分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到10条相关结果,系统用时0.019秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

相关搜索

检索范围:

    近日,中国地质调查局矿产资源研究所郭春丽研究员,通过对同时代、同空间、同源区的千里山花岗岩体和花岗斑岩岩墙群的SIMS锆石U-Pb定年、LA-MC-ICP-MS锆石Hf和SIMS锆石O同位素分析,发现早侏罗世154.3~151.6 Ma期间形成的岩体和岩墙具有非常一致的锆石εHf(t)值和δ18O值范围(−11.1~−5.1和+8.3‰~+10.4‰),但是两者的锆石εHf(t)和δ18O值的频数分布特征具有显著的差异。花岗斑岩岩墙群的εHf(t)和δ18O均具有双峰式的分布形式(两个峰值分别为−9.5和−5.7、+9.5‰和+8.9‰),千里山岩体具有宽泛且连续的εHf(t)分布形式和正态的δ18O分布形式(峰值为+9.1‰)(图1)。造成这种现象的原因,是不均匀的地壳源区物质在部分熔融过程中产生了两个批次具有不同Hf–O同位素特征的长英质岩浆,其中一部分岩浆沿着深大断裂带快速上升形成了岩墙群,而另一部分汇聚于上地壳的岩浆储库中经历了混合作用形成了花岗岩体(图2)。在Hf和O同位素扩散速率一致的情况下,岩墙中的岩浆来不及发生充分的混合作用,因此其锆石记录的同位素特征能有效地反映两批次岩浆的原始特征。该研究表明相对同源的岩体来说,岩墙是追溯原始岩浆同位素特征的更加有效岩石学探针。

    随着数据的积累,越来越多的研究发现绝大多数单一花岗岩体普遍呈现出变化大于5 εHf单位的同位素值,这一普遍现象引起了岩石学家的广泛兴趣,并引发了热烈的讨论。已有五种成因模式包括:①幔源和壳源岩浆的混合;②围岩混染;③单一源区不平衡熔融;④继承锆石Hf扩散;⑤物理和化学性质差异大的壳源岩浆混合。本研究对于宽泛且连续的锆石Hf同位素值形成的原因也进行了讨论并提出一种新的成因模式,即物理和化学性质相似的壳源岩浆在岩浆房内发生充分的混合,就可以导致单一花岗岩体中出现宽泛且连续的锆石Hf同位素值。

    花岗岩是地球大陆地壳的重要组成部分,是地球区别于太阳系内其他行星的重要标志。这一研究成果为揭示花岗岩的物质来源提供了新的有力佐证,将广泛应用于花岗岩的成因机制研究。该项目受到国家重点研发计划课题(2016YFC0600208)和国家自然科学基金面上项目(41773028)的资助。

     

    图1. (a) 花岗斑岩岩墙的锆石δ18O-εHf(t)相关图. (b) 千里山花岗岩体的锆石δ18O-εHf(t)相关图. (c) 花岗斑岩岩墙的锆石εHf(t)频率分布图. (d) 千里山花岗岩体的锆石εHf(t)频率分布图. (e) 花岗斑岩岩墙的锆石δ18O频率分布图. (f) 千里山花岗岩体的锆石δ18O频率分布图. (c–f)中的插图是年龄加权平均图.

     

    图2. 花岗斑岩岩墙和千里山花岗岩体由花岗斑岩岩墙补给形成的概念模式图. 两个性质不同的下地壳端元源区分别用黄色和红色表示;两个下地壳端元源区发生部分熔融形成岩浆中结晶的锆石分别用黑色和白色表示;两端元岩浆混合而成的岩浆房用桔黄色表示,其中高分异岩浆用粉红色表示. 具有黑色和白色环带的锆石是岩浆房中两个端元岩浆发生混合的结果。

    Chunli Guo, Simon Wilde, Robert Henderson, Qiuli Li, Bing Yin. 2020. Cogenetic dykes the key to identifying diverse magma batches in the assembly of granitic plutons. Journal of Petrology. DOI: 10.1093/petrology/egaa105.

    论文连接:https://academic.oup.com/petrology/advance-article-abstract/doi/10.1093/petrology/egaa105/6030954

    资源所专家提出花岗岩体中普遍具有变化较大Hf同位素...

    编者按 

    “是那山谷的风,吹动了我们的红旗……我们满怀无限的希望,为祖国寻找着富饶的矿藏。”

    新一轮找矿突破战略行动启动以来,广大地质工作者大力弘扬爱国奉献、开拓创新、艰苦奋斗的优良传统,把智慧、汗水洒遍山川大地,为地质找矿事业书写崭新的时代篇章。《中国自然资源报》开设“地质足迹印山川”栏目,通过系列报道展示地质人物和团队的感人事迹,推动新一轮找矿突破战略行动取得更大成果。

     

    “要想立足国内实现资源自给,资源勘查必须往深走。”这是第十八次李四光地质科学奖获得者吕庆田一贯的观点。

    地层深处高温高压,遍布坚硬的岩石。“入地”之旅怎么走?如何才能“入地”更深?20多年来,中国地质科学院地球深部探测中心研究员吕庆田带领团队在陆内成矿理论和深部找矿预测新方法研究、深部勘探仪器设备研发等方面取得系列成果,给出了答案。

    吕庆田2017年参加在美国阿拉斯加举行的 EarthScope会议。

    加强地球深部探测

    破解资源环境及灾害问题

    1981年,17岁的吕庆田在老师建议下,顺利考入长春地质学院应用地球物理专业。1988年硕士毕业后,他被分配到中国地质科学院矿床地质研究所(现中国地质科学院矿产资源研究所),从一名实习研究员干起。之后,他一直在各个项目区通过地球物理的手段研究岩石圈结构等地球科学问题。

    2000年,国土资源部“十五”专项研究计划“大型矿集区深部精细结构探测研究”启动,吕庆田参与其中。自此,他的学术方向开始了明确的变化——执着于探向地球深部。

    为什么要探测深部、认识深部?“两大因素使然。”吕庆田说。

    一是当时全球的矿产勘查都在向深部500米以下进军,我国起步已晚,必须加速赶上。

    二是深部因素对成矿的控制作用逐渐被认识到,如幔源岩浆、新生地壳熔融、拆沉与底侵和深大断裂对成矿金属类型和矿床分布的一级控制等。

    但深部地质结构、物质性质不清,控矿要素不明确等原因,让勘查深度难以突破,拓展深部资源遇到严峻挑战。为此,吕庆田带领团队先后承担了“十三五”重点研发计划项目“华南陆内成矿系统的深部过程与物质响应”、深部探测专项第3项目等20余项深部金属矿勘查技术和应用研究工作。

    2016年5月30日,习近平总书记在“科技三会”上指出,“向地球深部进军是我们必须解决的战略科技问题”。同年,我国酝酿启动深地国家科技重大专项,瞄准国际地球科学前沿进行布局。吕庆田积极参与其立项和申报工作,并负责相关内容的编写。

    此后近十年,吕庆田带领团队,以我国东部长江中下游成矿带和西部东准噶尔成矿带为探测对象,在成矿系统理论框架下开展了多尺度地球物理综合探测和研究,在陆内成矿系统的三维结构、深部找矿思路和找矿发现等方面取得重大进展。

    选择我国东部长江中下游成矿带和南岭成矿带,以及铜陵、庐枞、于都—赣县等典型矿集区,吕庆田带领团队在成矿带岩石圈层次、矿集区地壳结构层次、矿床(田)精细探测层次,部署开展了三个层次的“入地”探测研究工作。

    三个层次的探测研究工作,在揭示区域成藏成矿控制因素、开辟找矿新空间的同时,把握地壳活动脉搏,为提升区域地质灾害监测预警能力提供技术支撑。吕庆田说:“加强地球深部探测,对我国资源能源安全和减灾防灾意义重大。”

    发展陆内成矿理论

    解开地球深部成矿奥秘

    岩石圈结构、物质和深部过程对成矿系统具有关键控制作用,但存在诸多认知“盲区”。

    对此,综合20多年开展的综合探测研究,吕庆田带领团队创新性开创了以多尺度探测为特色的成矿系统研究新领域,提出陆内成矿系统受岩石圈拆沉、地壳属性和块体边界控制的新认识,发展了陆内成矿理论。相关成果在“十三五”国家重点研发计划深部探测专项中被充分吸纳。

    “比如,以往认为成矿作用大都发生在板块边缘,与板块边缘造山作用密不可分,如洋—陆俯冲造山、陆—陆碰撞造山,而对于大陆板块内部的成矿作用及深部动力学机制却鲜有了解。”吕庆田说,他带领深部探测专项第3项目组在长江中下游成矿带经过4年努力,解开了大陆板块内部成矿的“深部奥秘”。

    他们在长江中下游成矿带发现了岩石圈增厚、拆沉和软流圈隆起的关键证据,建立了陆内成矿的深部动力学模型。更为重要的是,他们获取了陆内下地壳和岩石圈地幔俯冲的清晰图像。

    “这些发现诠释了为什么在长江中下游这个狭窄的带内,形成了数百个金属矿床。”吕庆田进一步解释说:“与板块边缘成矿类似,大陆内部在远程应力的作用下,也可以发生大陆俯冲,俯冲导致壳幔强烈相互作用,最终沿俯冲带形成大陆内部的巨型成矿带。”

    前期扎实的探测研究工作,为钻探验证奠定了良好的基础。庐枞矿集区深部异常验证钻孔取得了深部重大找矿线索,发现了高强度的铀矿化,深部铀矿化为交代碱性岩复合型铀矿的新认识据此被提出。这一发现对庐枞深部找铀具有重大的理论和实际意义,并被推广到华南陆内造山等成矿系统的研究中。

    创新深部探测技术

    让矿集区结构“透明化”

    知道深部有矿,怎么找?当时,国内外都没有多少经验可以借鉴。“

    对深部矿产勘查来说,不仅需要突破精度、灵敏度更高的各种传感器技术,提升野外测量设备的稳定性,还要发展新的数据解释技术,把观测的数据转换为‘透视’地下的图像。”吕庆田说。

    这一目标,在他带领深部探测专项第3项目组开展长江中下游成矿带深部探测试验时实现了。他们形成了一套针对大型成矿带岩石圈结构探测的技术解决方案,发展了多种地球物理数据处理与解释技术。

    通过骨干剖面的反射地震探测和重磁数据的全三维反演,项目组揭示了庐枞、铜陵矿集区的地壳结构框架,发现了一批新的断裂,建立了该地区的三维地质模型,初步实现了矿集区的“透明化”,为认识成矿作用和助力深部找矿起到了关键作用。

    “希望我们在长江中下游成矿带、矿集区到矿田的探测模式和技术思路可以推广到其他成矿带去。”吕庆田这样表示。为此,他带领团队经过长期实践探索,提出了稀疏地震剖面、地表地质约束的三维重、磁交互反演地质建模方法,并以此为物性反演初始模型,采用求取置信区间确定物性变化、通过逻辑拓扑实现岩性识别,完善了岩性填图技术,为矿集区结构“透明化”提供了技术手段。

    在以上成果基础上,他带着团队经过进一步研究,形成“三维结构+成矿模式+综合信息”相融合的深部找矿“三元”预测方法——通过提取已知矿床地质属性特征,通过三维证据权方法、专家系统、机器学习算法,实现深部成矿预测的自动化和定量化。

    利用该方法,他带领团队在安徽庐枞矿集区井边—巴家滩预测区深1500米~1740米之间,发现累计厚97米的高品位铀矿化体;在新疆伊吾县戈壁滩,发现拉伊克勒克大型隐伏斑岩—矽卡岩铜铁矿床,获得333+334铜资源量118.8万吨。矿集区“透明化”探测和“三元”成矿预测方法的有效性得到验证。

    目前,“三元”成矿预测方法已推广应用到安徽、新疆、江西、山东等地区,取得了良好深部找矿效果。

    研发系列勘探设备

    推动我国勘探技术进步

    多年的深部探测实践,让吕庆田越来越深刻意识到,突破“卡脖子”核心技术,降低对外依赖,对保障国家资源安全意义重大。强烈的使命感、责任感使吕庆田和他带领的研发团队担起了“十二五”国家863计划“深部矿产资源勘探技术”研发任务。

    作为该计划重大项目首席专家,吕庆田带领团队先后突破了高精度微重力传感器技术、铯光泵磁力仪传感器技术、宽带感应式电磁传感器技术等10项关键核心技术。其中,微重力传感器的突破使我国成为国际上为数不多的可以自主生产高精度重力仪的国家。

    在重磁、电磁、地震、井中勘探仪器和钻探设备方面,他们研制出高精度地面数字重力仪、大功率多功能电磁探测系统、4000米地质岩心钻探成套技术装备等18套急需的勘探地球物理仪器设备,形成了从地面到地下的系列仪器装备。

    在地球物理方法数据处理和解释方面,他们完善了直流电阻率与极化率三维反演方法、重磁三维约束反演方法等20多项地球物理数据处理解释方法,研制出多参量地球物理数据处理与反演软件系统、金属矿地震处理解释新技术与软件系统2套大型软件系统,形成了多功能三维电磁正反演与可视化交互解释软件系统、金属矿地下物探数据处理解释系统等8个专用软件系统。

    “这一轮的技术研发,使我国在地球物理勘查技术领域极大地缩小了与国外的差距,大幅度降低对国外勘查设备和解释软件系统的依赖,一定程度上打破了国外在此领域的仪器设备垄断,大幅提高了我国深部资源勘查技术自主研发能力和国际竞争力。”吕庆田说。

    他带领的团队因此荣获2022年自然资源科学技术奖特等奖,获得发明专利授权66项、实用新型专利授权45项、软件著作权105项。现在,相关成果广泛应用到矿产勘查、国防、科研和工程等领域,替代国外进口,解决国家重大需求,极大促进了我国金属矿勘探技术的系统提升、整体跨越和进步。

    收获“深地”成果

    一路艰辛成为美好回忆

    系列重大成果的取得并不是一帆风顺的。

    “我带着深部探测专项第3项目组在庐枞、铜陵矿集区开展三维立体探测施工的时候困难重重。在野外,我们遇到的最大困难是各种看不见的电磁和振动干扰,这些干扰来自各种电线、工厂、高速路和居民生活区。”吕庆田苦笑着说,因为反射地震的数据采集要记录地下几十千米反射上来的信号,需要绝对的安静。

    为了获得高信噪比的数据,项目组不得不在夜深人静的时候采集数据。有时,他们还需要设置警戒,或与周边的工厂协调暂时停工。这需要他们和当地相关部门和百姓反复沟通。

    “技术上的难题、施工上的困难、与当地相关部门协调等,多年下来,大家都成了多面手。”吕庆田笑着说。

    20多年在深地探测领域的不懈努力和学术积累,让吕庆田及其团队先后获得国家科技进步奖一等奖、二等奖各一项;国土资源科学技术奖一等奖3项,二等奖1项。他本人于2009年入选国家“新世纪百千万人才工程”国家级人选,2019年入选自然资源部高层次科技创新人才第二梯队人才和科技创新团队(负责人),2023年获得第十八次李四光地质科学奖(科研奖)。他先后为国家培养了18位硕士、20多位博士和10多位博士后,带领的深部资源探测研究团队于2018年入选自然资源部高层次科技创新团队。

    “与6000多千米的地球半径相比,我们的研究还仅仅停留在地球的表皮。”吕庆田说,“我毕生奋斗的方向就是带领团队拓展深部空间,认识地球深部运行规律,发现更多的资源。为了在这个方向走得更远,我们比以往任何时候都更加需要弘扬李四光等老一辈科学家的精神,坚持真理、严谨求实、锐意创新,以李四光先生的崇高精神为标杆,主动服务国家发展战略需求,积极投身地球科技创新前沿,努力为建设科技强国贡献力量!”

     
    中国自然资源报:“入地”之旅怎么走?他给出了答案

    随着经济社会的发展,以气候变化为核心的全球环境变化,正在广泛而深刻地影响着人类社会的方方面面。气候变化所导致的气温增高、海平面上升、极端天气与气候频发等,对自然生态系统和人来生存环境产生了严重影响。增加能源供应和来源途径、改善能源结构,是减少温室气体排放量、解决全球气候变化问题的根本途径。而作为新型能源的地热资源越来越受到人们关注,它具有低成本、可持续利用和环保等其它能源所不可比拟的独特优点。可以说,大力推进地热资源开发利用,改善能源结构,对于解决日趋严重的全球环境问题具有重要的意义。

    ● 什么是地热资源?

    地热资源是指能够经济的被人类所利用的地球内部的地热能、地热流体及其有用组分。我国地热资源可分为浅层地热能资源、水热型地热资源和干热岩资源三种类型。目前可利用的地热资源主要包括:通过热泵技术开采利用的浅层地热能、天然出露的温泉、通过人工钻井直接开采利用的地热流体以及干热岩体中的地热资源。我国地热资源种类繁多,考虑地质构造特征、热流体传输方式、温度范围以及开发利用方式等因素。

    ● 地热是如何形成的?

    关于地热的来源,有多种假说。一般认为,地热主要来源于地球外部热源和内部热源。外部热源包括太阳辐射等,内部热源包括放射性元素生热、地核热量等。根据测算,地核的温度达6000°C左右,地壳底层的温度达900~1000°C,地球表面恒温层(距地面约15米)以下约15千米范围内,地温随深度增加而增高,平均增温率约为3°C/100米。不同地区地热增温率有差异,接近平均增温率的称正常地温区,高于平均增温率的地区称地热异常区。地热异常区是研究、开发地热资源的主要对象。地壳板块边沿,深大断裂及火山分布带等,是明显的地热异常区。

    勘查地热资源,一般采用地热地质调查、钻探和各种物化探方法。

    ● 地热资源有哪些用途?

    据史料记载,我国开发利用地热与温泉已有5000多年的悠久历史,是世界上利用地热资源较早的国家之一。新中国成立后,国家重视人民的医疗保健事业,从20世纪50年代起,先后建立温泉疗养院160多家,20世纪70年代后,地热资源的开发利用进入快速发展阶段,尤其是20世纪90年代以来,在市场推动下,地热资源的开发利用得到更加蓬勃的发展。

    地热开发利用方式

    地热资源主要用途包括发电、建筑物供暖、洗浴疗养、种植养殖、烘焙等。其中150℃以上的高温地热主要用于发电,发电后排出的热水可进行梯级利用;90~150℃的中温和25~90℃的低温地热以直接利用为主,多用于工业、种植、养殖、供暖制冷、旅游疗养等方面;25℃以下的浅层地温,可利用地源和水源热泵供暖、制冷。目前全国地热资源开发利用的基本格局是:西南、华南发电;华北、东北供暖与养殖,华东、华中、西北地区洗浴与疗养。

    截至2015年,我国地热资源每年利用量折合标准煤0.21亿吨,其中水热型地热资源利用量折合标准煤415万吨,开采率为0.2%,浅层地热能利用量折合标准煤1600万吨,开采率为2.3%,地热资源开发利用潜力巨大。水热型地热资源利用方式中,地热发电占0.5%,供热采暖占32.70%,医疗洗浴与娱乐健身占32.32%,养殖占2.55%,种植占17.93%,工业利用占0.44%,其他占13.56%。浅层地热能资源开发利用方式主要为供暖制冷。

    ● 地热资源有哪些种类?

    1.水热型地热资源

    我国水热型地热资源非常丰富,出露温泉2334处,地热开采井5818眼。水热型地热资源量折合标准煤12500亿吨,每年地热资源可采量折合标准煤18.65亿吨,有高温地热资源(≥150℃),但以中温地热资源(90~150℃)和低温地热资源(<90℃)为主。其中,水热型中低温地热资源量折合标准煤12300亿吨,每年地热资源可采量折合标准煤18.5亿吨,发电潜力150万千瓦;水热型高温地热资源量折合标准煤141亿吨,每年地热资源可采量折合标准煤0.18亿吨,发电潜力为846万千瓦。

    水热型中低温地热资源主要分布于华北平原、河淮平原、苏北平原、松辽盆地、下辽河平原、汾渭盆地等大中型沉积盆地上,分布在山地的断裂带上的地热一般规模较小,分布在盆地特别是大型沉积盆地的地热资源储集条件好、储层多、厚度大、分布广,热储温度随深度增加,是地热资源开发潜力最大的地区。

    高温地热资源主要分布在我国藏南-川西-滇西水热活动密集带,其高温地热资源发电潜力为712万千瓦,充分开发利用高温地热资源,积极推进西南地区高温地热发电,因地制宜建立多能互补的发电格局,符合我国当前能源革命需求,也是可再生能源重要组成部分。

    2.浅层地热能

    全国336个地级以上城市浅层地热能资源每年可开采量折合标准煤7亿吨,可替代标准煤11.7亿吨/年,节煤量4.1亿吨/年。从浅层地热能开发利用方式来看,地埋管热泵系统适宜区占总评价面积的29%;较适宜区占53%;地下水源热泵系统适宜区占总评价面积的11%,较适宜区占27%。比较适合应用地下水地源热泵系统的地区主要分布在我国的东部平原盆地及富水性较好的地区。地埋管地源热泵系统普遍具有较好的适宜性。综合考虑,浅层地热能开发利用的影响因素,我国适宜开发浅层地热能的地区主要分布在中东部省份,包括北京、天津、河北、山东、河南、辽宁、上海、湖北、湖南、江苏、浙江、江西、安徽等13个省(市)。

    我国浅层地温能开发利用区划图

    3.干热岩资源

    我国干热岩资源潜力巨大,开发前景广阔,高于美国干热岩资源的估算结果(570万亿吨标准煤)。经初步测算,地下3~10千米范围内干热岩资源折合标准煤860万亿吨,利用其中2%即相当于2015年全国能源总消耗量的4000倍。尤其是位于3.5~7.5千米深度、温度介于150~250℃之间的干热岩资源,资源量巨大,折合标准煤215万亿吨。干热岩资源是最具潜力的战略接替能源,但开发难度较大。

    ● 我国的地热资源家底

    2016年,中国地质调查局发布了《中国地热资源调查报告》。报告指出,“十二五”期间,在原国土资源部的正确领导和财政部的大力支持下,中国地质调查局组织全国60多家单位3000多名技术人员,利用中央财政资金4.16亿元,完成了31个省(区、市)地下热水资源调查,开展了336个地级以上城市浅层地温能资源调查,启动了干热岩资源调查,基本查明了我国地热资源赋存分布与开发利用现状,初步评价了全国地热资源潜力。

    调查结果表明:一是全国31个省(区、市)地下热水资源年可开采量折合标准煤19亿吨,现状年实际开采量折合标准煤415万吨,只占可开采量的0.22%,开发利用潜力巨大。二是全国336个地级以上城市浅层地温能资源年可开采量折合标准煤7亿吨,可实现建筑物供暖制冷面积320亿平方米;现实现建筑物供暖制冷面积4.78亿平方米。三是我国干热岩资源初步估算折合标准煤856万亿吨,是巨大的能源宝藏,其2%的可开采量即相当于2015年全国能源消耗的4000倍,应加快研究步伐。四是我国浅层地温能和地下热水资源开发利用经济与环境效益显著,2015年相关产业总产值约7500亿元,占同年GDP的1%以上;每年减少二氧化碳排放4800万吨。五是京津冀地区浅层地温能和地下热水资源合计折合标准煤3.43亿吨,可基本满足该地区建筑物供暖制冷需求。六是长江经济带浅层地温能和地下热水资源年可开采量折合标准煤9.3亿吨,充分开发利用区内的浅层地温能资源可有效解决长江中下游地区冬季供暖问题。

    ● 最新研究成果

    中国地质调查局自2016年开始实施“全国地热资源调查评价与勘查示范”工程。该工程是在“十二五”地热调查工作基础上,聚焦区域地热背景调查、重点地区浅层地温能调查、水热型地热资源调查、重点区干热岩资源调查以及地热资源勘查开发示范与关键技术研究5项任务,目前取得了一些阶段性成果。

    浅层地温能方面:雄安新区浅层地温能初步勘查表明,新区内大部分地区适用于浅层地温能的开发,雄安新区浅层地温能资源的开发利用,将产生巨大的环境效益与社会效益,为我国未来城市的发展提供新方向。

    水热型地热资源方面:京津冀水热型地热资源调查表明,京津冀地区是我国东部地热资源最丰富的地区,地热资源储量大,开发利用条件较好。根据现状开采量与资源量数据划分了京津冀地区的开采模数分区,可为当地地热资源的开发提供借鉴。

    干热岩方面:干热岩资源是国际社会公认的最具潜力的战略接替能源之一,其开发利用尚在探索中,国际社会对干热岩的开发利用已经进行了40多年的历史,我国正在开展东南沿海地区、青藏高原东北缘干热岩资源地质勘查,2017年8月,中国科学家在青海共和盆地3705米深处成功钻获236℃的高温干热岩,为下一步推进干热岩开发利用试验探索奠定了良好基础,目前中国地质调查局正在大力推进干热岩勘查评价和试验性开采。

    (本文由中国地质科学院水文地质环境地质研究所供稿)

    地热知识点,了解一下?

    近日,中国地质调查局发展研究中心联合武汉地调中心和湖北地调院,共同组织举办了全国系列基础地质综合编图工作研讨暨大洪山地区俯冲增生杂岩野外考察。天津地调中心、南京地调中心、航空物探遥感中心中心、青岛海洋所,中国地质大学(北京)、中国地质大学(武汉)、北京大学、成都理工大学等单位30余名专家与研究人员参加。

    野外考察为第一阶段。围绕湖北大洪山地区俯冲增生杂岩带岩石类型、组合样式、构造环境等内容,参会人员对三里岗岛弧、MORB-like镁铁质岩岩块、洋底热液喷气硅质岩、枕状玄武岩及弧前浊积岩等7个观察点和一条洋内弧(OB)剖面进行了认真调研和详细考察。室内研讨为第二阶段。武汉地调中心、湖北地调院对大洪山地区俯冲增生杂岩及晋宁期洋板块构造研究进行了汇报,与会专家结合大洪山地区野外地质考察内容,充分肯定了扬子北缘晋宁期俯冲增生杂岩的研究成果,并就其有争议的大地构造相问题进行了深入讨论,建议研究人员严格按照岩石学分类命名、薄片鉴定结果及与周边更大区域的西乡群、碧口群对比研究来综合判别构造环境。随后,会议研讨了中国大地构造单元划分方案及中国陆域蛇绿岩分布与断裂系统构造编图进展,与会专家对大地构造相系列概念的厘定,蛇绿岩分布与TTG组合、海相火山岩的空间配置,具有大地构造属性的深大断裂边界等提出了探索性建议,会议成效显著。

    “学以事人,真知力行”。本次研讨会是产学研相结合的一次重大实践,大家在考察、研讨与探索中取长补短、获得共识。中国大地构造单元划分方案的提出,蛇绿岩分布与断裂系统构造图编制工作的推进,为全国系列基础地质综合编图铸造了初步“骨架”,为实现科技创新的目标奠定了前期基础。

     

     

    全国系列基础地质综合编图工作研讨暨野外考察顺利完...

    8月中旬至9月初,地调局航空物探遥感中心组织四川地调院、中国地质大学(武汉)、南京大学和河南地调院等单位联合踏勘,在新疆罗布泊地区开展子项目“新疆若羌北山整装勘查区高空间分辨率遥感地质调查”的野外查证工作。

    通过本次野外地质工作,掌握了本区三条深大断裂(依格孜塔格-红柳河、白地洼-淤泥河、红十井-矛头山)的空间形态和影响范围,确定了工作区南部韧-脆性剪切带中褶皱的存在和空间特征,新圈定了多个重要地质体,查证了新解译出的基性和超基性岩体的存在,新发现一处具有明显矽卡岩化特征的矿化蚀变带。这些认识将为整装勘查区的后续工作部署提供参考,同时也将促进该区基础地质研究水平的提高。

    罗布泊构造位置位于中亚造山带的东天山南缘,塔里木盆地东北缘,北山裂谷西段,自然环境十分恶劣,严重干旱缺水,基本无任何植被,是中国三大无人区之一。8月的罗布泊尤其酷热,中午时段平均温度达45℃左右,火辣辣的太阳直射在布满棱角岩砾的戈壁上,野外工作完全像是置身于烤炉之中,炙热烫手的岩石,极其干燥的空气,毫无生气的景象,时而侵扰的沙尘暴,给项目工作带来了诸多挑战。就是在这样的环境下,项目组人员依然精神饱满地投入到各项工作中,认真完成了每个观测点的定位、观察、记录、采样和照相等工作,对相关地质现象进行了充分讨论,仔细与高分遥感影像图进行了比对,保质保量地完成了预计的工作任务。

     

    航空物探遥感中心组织完成新疆若羌北山高分遥感调查...


       (本网讯)6 月 12 日 西宁—柴达木盆地—格尔木( 800 公里)

       西宁是青藏铁路的起点。西宁至格尔木段铁路 860 公里 早在 1958 年就开工建设,历时 21 年于 1979 年铺轨至戈壁新城格尔木。 1984 年 5 月,青藏铁路西格段通车。 2006 年 6 月 11 日晚 8 点半 ,当记者与中国地质科学院研究员彭华和中国地质调查局网站(www.cgs.gov.cn)记者王高峰一行赶到西宁的时候,去往格尔木的最后一趟火车已经发车 1 个多小时了。

       第二天上午 7 点 30 分,在西宁市汽车站辗转租乘一辆桑塔纳出租车,我们开始穿越 800 多公里广袤无垠的柴达木盆地。司机告诉我们,到达格尔木要到下午六点以后。

       车出西宁,一路沿湟水河谷前进。这一段青藏公路与青藏铁路并肩而行,西行经日月山进入牧区,在广阔的草原上渐行渐远,眼前忽然出现一条狭长的水带,走近前水面变得开阔,充盈视野,这就是圣洁美丽的青海湖,被誉为高原的璀璨明珠。青藏铁路与青藏公路在青海湖分道扬镳,铁路沿湖北缘西去,公路从南缘西行过江西沟,翻过 3817 米 的橡皮山,前行 146 公里 就到了柴达木盆地的东大门——茶卡盐湖。茶卡盐湖是一个大型的钠盐矿床,面积有 105 平方公里,储盐量为 4.5 亿吨,具有开采方便,食用价值高的特点。原盐氯化钠含量在 94% 以上,也是青海开发利用时间最早的一个盐湖。据史料记载,在 2000 多年前的西汉时期,这里出产的青盐就已经远销到中国西北部的广大地区。如今,一条铁路支线从青藏铁路延伸至茶卡盐湖,盐湖资源开发已经初具规模,达到年产 80 多万吨。

       过了茶卡镇,就进入了柴达木盆地腹地,地貌呈现出风蚀丘陵的特点,盆底低洼处往往形成许多盐湖和沼泽。蒙语“柴达木”,即“盐泽”之意。柴达木盆为昆仑山、阿尔金山、祁连山等山脉环抱,东西长 800 公里 ,南北最宽处 350 公里 ,面积约 20 万平方公里,是我国三大内陆盆地之一。盆地周围的山脉一般海拔 3500 — 4500 米 ,盆地底部海拔 2700 — 3000 米 。盆地中部的沙漠面积不大,只有 9000 平方公里,且分布零散,是由古代洪积、冲积平原起沙而成。据 彭华 老师介绍,柴达木盆地的地质基础是青藏高原上褶皱山地之间的一个古老结晶变质岩地块,沿南北两侧山麓都有深大断裂,这些断裂带使得在周围山地上升时,盆地却不断下陷,不过它也随着青藏高原的整体上升,使其海拔仍然很高,居我国各大盆地之首。大约在二三亿年前,这里还是一个大湖,后来盆地西部上升,使湖面逐渐缩小,留下 5000 多个咸水湖。其中位于盆地中央的察尔汗盐池,是我国最大的钾盐湖,面积约 1600 平方公里,储盐量达 250 亿吨,可供全国人民食用 8000 年之久。盐矿中含食盐 95 %、钾盐 2 %,是我国重要化学工业原料基地之一。贯穿盆地南北的公路,其中有 31 公里 长的路面,就是建筑在察尔汗盐湖的盐盖上。柴达木不仅是盐的世界,而且还有丰富的石油、煤,以及多种金属矿藏,如冷湖的石油、鱼卡的煤、锡铁山的铅锌矿等都很有名,所以享有“聚宝盆”的美称。

       车过香日德镇后,盆地地貌呈现出荒漠戈壁的特征,分布极为辽阔。草色灰黄为主,此前的些许绿意已经荡然无存了。青黑的青藏公路在沙漠腹地蜿蜒如龙,前行 250 多公里低达格尔木市。这时候已经是晚上 8 点半,高原上的太阳还在老高。 (李晓明)



    柴达木盆地地貌

    柴达木盆地:高原聚宝盆

    锂铍铌钽等稀有金属资源是世界新兴产业发展的关键矿产资源。近年来,自然资源部中国地质调查局所属的中国地质科学院矿产资源研究所“三稀”项目团队,在关键矿产领域开展深入研究,取得了丰硕成果。以李建康研究员为学科带头人在20142017年间发表《中国锂矿成矿规律概要》、《中国铍矿成矿规律》等论文。近期在《科学通报》刊发《中国铌钽矿成矿规律》一文。

    研究发现,我国过铝性岩浆系统和碱性岩-碳酸岩岩浆系统的铌钽矿床存在“时空分离、交替成矿”的成矿地质特征,这归因于二者具有不同的成矿构造背景。过铝性岩浆系统成矿作用主要发生在具有巨厚复理石沉积的造山带,碱性岩-碳酸岩岩浆系统成矿作用主要发生在深大断裂带或裂谷区。研究指出,与世界上的同类型铌钽矿产资源相比,中国的铌钽矿产资源品位低,共生矿物复杂,选冶困难,开发利用难度高。我国应加大寻找高品位的花岗伟晶岩型铌钽矿床,重视钨锡矿床中共伴生铌钽矿产资源的综合利用。

     

     

    中国铌钽资源成矿带分布图(李建康等,2019

    (原文信息:科学通报, 64, 15: 1545-1566(2019) https://doi.org/10.1360/N972018-00933)

    资源所李建康研究员总结提出我国铌钽资源成矿规律

    野外试验现场

    工欲善其事,必先利其器。向地球深部进军,急需探向地球深部、揭开深部奥秘的“武器”。地球物理探测技术装备就是其中之一。

    地球物理探测,即通过观测和研究各种地球物理场及其变化来探测地层岩性、地质构造等,是“透视”地球内部的重要手段。长期以来,我国大型地球物理探测装备和核心软件几乎全部依赖进口。自然资源部中国地质调查局地球物理地球化学勘查研究所(以下简称“物化探所”)牵头实施的国家重大科学仪器设备开发专项《大深度三维电磁探测技术工程化开发》项目,通过5年努力,提交了一整套工程化的大深度三维电磁探测技术系统,不仅使我国地球物理探测实现了由二维测量向三维测量的跨越,而且推动了我国大深度电磁探测设备的自主化、实用化和产业化进程。

    打破国外技术装备垄断,研发具有自主知识产权的国产化仪器

    三维电磁探测系统的研发和应用,不仅在我国基本为空白,在国外同样也处于起步阶段。针对我国电磁法勘查技术在探测深度、抗干扰能力和测量精度等方面落后的现状,同时也为适应复杂地质条件下地下目标体大深度、多参数、三维精细探测的需求,以物化探所为牵头单位,联合重庆地质仪器厂、成都理工大学、中国科学技术大学、吉林大学,中国地质调查局西安地调中心、南京地调中心,安徽省勘查技术院等单位,实施了《大深度三维电磁探测技术工程化开发》项目,旨在打破国外垄断,实现装备国产化,更好地服务国家能源资源勘查工作。

    对电磁探测技术的研发,物化探所有着多年的技术积累与成果基础。《大深度三维电磁探测技术工程化开发》项目负责人、物化探所教授级高级工程师林品荣介绍,物化探所在1995年实现了音频大地电磁测深的分布式测量,在国际上率先实现了天然电磁场的多点同步阵列式观测。步入新世纪,将阵列式的天然电磁场大深度探测技术与人工场的激电技术相结合,优势互补,从而形成混场源的电磁法探测技术,以实现多参量大深度探测。该系统于2005年研制成功,填补了我国资源探测大功率(70KW)发射与接收研制的空白,为我国开发具有自主知识产权的国产多功能电法仪器提供了技术保障和经验积累。

    在国内没有先例可借鉴的情况下,从2006年起,在地质调查项目和国家863重点项目的支持下,物化探所启动了国产大功率多功能电法系统的研制。经过科技人员的持续攻关,在多频同步供电波形合成、密集频点供电、大功率逆变与保护、宽带大动态范围接收、无线数据通讯、数据处理与解释等技术方面取得突破,研制出了具有可控源音频大地电磁测深(CSAMT)、激发极化法(IP)供电功能的70KW大功率电磁法发射系统,以及具有音频大地电磁测深(AMT)、可控源音频大地电磁测深(CSAMT)、激发极化法(IP)测量功能的接收系统,并于2010年生产出了样机,2011年实现了这一技术的实用化及推广应用。

    为适应深部找矿、三维立体填图和深部结构探测的需求,2011年,《大深度三维电磁探测技术工程化开发》项目获批为国家重大科学仪器设备开发专项首批支持的项目,总体目标是实现大地电磁测深(AMT/MT)、可控源音频大地电磁测深(CSAMT)、时间域频率域激电(TDIP/FDIP)、磁性源瞬变电磁测深(TEM)等二维/三维测量技术及三维测量仪器的工程化开发。同时,开展野外工作应用试验及三维电磁探测技术应用示范,促进我国三维电磁探测技术的发展。

    由二维测量向三维测量转变,由样机研制迈向工程化研发

    要实现三维电磁探测,需要将传统的一维、二维的电磁测量方法发展为三维测量方法。“简单讲,就是由原来的单点或单线测量,革新为多点、多测线的面积性同步测量,从而获取高质量的三维观测数据和地下地质体更为全面的信息。”林品荣说。

    为此,项目组根据天然电磁场和人工电磁场的传播特点,结合地球物理电磁法仪器发展和大深度精细勘查的需求,研究设计了5种电法的三维分布式探测方法技术,包括大地电磁测深(AMT/MT)、可控音频大地电磁测深(CSAMT)、时间域激电(TDIP)、频谱激电(SIP)、磁性源瞬变电磁测深(TEM)。同时,采用高精度GPS和恒温晶体的混合同步技术,实现了多测站、多分量、全天候的阵列式同步测量。

    在样机的开发过程中,物化探所创新研发思路和发展模式,邀请负责样机工程化的中地装重庆地质仪器有限公司技术人员提前介入,按实用化要求,配合科研人员对三维电磁探测仪器进行设计开发,形成了大深度三维电磁探测仪器的加工工艺、生产流程、检测方法等。

    样机研发出来了,但要实现仪器的工程化开发,仍有大量工作要做。负责分布式接收机开发的物化探所教授级高级工程师郑采君介绍说,样机是工程化研发的第一步,关键是实现探测功能,主要体现“能用”;而工程化研发,要在样机的基础上不仅实现技术指标,而且还要注重仪器的稳定性、可靠性及实用性,让仪器不仅“能用”,而且要“好用”“实用”“耐用”,还要操作便捷、外观美观。比如:由于各地的射频干扰不尽相同,就需要不断对仪器的射频抑制电路进行调整、试验,再调整、再试验,直到仪器在不同地区都比较适用。再比如:稳定性方面,三维探测要求多台站同步测量,往往是几十台甚至上百台仪器同时启动开始工作。而仪器数量的增加,工作时间的拉长,都使得仪器的故障率成几何级数增长。因此,每一台仪器的稳定性和可靠性都至关重要。

    研发团队研究解决了仪器间的精确同步,仪器性能参数的自标定,仪器的一致性、稳定性与可靠性,以及超大功率场源系统的建立等一系列技术难题,实现了大地电磁测深(AMT/MT)、可控音频大地电磁测深(CSAMT)、时间域频率域激电(TDIP/FDIP)、磁性源瞬变电磁测深(TEM)等方法的三维测量仪器的工程化开发,生产出160kW、30kW、5kW系列多功能电磁法(CSAMT、TDIP/FDIP)发射机、分布式多功能电磁法(AMT/MT、CSAMT、TDIP/FDIP)接收机、频率域感应式磁传感器、10kW瞬变电磁发射机、瞬变电磁三分量接收机、三分量高温超导磁强计、三分量时间域感应式磁传感器等。

    系统软件的开发与集成,则涉及了数据处理方法研究、数据管理、可视化等多个方面。物化探所教授级高级工程师吴文鹂介绍说,物化探所数据处理研究团队联合吉林大学、成都理工大学、中国科学技术大学等相关科研人员,开展了正确快速计算、压制地形影响、获取可靠三维电性参数、构建基于三维电磁数据的三维地质解释和地质模型等一系列研究。由于采集的数据来源于多种探测方法,如何从中提取有用信号,如何进行处理,最终如何形成可视化的三维地质模型,其中涉及大量、复杂的计算过程和方法。各研发小组分任务从单方法入手,从一维反演、二维反演再到三维反演,最后再进行多方法的集成,最终形成了集5种电法方法数据管理、人机交互建模、数据成图、数据预处理与正反演为一体的三维电磁探测软件系统。该系统不仅可方便快捷地浏览数据与输出测深曲线、剖面曲线、平剖图、三维切片等图形图像,而且实现了在windows操作系统和linux操作系统间的跨平台运行。

    接受野外勘查实践检验,与国外同类商品化产品探测能力相当

    仪器生产出来后,是否真正具备三维探测的能力,各项技术指标能否达到预期要求,都需要接受野外勘查实践的检验。为此,物化探所联合西安地质调查中心、南京地质调查中心、安徽省勘查技术院等单位开展了大深度三维电磁探测系统的试验应用研究。

    试验测试包括对软硬件的性能测试和与国外主流的先进仪器进行对比。据负责这项工作的物化探所教授级高级工程师杨亚斌介绍,对仪器性能指标的测试,不仅针对多种电磁探测技术方法和软件系统,而且还涉及仪器装备的按钮、电池、重量、结构、数据显示等诸多小指标。为了测试仪器的适应温度,测试工作组分别在新疆哈密零下20多摄氏度和新疆克拉玛依地面温度高于50摄氏度的条件下对仪器进行了测试。此外,工作组还选择甘肃极干旱地区、内蒙古东部草原和南方阴雨潮湿地区进行了探测环境测试;在甘肃柳园特别颠簸的地段开展了震动测试;从河北到内蒙古、甘肃、新疆进行了上万公里的运输测试,最终提出了上百条改进意见。

    通过野外场地功能试验,并与国外商品化仪器的对比试验,三维电磁探测工作方法得以进一步完善,仪器与软件性能得以进一步提升。利用完善后的探测仪器,项目组分别开展了矿产勘查、三维立体地质填图及深部结构探测3个层次的应用示范。在甘肃柳园、安徽庐江、江苏宁芜、新疆哈密的4个矿区进行的矿产勘查示范,取得了良好的勘查效果,其中在甘肃柳园圈定了3处找矿靶区,在安徽庐江黄屯硫铁矿区发现240米厚的铜金矿体。在新疆克拉玛依和甘肃柳园开展的三维立体地质填图示范,结果显示,方法技术系统对深大断裂和重要的隐伏岩体均有较准确的反应。在内蒙古扎鲁特盆地开展的深部探测试验,利用取得的电性参数,结合已有的钻孔资料,详细刻画了油气目的层及盆地基底的形态。试验结果同时显示,激电探测和瞬变电磁探测深度都达到近800米,可控源电磁法探测深度超过1500米,在雄安新区的探测深度达到了3000米。

    一系列的试验示范应用结果表明,自主开发的大深度三维电磁探测技术方法、仪器软件完全可以胜任野外勘查研究,而且与国外同类商品化产品相比,探测能力相当,并有部分指标优于国外同类商品化产品。有了这套探测系统,我国真正实现了电法勘探由二维测量向三维测量的跨越,同时推动了我国大深度电磁探测装备的自主化。与国外同类设备相比,国产化设备价格仅是国外的50%~60%,而且销售方还可以在方法培训和设备维护、软件升级等方面提供便捷服务。

    科技发展永无止境。目前,我国的三维电磁探测技术研究与国外相比仍处于跟跑或并跑阶段,在三维电磁探测仪器轻便化、网络化,电磁干扰识别和数据处理智能化,三维电磁多参数联合精细反演等多个方面都亟待进一步探索和研究。同时,急需对工程化样机进行产品化开发,并实现产品化仪器的推广应用。

    可喜的是,物化探所目前已得到国家重点研发计划项目课题的资助,在解决大功率精细电流采样等关键技术基础上,将着手开展产品标定、试验、批量生产线等产业化条件建设,加快批量生产和推广应用,从而为深地探测提供先进、实用的国产化地面电磁探测利器。

    透视地球深部的国产利器

    说起氦气,人们对它的认识大多来源于中学的化学课。殊不知,氦,作为熔点和沸点最低的已知元素,在军工、航天、核工业、深海潜水及民用高科技等领域具有广泛用途,是关系国家安全和高新技术产业发展的一种重要战略性稀有气体资源。

    据统计,全球的氦气资源长期供不应求,年需求量约为2亿立方米,但年产量仅有1.7亿立方米。我国目前氦气年需求量约为2200万立方米,但勘查开发程度极低,资源情况不明,仅四川自贡威远气田进行了小规模提氦利用。我国氦气供应长期依赖进口,资源安全形势十分严峻。

    可喜的是,自然资源部中国地质调查局在渭河盆地组织开展的氦气资源调查工作发现,渭河盆地不仅有水溶氦,还存在便于利用的游离态富氦天然气藏,有望构建我国氦气资源基地。

    我国对氦气资源的研究程度低,资源家底不清

    氦气开始进入人们的视线,始于1868年。那一年,法国天文学家彼埃尔·让桑(Pierre Janssen)和英国天文学家约瑟夫·洛基尔(Joseph Lockyer)几乎同时分别独立发现太阳光谱里有一条陌生的明亮黄线,其后,洛基尔将其命名为氦。

    氦是一种无色、无味、不燃烧也不助燃的稀有惰性气体。由于其特殊的物理、化学性质,尤其是其化学惰性和沸点极低的特征,使得氦气成为低温学领域的无价之宝。比如:氦的低溶解度、低沸点以及化学惰性,使其清洗和密封火箭和宇宙飞船的液体氢燃料系统十分有效。在电子工业中,氦气在半导体、液晶面板和光纤线制造中起着重要作用,可实现零部件的快速冷却,也可在电焊、硅晶片生产中用作保护气。在现代分析测试检测仪器中,氦气在气—液和气—固色谱分析中是最常用的载体气。在超低温冷却方面,氦广泛应用于核反应堆的冷却介质和清洗剂,在超导冷却方面,应用于核磁共振设备、超导量子干涉器、粒子加速器、磁悬浮列车、电能的存储等,其中最大的消费群体是医院的核磁共振设备。

    地球上的氦气含量极为稀少,最主要的来源不是空气而是天然气。富氦烃类天然气中最高可含7.5%的氦,是空气中的1.5万倍。可是,这种含高氦的天然气矿藏并不多,这是因为天然气中的氦气是铀之类的放射元素衰变的产物。一般而言,只有在天然气矿附近有铀富集时,氦气才能在天然气中汇集。

    根据美国地质调查局的数据,目前全球的氦气资源量估计达519×108立方米,储量仅74.25×108立方米。美国是世界上氦资源最丰富的国家,虽然已大规模开采60多年,但氦气资源量仍占世界总资源量的40%以上。根据美国地质调查局2016年的调查报告,美国、卡塔尔、阿尔及利亚和俄罗斯共计拥有世界88%的氦资源,中国的资源量仅为11×108立方米。中国西部大型叠合盆地及东部郯庐断裂带已发现广泛的含氦天然气显示,但研究程度低,资源家底不清。到目前为止,只有四川省自贡的威远气田曾提到氦利用,其中的氦含量为0.2%左右,而且现在已经基本枯竭。

    提出氦气弱源成藏理念,论证了渭河盆地富氦天然气成藏条件

    近年来,中国地质调查局组织开展了《渭河盆地氦气资源远景调查》项目,由中国地质调查局西安地调中心牵头,渭河能源公司(陕西金奥能源公司)、陕西省地质调查院、陕西地矿总公司第二综合物探大队、西北大学、长安大学、西安石油大学、中石油东方地球物理公司等单位参加完成。项目组在广泛调研国内外氦气资源研究进展的基础上,系统研究了渭河盆地基础地质、氦气成藏机理、成藏条件及资源前景,取得了一系列新进展、新成果。

    渭河盆地位于秦岭造山带与鄂尔多斯盆地之间。在渭河地区广泛分布燕山期富铀花岗岩,其分布面积达近万平方千米。在现今渭河盆地基底的深部10千米~20千米,沿深大断裂带分布有10个隐伏(花岗岩)岩体。这些富铀花岗岩是盆地壳源氦气的主要源岩,通过铀、钍衰变源源不断地向盆地输送壳源氦气。

    地壳中铀、钍元素的丰度低、半衰期长,因此壳源氦生气强度极低,为典型的弱源气。按照油气地质理论,壳源氦不存在集中的生气高峰,生气速率极低,难以发生突破“压力封存箱”的大规模集中排气。但现实是,确有富氦天然气藏存在,并被工业利用。而常规的油气理论难以解释氦气成藏机制。项目组通过在渭河盆地开展氦气调查工作,认为“有效氦源岩、高效运移通道(断裂、不整合)、载体气藏(适度,“载体气”又是“稀释气”)是氦气成藏的基本条件”;提出了“成岩温压与变质温压下氦行为差异与氦气成藏及古老克拉通基底蕴藏的巨量氦因克拉通破坏的构造作用而释放、运移到浅层聚集成藏”的理念”;初步建立了氦气成藏模式。

    项目组认为,壳源氦气相对于常规油气为典型的弱源气,但由于地质体的巨大和地质时间的漫长,壳源氦气生成总量是巨大的。氦气常以甲烷或二氧化碳气藏中的伴生气产出,因其稀有性,工业品位0.1%即可成为矿藏,且成藏与地下水关系密切。综合分析认为,氦气在深部氦源岩处能溶解于水而运出,运移至浅部遇到天然气藏时脱溶成藏,并在气藏附近水体形成溶解氦低浓度漏斗,使水溶氦不断向气藏附近迁移而进入气藏,大大提高了氦气的运聚系数。而气藏在盖层处又因低分压难溶于水、不易扩散,而有利于保存。这一分析,从理论上认识了氦气弱源成藏机理,明确了氦气在氦源岩处“运得出”、遇到气藏“脱得出”,在气藏中“保得住”的高运聚系数富集机制,解答了氦气为何能克服溶解与消耗、提高运聚系数形成富氦天然气藏的疑惑,为氦气资源勘查提供了理论依据。

    渭河盆地是否具有天然气前景一直是众多学者关注的问题之一,核心是是否存在烃源岩。前人认为,盆地深部不存在晚古生代煤系地层。但项目组根据区域地质背景、地热井气样分析及地球物质测量成果,特别是地震测量成果,论证了渭河盆地前新生代基底局部残留晚古生代煤系地层,为渭河盆地天然气勘探带来了希望。由于氦气不能单独成藏,只有在甲烷等载体气藏中聚集、积累,才能形成富氦天然气藏,从而为氦载体气成藏提供物质基础。

    渭河盆地不仅存在水溶气资源,也存在富氦天然气藏

    自然界气体赋存状态有游离态、溶解态、吸附态及水合态,不同赋存状态氦气资源的工业利用前景和经济性具有天壤之别。项目组对已有资料进行分析研究发现,渭河盆地不仅存在水溶气资源,也存在游离态氦及伴生气资源,即富氦天然气藏。

    资料显示,渭河盆地地下水资源丰富,有渭北岩溶溶隙裂隙水、秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水。其中,渭北岩溶溶隙裂隙水中未见氦气显示,秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水均有氦气显示。除渭北岩溶溶隙裂隙水外,盆地4000米以浅地热水总静储量达14781.2×108立方米。剔除固市断凹(渭南生物气区)张家坡组的储量数据后的总静储量达14200.57×108立方米。根据气水比1∶10和氦气含量1.5%计算,盆地内4000米以浅的水溶氦气资源量达21.3×108立方米。若按供热季单井日产水1000立方米,年生产100天计,250口地热井每年就可提供2.5×104立方米伴生氦气资源综合利用,就量而言已经达到半个威远气田。但水溶气的性质决定了其处于量大却难用的处境。

    众所周知,目前还没有发现独立的氦气藏,而工业利用的氦,是与载体气(烃类或二氧化碳、氮气)一起以游离态赋存于地层圈闭中,形成富氦天然气。那么,渭河盆地是否存在富氦天然气藏或游离态氦,成为目前氦气资源前景评价的关键。可喜的是,现有调查资料初步表明,渭河盆地氦源岩和高效运移通道(断裂)发育,具有载体气成藏形成条件,特别是伴生于甲烷气中的富氦天然气,是目前勘探工作的重点。

    通过近年的研究,项目组探索提出了“地质指方向,地震、重力、电法探结构、识断裂(高效运移通道)、找圈闭,磁法识别磁性岩体(氦源岩),化探异常圈定目标区,气测录井标定富集层段”的氦气调查技术方法。应用这一调查方法,通过物探、化探工作,项目组基本查明了富氦气区地层层序和构造格架,重点刻画了隐伏花岗岩体(氦源岩)、断裂发育特征。渭河盆地(鄂尔多斯周缘盆地)与目前广受关注的坦桑尼亚富氦区具有相似的地质背景,均为古老克拉通上的新生代裂谷盆地。渭河盆地不仅有长期稳定的古老基底可作为氦源,同时具有大量富铀花岗岩作为氦源岩,较坦桑尼亚富氦区具有更好的氦源条件。同时,花岗岩即是重要的氦源岩,也可以成为储集岩。

    根据调查成果,项目组初步圈定了华州—潼关、户县—蓝田和武功—咸阳等3处远景区。

    我国具有氦气资源前景,亟需加大工作力度

    研究认为,我国(特别是西北地区含油气盆地)氦气资源成藏基本条件良好,分布广泛,层位众多,具有资源潜力,但研究程度低(作为资源研究更少),家底不清。渭河、塔里木、柴达木、银额等盆地局部地区具有资源前景。在柴达木盆地北缘检测出壳源氦气含量为0.21%~0.72%;发现马北、东坪(花岗岩基岩气藏)等气田氦气资源前景良好。认识到塔里木盆地巴麦隆起及周缘具有良好氦气前景。

    尽管渭河盆地地热井发现了氦气资源赋存的良好信息,但项目组指出,由于缺乏专门的氦气评价钻探工作,目前还无法评价其工业价值,无法对深部可能含气层进行验证和产能测试,急需在远景区开展网度地震勘探,寻找有利圈闭,为钻探提供目标;通过钻探工作发现或验证目标层段的含气性;开展地热井氦资源专项调查,探索现有地热井条件下伴生气资源的有效利用;针对氦气资源的勘查技术手段基本空白,探索有针对性的地球物理探测方法、有效的测井解释模型、钻探和气藏测试工艺等。此外,由于氦气多以伴生资源形式产出,氦气的提取、提浓、提纯工艺需要继续探索完善,急需形成多种资源综合开发利用技术,以提高多种低丰度伴生矿产的经济价值。

    同时,加强国家公益性队伍对氦气资源调查工作的组织引领,联合油气企业开展主要天然气田氦气资源调查评价,是全国氦气资源调查尽快取得突破的快捷有效途径;建议修订石油天然气储量规范,在氦气成藏远景区开展的油气勘探中进行氦气兼探工作,具有综合利用价值时,氦气需与天然气同时提交储量。

    氦的应用

    ①核潜艇气冷核反应堆与深潜呼吸气

    ②火箭及航天飞机燃料加压剂

    ③核电站气冷核反应堆

    ④航空合金弧焊保护气

    ⑤半导体硅晶片制造保护气

    ⑥光纤制造保护气

    ⑦核磁共振成像仪超导冷却剂

    ⑧潜水呼吸混合气

    点亮新希望

    据中国地质调查局消息,全国危机矿山接替资源勘查理论创新与找矿重大突破荣获国家科技进步奖二等奖。

    资源枯竭是矿山无法逃避的宿命,矿山的发展由盛而衰也是无法越过的坎。对于这样的窘境,人们干脆赋予了一个新的名词——危机矿山。

    危机矿山指由于矿区范围内可供开采的矿产资源短缺,或者可采储量逐年萎缩,而难以继续经济地开发利用其保有的矿产资源,由此导致矿山产量持续下滑,矿山保有服务年限低于警戒线,在目前或者今后一段时期内难以维持正常生产经营而面临闭坑或破产危机的矿山企业。

    叶天竺先生(右一)在指导危机矿山找矿工作

    21世纪初,据对全国1010座大中型矿山调查,其中632座面临资源枯竭,形成资源危机矿山,涉及240多万矿工和1000余万家属的工作和生活,直接影响到国民经济的可持续发展和社会稳定。

    党中央、国务院十分关心矿业的可持续发展。2004年,国务院第63次常务会议通过《全国危机矿山接替资源找矿规划纲要(2004~2010)》,设立国家专项,由国家发展和改革委员会、财政部、国土资源部组织实施。

    作为业务和技术指导单位,中国地质调查局临“危”受命,责无旁贷地承担起了这个艰巨的任务。但是,要真正解决危机矿山面临的问题,并不是想象的那么容易。根据以往的经验,危机矿山找矿难度极大,工作程度高,探矿深度大,电磁干扰因素复杂,缺乏系统的理论指导和有效的方法手段,矿山虽经多轮勘查,仍未摆脱危机,陷入了束手无策的困境。

    为实现国家目标,作为项目牵头实施单位,中国地质调查局发展研究中心采用统一规划、统一部署、统一管理的组织形式,历经8年,由全国28个省(区)、168个地勘单位、31个科研团队、230个矿山企业及100多名资深专家参加。投入资金35.9亿元,完成钻探248.8万米、坑探38.1万米,在47个重要矿集区优选230座矿山开展深部找矿工作,涉及铁、铜、铅锌、金、铀等20个矿种,通过“理论指导、技术突破、机制创新”的途径,取得了一系列科技创新成果。

    首次在资源枯竭矿山开展全国性深部找矿行动,实现了找矿重大突破

    根据“理论指导、技术先行、探边摸底、拓展外围”的原则,充分认识危机矿山探矿工作的艰巨性,一大批监审专家,矿山企业、地勘单位、科研院所技术研究人员,各级国土资源和财政部门管理人员,全国危机矿山找矿专项专家委员会主任及成员,是他们的共同努力,才实现了危机矿山找矿的重大胜利,给共和国提交了解决危矿问题的答卷。

    ——广西铜坑锡矿、山东三山岛金矿、辽宁白云金矿、甘肃格尔珂金矿、江西银山铜矿、山西支家地铅锌矿等45座矿山新增资源储量达大型-超大型规模,湖北鸡冠咀铜矿、安徽铜山铜矿等80座矿山新增资源储量达中型规模,94座矿山新增资源储量达小型规模。其中,辽宁阜新八道壕煤矿新增煤炭资源储量有力地支撑了矿业城市的经济发展。河北迁安铁矿新增资源储量2.4亿吨。辽宁红透山铜矿新增铜锌资源储量24万吨。湖南宝山铅锌矿等矿山深部发现大型矿床后,使矿山再一次焕发生机。

    ——新增备案资源储量:铜338万吨、钨42万吨、锡35万吨、金636吨、银9229吨、铅锌816万吨、原煤54.5亿吨、铁矿石9.95亿吨、锑34万吨、磷矿石26348万吨、石墨386万吨、锂2664吨、铍7004吨。

    创建了勘查区找矿预测理论,为深部找矿提供了理论指导

    应用空间预测的基本原理作为构建勘查区找矿预测理论的基本思路,创建了以成矿地质体、成矿构造和成矿结构面、成矿作用特征标志研究为核心内容的勘查区找矿预测理论体系。

    ——成矿地质体是指与矿床形成在时间、空间和成因上有密切联系的地质体,是形成矿床主要矿产主成矿阶段空间定位的成矿地质作用的实物载体,是为成矿物质集聚提供能量的地质体。通过成矿作用时间、空间、物质、能量一体化研究,确定成矿地质体及其空间范围,研究其特征及其与矿体(床)的关系,确定找矿方向。总结了沉积、火山、岩浆侵入、区域变质、大型变形5种地质作用12种类型成矿地质体总体特征及其与矿床(体)的关系,解决了矿床与成矿地质作用的实体联系,为找矿预测奠定了基础。

    ——成矿结构面是指赋存矿体的显性或隐性存在的岩石物理化学性质不连续面,即赋存矿体的各种界面。成矿物质受压力、重力、热力、热液流体、构造5种动力驱动,又以分选、分异、充填、交代、混合、沸腾、塑性流变等方式沉淀,形成了复杂的赋矿空间,据此划分了原生和次生成矿结构面成因类型,解决了矿体赋存空间与成矿作用的关系。建立了沉积、火山、岩浆侵入、褶皱、断裂5种成矿构造系统,构建了常见矿床类型的结构面空间组合与格架,为预测深部矿体空间分布提供了工具。如岩体与围岩接触面、“硅钙面”等界面为接触交代型矿床的重要成矿结构面。

    ——成矿作用特征标志是指应用成矿作用地球化学理论,结合大量矿床研究实际资料,总结的主要成矿元素分配分布、迁移、沉淀过程形成的矿体、矿石、矿物、元素及流体等特征的标志。应用成矿地球化学障理论结合大量地质事实,概括了主要矿床类型成矿作用物理化学条件转换的特征标志,如黄玉和电气石是高(中)温热液型钨锡矿床成矿作用特征标志,为判别成矿作用中心及找矿前景提供了确定性依据。

    ——以成矿地质体和成矿结构面为空间格架,以成矿作用特征标志研究为载体,构建了由脉、层、块、体矿化样式组成的上下、左右多元空间结构模型。

    与国内外现有的成矿预测理论相比较,实现了矿床学、矿床地球化学等基础理论研究和矿产勘查的有机结合。成矿地质体作为成矿作用和基础地质研究的桥梁和纽带,解决了矿床与地质作用的实体关系,锁定了与成矿有关的目标体。成矿构造和成矿结构面研究建立了矿体赋存空间与成矿作用的关系,创建了全新的成矿结构面成因理论,解决了预测矿体空间定位问题。成矿作用特征标志研究把成矿作用的产物与成矿物质迁移、沉淀的物理化学变换因素结合起来,解决了确定成矿作用中心和筛选找矿标志的难题。将找矿预测由经验找矿、方法找矿,提升为理论找矿,并解决了实现途径。

    首次研究创建了符合我国成矿地质特征的找矿预测地质模型,为深部找矿提供了类比标准

    通过129个典型矿床解剖研究,500多个矿床调查研究,收集了1300多个典型矿床资料,获得了50000多组原始数据,依据我国独特的成矿地质背景,创建了涵盖我国主要矿床类型的25种找矿预测地质模型。

    ——厘定了以卤水盆地及其边缘深大断裂控制的非岩浆后生热液型铅锌矿床的概念,构建了碳酸盐岩容矿和砂岩容矿两种找矿预测地质模型。

    ——建立了以脉、层、体矿化样式为特色的次火山热液型金银矿、次火山热液型铅锌银矿、玢岩型铁矿3类找矿预测地质模型。

    ——以西藏罗布莎铬铁矿为典型,建立了板块踫撞蛇绿混杂岩带超镁铁质岩岩相构造带控矿的找矿预测地质模型。

    ——应用沸腾沉淀理论,建立了侵入体外接触带“五层楼”水压致裂结构面和内接触带云英岩型二元结构的钨锡矿找矿预测地质模型。

    ——全面总结了我国冈底斯、赣东北、西准噶尔、多宝山4种地质构造背景下的斑岩铜矿找矿预测地质模型。

    ——总结了新疆古生代、中东部中生代、西藏新生代3类斑岩型钼矿三维多元结构地质模型。

    ——建立了华南地区受白垩系红层盆地边缘深大断裂控制的花岗岩容矿的铀矿找矿预测地质模型。

    ——首次提出了“硅钙面”成因机制,建立了2种成矿结构面类型的接触交代型矿床找矿预测地质模型。

    ——总结了我国2种地球化学类型的金成矿特征,建立了次火山热液型、岩浆期后热液型、剪切带型3类金矿找矿预测地质模型。

    ——应用向型构造轴部塑性流变及重力作用的成矿机制,建立了沉积变质型铁矿找矿预测地质模型。

    研发了适合矿区复杂条件下的关键技术,为深部找矿提供了技术支撑

    ——建立了针对大深度的地球物理探测新技术体系。电磁法技术组合解决了1000米深度的矿体探测,并取得良好应用效果。首次研制了3D井-地磁测联合反演技术(SWMI3D)和地-井方位激电(IP)联合反演技术,有效探测深度达到2000米。采用重磁三维反演技术,在河北迁安铁矿1100米深处发现100多米厚的矿体。

    ——针对矿山复杂电磁干扰,研发了系列抗干扰技术。引入并完善了大比例尺直升机航磁技术,开发了50Hz陷波器等;采用参考站数据相关分析、指数谱函数拟合方法和滤波等技术开发了数据处理软件;采用加大功率、增加叠加次数、逐点采集噪声、错时或停电测量等组合方法降低干扰影响。

    ——大深度钻探技术应用水平明显提高。大深度钻探技术在深部找矿中得到广泛应用,共完成千米以上钻孔295个。

    ——针对矿山找矿工作程度高、深度大、电磁干扰强的特点,建立了一套包括理论指导,模型类比,物探、化探、钻探技术支撑的深部找矿技术方法组合,有效地解决了深部找矿的技术难点。

    专家表示,该专项创新深部找矿预测理论,研发、示范多项深部找矿关键技术,极大推动了找矿预测理论和勘查技术进步,实现了找矿历史性突破,大幅提高了骨干矿山后备资源,极大地缓解了我国资源短缺的局面,有力促进了地方经济发展和社会和谐稳定,政治、经济、社会、科学意义重大。

    在国土资源部组织的危机矿山接替资源勘查科技成果和《勘查区找矿预测理论与方法》科技成果鉴定中,专家们一致表示,成果总体达到国际领先水平。

    中国集中力量在短短7年内完成了230座矿山深部和外围接替资源勘查,取得了一批重要成果。这一重大勘查行动,无论在世界还是在中国矿产勘查史上都是极其罕见的。借此,让我们永远铭记为我国危机矿山接替资源找矿工作做出重大贡献的监审专家、矿山企业、地勘单位、科研院所技术研究人员,各级国土资源和财政部门管理人员,全国危机矿山找矿专项专家委员会主任及成员!此次奖项的获得也是对为了国家危矿事业,奋战在野外一线的地质矿产勘查及科研人员的国家级致敬,是对他们工作及成果的国家级肯定。

     

    临“危”受命,200多座矿山起死回生