少的关键要素。目前,我国经济发展进入新常态,对矿产资源的需求总量保持高位态势。据统计,2013年我国21种矿产消费量居世界首位,占全球消费总量的1/3。未来10年~15年,我国矿产资源刚性需求仍将持续,大宗金属矿产需求峰值将陆续来临,对外依存度将大幅攀升,严重超越国家资源安全警戒线。如果未来10年探明资源储量不能大幅度增加,几乎所有的大宗金属矿产将面临消耗殆尽的危险局面,形势危急,前景堪忧。立足国内,开辟新的找矿空间和深度,寻找找矿战略新区,实现找矿重大突破,提高资源保障程度,已成为我国一项紧迫、艰巨而又长期的重大战略任务。

    为了完成这项重大战略任务,必须揭示中国地质结构和演化的复杂性与特殊性,及其导致的中国成矿作用的复杂性和特殊性。中国地处世界三大构造域的复合部位,经历众多离散陆块多期聚合拼贴过程,在中生代、新生代遭受改造与活化,岩石圈结构异常复杂、不同深部过程多期叠加复合,导致成矿金属选择性地巨量堆积,形成金属成矿省和巨型成矿带,造成我国矿种繁多、类型多样,多源复成、破坏再生的禀赋。

    科学家们认识到,虽然资源、环境、灾害问题主要表现在地球的浅表层,然而其推动力却来源于地球深部,地球深部过程控制了浅部运动与变化。例如,青藏高原是地球上最高、最大的高原,蕴含着丰富的自然资源,又对亚洲乃至全球的气候、生态、环境有重大的影响。然而,造成这一切的根本原因却是印度-欧亚碰撞以来青藏高原壳幔各圈层物质和能量的调整和再分配,即印度-欧亚大陆碰撞所引起的青藏高原下面地球各圈层内部及圈层之间(重点是中下地壳、岩石圈地幔、软流圈地幔)的物质与能量的调整和再平衡。正是这个物质与能量的调整和再平衡过程,从根本上控制着青藏高原的隆升、形成演化和资源环境效应。由此可见,只有阐明了地球深部过程,即地球内部的物质组成、性质、运动演化过程及动力学,才能抓住资源环境问题的关键。

    同样,矿产资源虽然主要就位于地球的浅表层,但其驱动力也来源于地球深部。地球深部过程是大规模成矿作用的“发动机”(提供能量和动力)、“供应源”(提供金属和流体)和“开拓者”(提供矿质输运通道和汇聚空间)。在不同动力学体系作用下,地球深部过程(包括地球深部发生的物质-能量交换以及成矿物质活化、调整和再分配)促使深部含矿岩浆和地壳流体运移、聚集,卸载,在地壳的适宜部位形成巨型成矿带和大型-超大型矿床。因此,要从根本上回答我国矿产的分布格局与资源潜力,从深层次上揭示区域成矿规律和金属巨量堆积过程,开辟新的找矿空间和深度,预测找矿战略新区,就必须深入理解地球深部过程,深刻揭示地球深部物质、结构和层圈相互作用,特别是深部物质-能量交换-传输的地球动力学过程,创建全新的成矿理论体系。

    地球深部过程是指地球内部(从地壳到地核)壳-幔物质与能量交换、物质运动行为、轨迹及其动力学响应。地球深部过程与成矿,是指在不同力系作用下,深部物质重新分异、调整,并在特定壳-幔结构空间驱动含矿热液流体运移、富集并在地壳介质的适宜部位,特别是在深部空间(500米~3000米)形成大型、超大型矿床或矿集区的作用过程。主要包括岩石圈尺度(背景场)、Moho界面(壳-幔物质与能量交换的界面)、小于5千米 的“透明”上地壳(理解导矿控矿构造与层序和矿化分带)、500米~3000米深度(本世纪固体矿产勘查开发的主要深度)。地球深部过程及其对成山、成盆、成岩、成矿(包括能源)、成灾的制约和影响,是本世纪地球科学深化认识地球本体的核心科学问题。迄今,我国对矿产资源的利用和勘查工作主要还在500米以上的地球浅部,对地球深部的成矿规律了解得很不够。然而,如果只懂浅部不懂深部,不研究地球深部过程对矿产形成和保存的控制,就不能回答诸如我国急需矿种的成矿潜力究竟如何,在哪里能够找到大型-超大型矿床这样的重大资源战略问题,不能从根本上解决国家的矿产资源保障。

    关键科学问题 

    根据中国大陆所具备的独特地质条件,针对国内外研究现状和存在问题,提出下述三大关键科学问题:

    (一)深部物质组成、结构的不均一性和演变及差异成矿作用

    地球深部物质组成和结构的不均一性及深部壳幔作用过程,从根本上控制着矿产的区域性分布、区域优势矿种和成矿潜力的差异,也从根本上控制着矿产资源的形成。但迄今仍然不很清楚中国大陆重要成矿区带的深部结构、物质组成以及深部物质结构的不均一性与成矿元素离散与聚集的关系。因此,需要精细解剖中国大陆重要成矿区带不同尺度(从表层到壳幔过渡带)岩石圈的组成、结构与时空变化特点,深入研究岩浆作用的成因,有效识别幔源物质、壳源物质的贡献,将岩浆作用与成矿作用紧密地联系起来,围绕大矿、富矿形成的源、运、储,开展深入研究,查明成矿物质超常堆积的控制因素(如壳幔不均一性、岩石圈类型与厚度、地壳类型与厚度、软流圈的上隆及侧向运动、壳内和幔内或壳/幔相互作用的程度和方式)和差异成矿的根本原因。

    (二)深部流体过程与物质能量交换

    成矿作用与岩浆过程、岩浆-热液过程或热液过程引起的物质和能量交换密切相关,矿床的形成(成矿物质来源、成矿物质迁移和成矿元素的沉淀)离不开成矿流体,可以说没有成矿流体就没有矿床。深部巨量熔/流体在岩石圈内部的系统循环是金属元素活化、迁移的必要条件,也是大型超大型矿床形成的诱因。但迄今对岩浆和热液体系氧逸度变化的控制因素及其对成矿作用的影响、对金属元素在深部熔/流体中迁移、演化与富集机理的认识还存在很大争议。因此,还需要采用多学科交叉结合的手段,充分考虑流体作用对软流圈地幔的改造和对成矿岩浆的贡献,查明流体的来源、迁移和聚集过程,查明金属元素富集机理和物质能量交换过程。

    (三)成矿系统的深部过程驱动机制

    深部过程应包括构造过程、岩浆过程、流体过程、热化学过程和地球物理过程。如前所述,地球深部过程控制着浅部构造运动与矿产资源的形成和保存,查明地球深部的物质组成、结构和性质,阐明地球深部过程(物质运移-聚集规律、运动-演化过程和动力学机制),是正确理解地球浅表层矿产资源形成、变化与保存等问题的关键。但迄今为止,对岩石圈及壳-幔圈层物质和能量交换的深部动力学过程仍然还停留在概念层次上,对金属元素超常堆积的控制因素和深部驱动机制也缺乏很好约束。因此,需要更新现有的技术和方法,补充新的分析手段(如铁、铜、镁和钙等非传统同位素示踪手段),重视高温高压实验研究,加强同位素示踪和数值模拟,通过地质学、地球化学和地球物理学的综合探测研究,利用合适的地质学和岩石学概念模型、边界条件和物性参数,探讨不同构造体制下的壳幔物质交换、矿源供给、流体迁移、成矿元素堆积和矿床定位等一系列不同层次深部过程的驱动机制,阐明由深部地质过程引发的构造-岩浆-流体-化学作用与元素富集成矿机理。

    长远目标与近期目标 

    应当紧紧围绕上述三个关键科学问题开展“地球深部过程与成矿作用”研究,努力达到建立地球深部过程与成矿作用相统一的理论的长期目标,提高矿产资源保障工作的预见性与目的性。

    “地球深部过程与成矿作用”研究的近期目标是:揭示造山带、克拉通、大花岗岩省、地幔柱的深部物质组成、结构、演变及与成矿作用的内在联系,开展相应的实验模拟和方法研究,解剖代表性大型矿集区,查明其深部流体作用与物质能量交换,成矿作用的深部驱动机制,控制大规模成矿的主要因素,提升大型矿床预测效率。在时间上,以中-新生代为重点,兼顾晚古生代;圈层上,以地壳-上地幔为重点,适当探索核幔边界。□

    (标题为编者所加) 

    寻找战略新区须深入理解地球深部过程

    编者按 

    “是那山谷的风,吹动了我们的红旗……我们满怀无限的希望,为祖国寻找着富饶的矿藏。”

    新一轮找矿突破战略行动启动以来,广大地质工作者大力弘扬爱国奉献、开拓创新、艰苦奋斗的优良传统,把智慧、汗水洒遍山川大地,为地质找矿事业书写崭新的时代篇章。《中国自然资源报》开设“地质足迹印山川”栏目,通过系列报道展示地质人物和团队的感人事迹,推动新一轮找矿突破战略行动取得更大成果。

     

    “要想立足国内实现资源自给,资源勘查必须往深走。”这是第十八次李四光地质科学奖获得者吕庆田一贯的观点。

    地层深处高温高压,遍布坚硬的岩石。“入地”之旅怎么走?如何才能“入地”更深?20多年来,中国地质科学院地球深部探测中心研究员吕庆田带领团队在陆内成矿理论和深部找矿预测新方法研究、深部勘探仪器设备研发等方面取得系列成果,给出了答案。

    吕庆田2017年参加在美国阿拉斯加举行的 EarthScope会议。

    加强地球深部探测

    破解资源环境及灾害问题

    1981年,17岁的吕庆田在老师建议下,顺利考入长春地质学院应用地球物理专业。1988年硕士毕业后,他被分配到中国地质科学院矿床地质研究所(现中国地质科学院矿产资源研究所),从一名实习研究员干起。之后,他一直在各个项目区通过地球物理的手段研究岩石圈结构等地球科学问题。

    2000年,国土资源部“十五”专项研究计划“大型矿集区深部精细结构探测研究”启动,吕庆田参与其中。自此,他的学术方向开始了明确的变化——执着于探向地球深部。

    为什么要探测深部、认识深部?“两大因素使然。”吕庆田说。

    一是当时全球的矿产勘查都在向深部500米以下进军,我国起步已晚,必须加速赶上。

    二是深部因素对成矿的控制作用逐渐被认识到,如幔源岩浆、新生地壳熔融、拆沉与底侵和深大断裂对成矿金属类型和矿床分布的一级控制等。

    但深部地质结构、物质性质不清,控矿要素不明确等原因,让勘查深度难以突破,拓展深部资源遇到严峻挑战。为此,吕庆田带领团队先后承担了“十三五”重点研发计划项目“华南陆内成矿系统的深部过程与物质响应”、深部探测专项第3项目等20余项深部金属矿勘查技术和应用研究工作。

    2016年5月30日,习近平总书记在“科技三会”上指出,“向地球深部进军是我们必须解决的战略科技问题”。同年,我国酝酿启动深地国家科技重大专项,瞄准国际地球科学前沿进行布局。吕庆田积极参与其立项和申报工作,并负责相关内容的编写。

    此后近十年,吕庆田带领团队,以我国东部长江中下游成矿带和西部东准噶尔成矿带为探测对象,在成矿系统理论框架下开展了多尺度地球物理综合探测和研究,在陆内成矿系统的三维结构、深部找矿思路和找矿发现等方面取得重大进展。

    选择我国东部长江中下游成矿带和南岭成矿带,以及铜陵、庐枞、于都—赣县等典型矿集区,吕庆田带领团队在成矿带岩石圈层次、矿集区地壳结构层次、矿床(田)精细探测层次,部署开展了三个层次的“入地”探测研究工作。

    三个层次的探测研究工作,在揭示区域成藏成矿控制因素、开辟找矿新空间的同时,把握地壳活动脉搏,为提升区域地质灾害监测预警能力提供技术支撑。吕庆田说:“加强地球深部探测,对我国资源能源安全和减灾防灾意义重大。”

    发展陆内成矿理论

    解开地球深部成矿奥秘

    岩石圈结构、物质和深部过程对成矿系统具有关键控制作用,但存在诸多认知“盲区”。

    对此,综合20多年开展的综合探测研究,吕庆田带领团队创新性开创了以多尺度探测为特色的成矿系统研究新领域,提出陆内成矿系统受岩石圈拆沉、地壳属性和块体边界控制的新认识,发展了陆内成矿理论。相关成果在“十三五”国家重点研发计划深部探测专项中被充分吸纳。

    “比如,以往认为成矿作用大都发生在板块边缘,与板块边缘造山作用密不可分,如洋—陆俯冲造山、陆—陆碰撞造山,而对于大陆板块内部的成矿作用及深部动力学机制却鲜有了解。”吕庆田说,他带领深部探测专项第3项目组在长江中下游成矿带经过4年努力,解开了大陆板块内部成矿的“深部奥秘”。

    他们在长江中下游成矿带发现了岩石圈增厚、拆沉和软流圈隆起的关键证据,建立了陆内成矿的深部动力学模型。更为重要的是,他们获取了陆内下地壳和岩石圈地幔俯冲的清晰图像。

    “这些发现诠释了为什么在长江中下游这个狭窄的带内,形成了数百个金属矿床。”吕庆田进一步解释说:“与板块边缘成矿类似,大陆内部在远程应力的作用下,也可以发生大陆俯冲,俯冲导致壳幔强烈相互作用,最终沿俯冲带形成大陆内部的巨型成矿带。”

    前期扎实的探测研究工作,为钻探验证奠定了良好的基础。庐枞矿集区深部异常验证钻孔取得了深部重大找矿线索,发现了高强度的铀矿化,深部铀矿化为交代碱性岩复合型铀矿的新认识据此被提出。这一发现对庐枞深部找铀具有重大的理论和实际意义,并被推广到华南陆内造山等成矿系统的研究中。

    创新深部探测技术

    让矿集区结构“透明化”

    知道深部有矿,怎么找?当时,国内外都没有多少经验可以借鉴。“

    对深部矿产勘查来说,不仅需要突破精度、灵敏度更高的各种传感器技术,提升野外测量设备的稳定性,还要发展新的数据解释技术,把观测的数据转换为‘透视’地下的图像。”吕庆田说。

    这一目标,在他带领深部探测专项第3项目组开展长江中下游成矿带深部探测试验时实现了。他们形成了一套针对大型成矿带岩石圈结构探测的技术解决方案,发展了多种地球物理数据处理与解释技术。

    通过骨干剖面的反射地震探测和重磁数据的全三维反演,项目组揭示了庐枞、铜陵矿集区的地壳结构框架,发现了一批新的断裂,建立了该地区的三维地质模型,初步实现了矿集区的“透明化”,为认识成矿作用和助力深部找矿起到了关键作用。

    “希望我们在长江中下游成矿带、矿集区到矿田的探测模式和技术思路可以推广到其他成矿带去。”吕庆田这样表示。为此,他带领团队经过长期实践探索,提出了稀疏地震剖面、地表地质约束的三维重、磁交互反演地质建模方法,并以此为物性反演初始模型,采用求取置信区间确定物性变化、通过逻辑拓扑实现岩性识别,完善了岩性填图技术,为矿集区结构“透明化”提供了技术手段。

    在以上成果基础上,他带着团队经过进一步研究,形成“三维结构+成矿模式+综合信息”相融合的深部找矿“三元”预测方法——通过提取已知矿床地质属性特征,通过三维证据权方法、专家系统、机器学习算法,实现深部成矿预测的自动化和定量化。

    利用该方法,他带领团队在安徽庐枞矿集区井边—巴家滩预测区深1500米~1740米之间,发现累计厚97米的高品位铀矿化体;在新疆伊吾县戈壁滩,发现拉伊克勒克大型隐伏斑岩—矽卡岩铜铁矿床,获得333+334铜资源量118.8万吨。矿集区“透明化”探测和“三元”成矿预测方法的有效性得到验证。

    目前,“三元”成矿预测方法已推广应用到安徽、新疆、江西、山东等地区,取得了良好深部找矿效果。

    研发系列勘探设备

    推动我国勘探技术进步

    多年的深部探测实践,让吕庆田越来越深刻意识到,突破“卡脖子”核心技术,降低对外依赖,对保障国家资源安全意义重大。强烈的使命感、责任感使吕庆田和他带领的研发团队担起了“十二五”国家863计划“深部矿产资源勘探技术”研发任务。

    作为该计划重大项目首席专家,吕庆田带领团队先后突破了高精度微重力传感器技术、铯光泵磁力仪传感器技术、宽带感应式电磁传感器技术等10项关键核心技术。其中,微重力传感器的突破使我国成为国际上为数不多的可以自主生产高精度重力仪的国家。

    在重磁、电磁、地震、井中勘探仪器和钻探设备方面,他们研制出高精度地面数字重力仪、大功率多功能电磁探测系统、4000米地质岩心钻探成套技术装备等18套急需的勘探地球物理仪器设备,形成了从地面到地下的系列仪器装备。

    在地球物理方法数据处理和解释方面,他们完善了直流电阻率与极化率三维反演方法、重磁三维约束反演方法等20多项地球物理数据处理解释方法,研制出多参量地球物理数据处理与反演软件系统、金属矿地震处理解释新技术与软件系统2套大型软件系统,形成了多功能三维电磁正反演与可视化交互解释软件系统、金属矿地下物探数据处理解释系统等8个专用软件系统。

    “这一轮的技术研发,使我国在地球物理勘查技术领域极大地缩小了与国外的差距,大幅度降低对国外勘查设备和解释软件系统的依赖,一定程度上打破了国外在此领域的仪器设备垄断,大幅提高了我国深部资源勘查技术自主研发能力和国际竞争力。”吕庆田说。

    他带领的团队因此荣获2022年自然资源科学技术奖特等奖,获得发明专利授权66项、实用新型专利授权45项、软件著作权105项。现在,相关成果广泛应用到矿产勘查、国防、科研和工程等领域,替代国外进口,解决国家重大需求,极大促进了我国金属矿勘探技术的系统提升、整体跨越和进步。

    收获“深地”成果

    一路艰辛成为美好回忆

    系列重大成果的取得并不是一帆风顺的。

    “我带着深部探测专项第3项目组在庐枞、铜陵矿集区开展三维立体探测施工的时候困难重重。在野外,我们遇到的最大困难是各种看不见的电磁和振动干扰,这些干扰来自各种电线、工厂、高速路和居民生活区。”吕庆田苦笑着说,因为反射地震的数据采集要记录地下几十千米反射上来的信号,需要绝对的安静。

    为了获得高信噪比的数据,项目组不得不在夜深人静的时候采集数据。有时,他们还需要设置警戒,或与周边的工厂协调暂时停工。这需要他们和当地相关部门和百姓反复沟通。

    “技术上的难题、施工上的困难、与当地相关部门协调等,多年下来,大家都成了多面手。”吕庆田笑着说。

    20多年在深地探测领域的不懈努力和学术积累,让吕庆田及其团队先后获得国家科技进步奖一等奖、二等奖各一项;国土资源科学技术奖一等奖3项,二等奖1项。他本人于2009年入选国家“新世纪百千万人才工程”国家级人选,2019年入选自然资源部高层次科技创新人才第二梯队人才和科技创新团队(负责人),2023年获得第十八次李四光地质科学奖(科研奖)。他先后为国家培养了18位硕士、20多位博士和10多位博士后,带领的深部资源探测研究团队于2018年入选自然资源部高层次科技创新团队。

    “与6000多千米的地球半径相比,我们的研究还仅仅停留在地球的表皮。”吕庆田说,“我毕生奋斗的方向就是带领团队拓展深部空间,认识地球深部运行规律,发现更多的资源。为了在这个方向走得更远,我们比以往任何时候都更加需要弘扬李四光等老一辈科学家的精神,坚持真理、严谨求实、锐意创新,以李四光先生的崇高精神为标杆,主动服务国家发展战略需求,积极投身地球科技创新前沿,努力为建设科技强国贡献力量!”

     
    中国自然资源报:“入地”之旅怎么走?他给出了答案

    近期,中国地质调查局南京地质调查中心联合浙江省地矿科技有限公司开展了 “龙港市浅层气专项调查”,探索形成了“浅层气地质安全风险调查评价关键技术”,通过了浅层气调查研究相关资深专家技术鉴定。

    滨海平原区地下有机质丰富,形成了不均分布的浅层气,为滨海城市建设带来新的地质安全风险。由于浅层气的分散分布、流动性特点,再叠加城市区电磁、震动信号干扰,使得传统探测评价技术难以取得较好的效果。项目组首次应用高分辨率测井技术和多源信息三维地质建模技术,实现了浅层气地层岩性、物性、流体赋存等高精度识别,创新提出基于浅层气的地层压力、流体因子、孔隙度和有机质丰度“四参数建模预测技术”,结合城市区抗干扰微动地震、静力触探、地质钻探、岩石地球物理和地球化学实验等勘探测试工作,从点、面、体三个维度精细刻画了浅层气地质体气水单元三维空间分布。

    该技术创新性显著,填补了浅层气地质多属性预测空白,整体技术达到国内领先水平,部分技术达到国际先进水平,该技术对滨海城市浅层气调查评价与城市地质安全风险防控具有重要意义。 

    南京地调中心创新研究形成了“浅层气地质安全风险调...

    近日,青岛海洋地质研究所利用大数据、三维可视化等信息技术建设完成“数字南黄海”综合服务平台,实现了高效数据整合和精细模型模拟,显著提升了油气勘探前期决策速度,为重点构造精细评价和目标快速锁定提供了有效支撑。

    该平台汇聚了南黄海区域地质取样、地球物理勘探、水文调查等实测数据与研究成果,形成了数据资源“一中心”、地质成果“一张图”和三维地质模型分析、地震剖面分析、井预测、盆地综合评价、成果图件属性分析“五模块”的运行体系。平台打通了地震剖面处理解释、油气地质建模、地理信息成图等专业软件数据接口壁垒,全面兼容各类别海洋油气地质数据;具有空间一体化、二三维联动分析、多模态资源协同研究等特色,为井-震-地质体联合分析提供在线化、交互式协同环境。

    下一步,此计划持续更新地质构造、物性参数等三维模型,提升模型精细化水平,提高油气综合评价准确性;同时,强化“数字南黄海”平台服务能效,进一步助力海洋基础地质创新、地质勘探智能决策和找矿突破。

     

    “数字南黄海”平台界面

     
     
    数字化助力南黄海油气资源勘探工作高效开展

    近日,中国地质调查局青岛海洋地质研究所在深海矿产探测领域取得新进展,原位量化区分深海热液硫化物与围岩的钻测解析方法获得国家发明专利授权,基于地质、生物和环境特征的海底多金属结核聚集区联合图解软件获批软件著作权登记。

    针对热液硫化物和多金属结核等矿产资源的开发利用是深海未来产业布局和发展的核心内容之一。由于深海热液硫化物可在海底面以下与围岩共存,混合形成超过百米厚度的堆积体。这种堆积体固结度较差,钻探取心率低,且取心各层段通常不连续,导致难以用岩心样品直接进行资源潜力评估。青岛海洋地质研究所深海矿产资源调查评价团队基于热液矿区钻孔原位物性测量、结合岩心样品的实验室物性特征进行拟合分析,进而准确解析整个钻孔剖面的硫化物和围岩的分布及相对含量,服务深海热液硫化物资源评估和开发利用。

    在多金属结核领域,团队聚焦目标区海洋长周期沉积速率、底层水含氧量、底质类型、海面平均生物生产力、底栖宏生物量密度、海底地形地貌、海底表层沉积物有机碳含量等地质、生物和环境参数,联合多金属结核分布和成分等信息,共同绘制结核大面积聚集概率性图件,并通过加权评估,量化预测出各区域多金属结核资源潜力的高低排序,从而提升低程度或未知区海底多金属结核资源调查目标区优选质量。

     

    青岛海洋地质研究所深海矿产探测领域取得新成果

    2019年1月26日,为加强所野外基地的安全管理,及时发现排除安全隐患,提高安全生产意识,确保春节期间安全运行,自然资源部中国地质调查局地质研究所安全生产工作组前往汶川科钻野外基地开展安全检查工作。

    工作组首先前往科钻中心办公室,代表地质所向长期在基地工作的科研人员和研究生表示慰问,听取了基地的运行概况和春节期间的工作安排。在项目组的带领下,工作组先后前往磨片室、岩芯成分扫描实验室、岩芯物性扫描实验室和大型岩心库检查。管理员张蕾介绍实验室安装了实时监控录像系统,严格执行了双人双锁制度。同时,工作组重点查阅了安全管理的相关制度,并查看了大型仪器及配套设备的台账记录。

    随后,工作组乘车前往虹口和九龙对汶川地震断裂带钻探工程四个野外观测站(WFSD-1、2、3P、3)。管理员云坤和曾祥芝分别介绍了钻孔流动观测站和物性远程观测站的仪器设备、工作内容和研究意义。同时,工作组重点检查了防洪加固堤坝,了解预防设备丢失、监测站破坏的举措。

    此次安全检查,发现汶川科钻项目组较好落实了安全生产要求,认真履行了野外基地的安全生产的主体责任,形成了环境友好、安全放心的科研环境,有力支撑了野外基地运行成效的不断提升。

    检查岩芯库

    检查磨片室

    钻孔长期观测站检查结束后合影

    地质所安全生产工作组前往汶川科钻野外基地开展检查

    为全面支撑服务“两重工作”,做好2018结题年各项目物化探工作,在3月中下旬,地调局天津地调中心物化探勘查院抢抓3-6月京津冀地区野外工作黄金时期,积极组织开展物探数据采集和化探样品采集工作。

    截止5月底已经完成1:5万土地质量地球化学调查690平方公里,采集土壤样品5572件,加工土壤样品4700件,完成送样3570件;布设大气干湿沉降桶28件;采集化肥样品18件;完成1:1万重力剖面60km,测点1486个;大地电磁测深剖面55km,共完成56个点;二维地震剖面8km;采集岩石物性样品30件。同时,完成天津地调中心2018年物化探工作计划、7个子项目设计审查及业务委托、子项目成果报告提纲研讨等工作。

    现阶段,天津地调中心物化探工作已形成由物化探勘查院统筹管理,专人牵头对接四大工程需求、综合团队提供技术支撑的服务体系,为形成各个工程的地球物理地球化学的综合研究成果打下坚实基础。

    下一步将稳步推进野外工作生产,做好样品测试分析工作、数据处理、数据解释、综合研究以及成果报告编写等工作。

    野外工作

    天津地调中心物化探工作积极有序开展

    4月22-23日,应地调局武汉地调中心油气地质室主任陈孝红研究员邀请,重庆涪陵焦石坝国家级页岩气示范区地质和压裂试气一线专家舒志国、龚起雨、袁发勇等到鄂宜页1HF井压裂现场考察,对鄂宜页1HF井压裂效果和下一步工作进行指导。

    专家亲临压裂现场指挥室,仔细观察了压裂施工曲线,随后在项目部听取了鄂宜页1HF井前期压裂施工汇报及下一步施工技术方案。经过专家审阅、质询、交流与讨论,专家组认为本井前期施工严格按照设计要求执行,坚持“主缝+复杂缝”的指导思想,不断优化“中途携粉砂动态转向+中途转胶液+提升排量”组合措施,有效地提高了裂缝复杂度,保证了施工质量。专家对后期施工提出了三点具体建议:一是在压力窗口允许下,大胆施工,提高支撑剂铺置范围;二是在后期液氮伴注过程中,密切关注液氮摩阻、静液柱密度带来的施工压力变化;三是根据前期施工过程中的地层物性,进一步完善压后返排方案。

    鄂宜页1HF井压裂施工设计26段,会议召开前已完成18段。本次会议及时总结了前期工作的经验,对后期施工可能存在的困难和问题进行了梳理,为顺利完成后续压裂施工提供了保障。

    武汉地调中心召开鄂宜页1HF井压裂施工现场研讨会

    3月22日-24日,地调局航空物探遥感中心邀请有关专家在桂林市兴安县对“桂东北地区1:5万航空物探调查”子项目进行野外资料验收。

    该子项目隶属于由航空物探遥感中心承担的二级项目“秦岭及天山等重点成矿区带航空物探调查”,2016年度共飞行108个架次,完成测线工作量41073千米,测量磁物性点312处、放射性物性点307处,采集并测定岩石磁定向标本48块,完成了设计的全部工作量。验收组查阅了各项原始资料和记录,抽查了部分测量数据和日变数据等资料,认为子项目各项测量指标均达到相关行业规范和设计要求,一致同意通过验收,给予“优秀”评价。

    子项目的顺利完成为该地区进一步开展基础地质调查和矿产资源评价等工作提供了高质量的地球物理资料。

    桂东北地区1:5万航空物探调查子项目完成野外资料验收...

    吴能友在第八届国际天然气水合物大会上发言

      天然气水合物,正在被越来越多的国家视为未来石油、天然气的替代能源。

      经过近20年的不懈努力,我国天然气水合物资源勘查已取得重大突破,全面推进海域天然气水合物资源开发的时间表已经明晰——中国地质调查局相关负责人在2014年召开的第八届国际天然气水合物大会宣布,中国计划于2017年在南海首次试开采天然气水合物。

      与常规油气资源相比,天然气水合物的开采面临技术、成本、环境等多方面的难题与挑战。今天,在中国地质调查局青岛海洋地质研究所,副所长吴能友带领他的研究团队,正在为了如期实现海域天然气水合物开采目标而努力奋斗着。10月25日,吴能友被评为中国地质调查局“李四光学者”(急需紧缺高层次人才)。

      攻克多项探测技术难题,取得海域天然气水合物调查评价突破

      吴能友与天然气水合物的结缘已有10余载。在研究工作中,他瞄准关键科学问题攻关,自主创新,取得了天然气水合物探测技术的多项重大突破。

      他主持完成的国家“863”计划《天然气水合物探测技术》项目,围绕如何快速探测天然气水合物、如何有效识别天然气水合物为核心,瞄准国际前沿技术,开拓创新,组织开发具有我国自主知识产权的10多项关键技术,形成了天然气水合物地震识别、地球化学探测、资源综合评价和保真取样技术系列。在吴能友的带领下,首次在南海发现的 “冷泉”喷溢形成的巨型碳酸盐岩,证实了南海北部陆坡浅表层存在天然气水合物,取得了我国海域天然气水合物资源调查评价的突破。

      吴能友在协助组织实施2007年天然气水合物钻探航次过程中,不断调整调查研究思路,开创性地将自主研发的天然气水合物探测技术应用于实际水合物资源调查评价,提高了数据精度,扩大了资源远景,缩小了勘探靶区,并首次钻探获取水合物实物样品。

      吴能友在科研工作中注重加强基础理论和调查技术方法创新能力,在继承前人研究成果基础上,创新性地提出了水合物成藏和运聚体系理论,并应用于南海北部陆坡水合物控制因素和成藏机制研究,指导了2013年钻探目标优选,在2013年天然气水合物钻取中起到关键作用。

      吴能友带领团队首次开展的基于南海北部实际储层特性的水合物开采实验和数值模拟,在新型的开采井设计条件下,以天然气水合物分解效率和气体产能为绝对标准,以产水量和气水体积比为相对标准,进行单一垂直、水平井降压法、注热法、热吞吐法天然气水合物开采潜力研究和经济性评价,并提出了天然气水合物开采潜力评价地质指标,为南海北部天然气水合物开采方法优选提供科学依据。

      瞄准基础理论研究和技术创新,打造天然气水合物攻关核心力量

      吴能友曾先后主持国家“863”、“973”及国际合作重点科技计划,国家基金和国土资源部、中国科学院、广东省等省部级科研项目30多项,多次组织和参加海洋地质地球物理调查航次,发表学术论文260多篇。

      吴能友重视人才团队建设,注重研究团队的专业交叉、梯队优化,在短短7年的时间里,组建了一个多学科交叉、梯队有序的多尺度融合的42人天然气水合物研究团队,涵盖了天然气水合物的基础物性—成藏与评价—开采技术—应用技术等各个环节,并将该团队发展为我国天然气水合物基础理论研究和技术创新的核心力量之一。

      在他的大力推动下,团队成员中,有1人获得国家杰出青年基金,3人入选中国科学院百人计划,1人获得中科院优秀博士论文,2人获中科院院长特别奖,2人获中科院院长优秀奖。

      瞄准天然气水合物商业开采,着力提供理论依据和技术支撑

      作为中国地质调查局海域天然气水合物资源试采工程的首席专家,吴能友的重任,是要带领研究团队建立天然气水合物“勘采一体化”攻关研发机制,在综合分析国外先进技术的基础上,借鉴常规油气开发技术和经验,从海域天然气水合物的物性、储藏特点,从储存条件、基础物性、开采技术等方面入手,开展室内实验模拟研究,形成一系列新的试开采技术方法。在此基础上,进一步确定试开采实施方案;研发试开采工程设计、建造、安装和调试,以及过程安全监控等关键技术和装备,并进行钻探设备、试采设备海上安装及联合调试,在优选出的天然气水合物富集区实施试开采工程,同时综合评价试开采的技术、经济指标和环境影响,为天然气水合物商业化开发利用积累技术和经验。

      为了形成安全高效的天然气水合物中长期开采技术与方法,吴能友及其研究团队将开展天然气水合物开采模拟及过程监测综合实验系统研发、出砂与产水管道堵塞试采难题实验模拟、水合物开采过程监测技术实验模拟、我国南海沉积层水合物开采技术探索、含水合物沉积物力学特性实验模拟、水合物开采井与地层安全性评价等研究工作,为我国天然气水合物商业开采提供理论依据和技术支撑。

      入选中国地质调查局首批“李四光学者”(急需紧缺高层次人才),既是荣誉,更是责任。吴能友表示,站在新的起点上,将以高度自觉的大局意识和极端负责的态度,严实相成,敬业担责,为服务国土资源中心工作、推动我国海洋地质调查事业作出更大贡献。
    蹚出海域天然气水合物开采之路

    历时138天,航程近30000公里,自然资源部中国地质调查局广州海洋地质调查局“海洋六号”船圆满完成深海地质调查第6航次和中国大洋第51航次科考任务,于2018年11月11日凯旋,满载着海洋地质调查丰硕成果,返抵广州海洋地质专用码头。中国地质调查局党组成员、副局长李金发在码头迎接。中国大洋协会办公室主任刘峰、中国地质调查局广州海洋地质调查局局长叶建良、党委书记温宁及干部职工、亲属共同迎接“海洋六号”和亲人的归来。

    “海洋六号”船自2018年6月27日从广州启航,在西太平洋实施了多波束测量、浅地层剖面测量、“海马”号ROV调查、深海浅钻、富钴结壳规模取样器试验、深海摄像、温盐深测量、锚系调查、地质拖网和重力柱取样等一系列工作。科考航次成果丰硕,在我国富钴结壳合同区资源调查、深海地质环境考察、深海探测新技术新方法应用及海洋微塑料污染调查等方面取得了重要进展。

    一是继续履行了中国大洋协会与国际海底管理局签订的勘探合同义务,在我国富钴结壳合同区开展了资源调查,查明了合同区30多个区块富钴结壳资源分布状况,在详细勘探区块首次获取厚度超过30厘米的巨厚型板状富钴结壳样品,对该区块资源量进行了初步估算。同时,首次在合同区海山板状富钴结壳之上发现密集分布的富钴型多金属结核。

    二是科技创新驱动深海探测取得重要进展。形成了基于“海马”号ROV作业平台,集高清视像、高频声学探测和多种取样工具为一体的富钴结壳原位精细探测技术方法体系;成功完成我国首台富钴结壳规模取样器海试,初步实现了海底富钴结壳的规模采集;首次实现了富钴结壳高频声学厚度剖面连续探测,获取了富钴结壳及其不同类型基岩的声学物性参数;利用“三点激光”系统,实现对海底摄像在线视频资料的实时智能化处理与解释。

    三是成功获取了西太平洋航路沿线的海洋微塑料样品,初步分析了西北太平洋监测海域海洋微塑料的数量、种类、组成和粒径等污染特征,为我国深度参与海洋塑料垃圾国际治理提供基础资料。

    此外,“海洋六号”船首次靠泊波纳佩期间,在中国驻密克罗尼西亚大使馆的指导下,接待了密克罗尼西亚联邦政府十余名国家政要的访问,成功举办了公众开放日活动,充分展示了我国深海大洋科考的风采,为开启中密两国海洋地学领域合作新篇章,构建人类命运共同体做出了积极探索。

    航次实行临时党委领导下的首席科学家负责制。深海地质调查航次由自然资源部中国地质调查局组织,中国大洋第51航次由中国大洋协会组织。航次由广州海洋地质调查局具体实施,来自中国五矿集团、自然资源部所属的国家海洋环境监测中心、国家海洋技术中心、第二海洋研究所,以及高等院校等9个机构和单位共72位科考人员参加了本次科考。

    “海洋六号”船自2009年入列,先后赴南海、太平洋、南极海域开展多个航次深海地质、大洋与极地科学考察航次任务,积累了全海域科学考察及航行保障经验,显著提升了我国海洋地质科学考察能力。

    码头迎接“海洋六号”船科考人员(谷兰丁摄)

    “海洋六号”船科考人员合影(谷兰丁摄)

    “海洋六号”远洋科考归来

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港 朱夏 摄

     

    7月29日,由国土资源部中国地质调查局组织实施的南海神狐海域天然气水合物试采工程全面完成了海上作业,这标志着我国首次海域天然气水合物试采圆满结束。随后,执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”将起航返回位于烟台的母港。

    我国海域天然气水合物首次试采圆满成功,取得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,创造了产气时长和总量的世界纪录。截止7月9日14时52分,我国天然气水合物试开采连续试气点火60天,累计产气30.9万立方米,平均日产5151立方米,甲烷含量最高达99.5%。获取科学试验数据647万组,为后续的科学研究积累了大量的翔实可靠的数据资料。 

    7月9日-7月18日,按照施工方案进行试采井的封井作业。 7月18日后,转入监测井作业,探测地层物性变化,确定水合物分解区域,了解储层改变的情况以及水合物分解波及的地层空间范围。监测结果显示周围地层无明显变化,海水及周边大气等甲烷浓度无异常,环境无污染,未发生地质灾害。

    执行本次试采技术服务的钻井平台“蓝鲸Ⅰ号”是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海作业。中国南海神狐海域天然气水合物试采是“蓝鲸Ⅰ号”执行的首项工作任务。2017年3月6日,“蓝鲸Ⅰ号”从烟台启航,经过8天的航行于3月14日顺利到达位于珠海市东南320千米的中国南海神狐海域可燃冰试采区。截至7月29日返航,共在这一区域实施作业达137天。

    通过近四个月的试验探索和科学研究,取得了一些新的成果和认识。一是防砂技术先进,方法可靠,持续有效发挥作用,保障产气通道状态良好。二是在举升方式等多方面实现创新,提高产量效果显著。三是调控产能平稳有效,气流稳定,持续时间已达到生产性试开采要求,为产业化发展奠定了坚实的基础。四是海水及周边大气等甲烷浓度无异常,环境无污染。五是井壁和地层稳定,未发生地质灾害,实现了安全可持续生产。六是试采理论、技术、工程和装备领跑优势不断扩大。

    下一步中国地质调查局加大天然气水合物资源勘查力度,为产业化提供资源基础;加大理论、技术、工程、装备研究力度,为产业化提供技术准备;依靠科技进步保护海洋生态,为产业化提供绿色开发基础;研究勘探开发管理规范性文件和产业政策,为产业化提供相关保障。加强依靠科技进步,保护海洋生态,促进天然气水合物勘查开采产业化进程,为推进绿色发展、保障国家能源安全作出新的更大贡献。

    人民日报:我国可燃冰试采圆满结束 产气时长和总量创...
1 2 3 4 5 6 7 下一页 尾页