分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到32条相关结果,系统用时0.017秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    大海上的“蓝鲸1号”平台

    2017年5月18日,我国海域天然气水合物试采宣布成功,这标志我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新。本次试采中,“蓝鲸1号”深水钻井平台功不可没。

    “蓝鲸1号”是什么?

    “蓝鲸1号”钻井平台诞生于山东烟台,是由中集来福士海洋工程有限公司(以下简称“中集来福士”)自主设计建造的超深水半潜式钻井平台,是目前世界上最先进的钻井平台。

    此次南海天然气水合物试采作业,是“蓝鲸1号”平台承担的首次钻采作业任务。试采工区在水深1200~1300米处,设计井深300~400米。对于这种程度的钻采作业而言, “蓝鲸1号”完全可以胜任。

    那么,“蓝鲸1号”的优势在哪里?

    一是体型大。“蓝鲸1号”平台排水量可达7万吨,与“辽宁”号航母满载排水量相当;长117米,宽92.7米,面积相当于一个标准足球场大小;高度达118米,相当于40层楼的高度。

    二是性能强。“蓝鲸1号”平台最大作业水深可达3658米,最大钻井深度更是达到15240米,其中大钩钩载1250短吨,可变载荷1万吨。这是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海钻探作业。

    三是效率高。“蓝鲸1号”装配了全球最先进的液压双钻塔和2个井口,两台钻机可在2个井口同时实现钻井、连接套管、下放防喷器等主副线作业,有效减少了钻井辅助时间,使深水钻井作业效率比传统的单井口作业平台提高30%。同时配备了全球领先的闭环动力系统,可比同类作业平台燃油消耗降低10%。

    四是安全系数高。“蓝鲸1号”配备了主副两套15000psi压力级别的水下防喷器,每套防喷器配备三组剪切闸板,而剪切闸板是井喷控制的最后一道屏障。如此配置,大大提升了常规井下压力控制设备的能力,保证了试采作业安全。同时,该平台配备了世界上最先进的DP3动力定位系统,最精确的定位测量误差达到0.1米,通过8台全回转式6034马力的推进器实时定位,保证了作业期间平台在台风“苗柏”11级风力里保持“纹丝不动”。

    与天然气水合物试采之约

    中国地质调查局和中石油集团到国内运营深水钻井平台的企业进行了多次调研,最终“蓝鲸1号”凭借优越的装备性能、完全自主设计建造而入选为天然气水合物试采施工作业平台。

    2016年8月,“蓝鲸1号”平台技术服务合同签订。此时,距天然气水合物试采预定开工时间不到7个月,而平台的建造进度刚刚达到90%左右。中集来福士将平台建造与水合物试采适应性改造同时进行,大大缩短了建造和改造工期,增加了平台调试时间,为平台的如期交付奠定了基础。

    天然气水合物试采施工作业面临着新平台、新设备、新队伍和平台作业准备时间紧的几大挑战。试采指挥部高度重视,多次派技术人员驻厂调研、跟踪平台作业准备进度,参与工程总承包中国石油集团海洋工程有限公司与中集来福士“蓝鲸1号”平台项目推进会。试采指挥部在平台调试、海试测试、人员培训、第三方设备安装等关键阶段出谋划策,协调解决遇到的问题,共同推动平台于2017年2月13日如期交付。

    台风中保障产气平稳

    试采工程光荣而艰巨,工期极为紧张,挑战巨大。

    3月6日,“蓝鲸1号”平台从烟台启航,自航奔赴南海工区。平台航行总行程约2263公里,共航行7.1天,平均航速达8.27节,动力功率仅占平台功率的70%左右,可见其动力能力强大,远超越同类的平台。

    对南海海域来说,海上钻采作业最大挑战就是遇到台风。6月12日,“蓝鲸1号”平台正面迎来第一次台风——“苗柏”。试采现场指挥部与“蓝鲸1号”操船团队根据南海前期台风的特点,以及对当前平台动力系统和定位系统的能力评价,最终作出保持生产测试、原地抗击台风的决定,同时制定了详细的、可操作性强的应急解脱躲避台风的应急预案。

    当日凌晨4点,“苗柏”转向风力突然由预测的9级加剧至11级,海况异常恶劣。但平台凭借强大的动力定位系统和经验丰富的操船队伍,保持在安全区域与暴风对抗,实测最大漂移距离不超过6.5米。在试采各参战单位的坚守下,南海天然气水合物试采的火焰在狂风暴雨中依旧燃烧。

    7月9日,我国首次南海天然气水合物试采安全生产满60天后主动关井。此次试采,获得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,并创造了产气时长和总量的世界纪录,全面完成了试采预期目标。这也充分证实, “蓝鲸1号”平台凭借自身强大的功能,为我国首次海域天然气水合物试采工程的成功实施提供了坚实保障。

    (作者系中国地质调查局水合物试采现场指挥部办公室工程组成员,《南海天然气水合物试采工程实施及关键技术》项目主要成员,主要从事钻井技术研究工作。)

    “蓝鲸1号”:助力可燃冰试采的超深水钻井平台

    我国首艘大洋钻探船“梦想”号今天(17日)正式入列,使我国成为全球第三个设计建造大洋钻探船的国家。据介绍,“梦想”号是目前全球钻探能力最强、科研实验功能最全、智能化水平最高、综合运维成本最低的超深水钻探科考船,是面向全球科学家开放共享的大型科学研究装置。

    作为保障国家能源资源安全的大国重器、支撑海洋强国建设的核心利器,建造大洋钻探船的构想从2008年就已经萌芽,2013年开始调研,2015年开始写立项建议书,2017年开始申请立项,2021年底启动连续建造,直至今天成功建成入列。十年磨一剑,我国自主设计建造的首艘大洋钻探船“梦想”号如何建成?

    “梦想”号设计效果图(中国地质调查局宣传教育中心供图)

    说起“梦想”号在设计建造过程中遇到的困难和瓶颈,自然资源部中国地质调查局“梦想”号指挥部主要负责人周昶至今依然历历在目。

    周昶:这艘船,要把它建好,我们需要举全国之力,甚至是全球之力。它是拿困难堆积出来的,是泪水和汗水堆积出来的。

    他说,这艘船的设计建造目标既承载着人类“打穿莫霍面、进入上地幔”的科学梦想,又承担着为国家勘探开发深海能源资源的重任,因此,它既是科考船、钻探船,又是地质调查船、油气开采船,是我国海洋科考船舶建造历史上的重要里程碑。中国船舶第七〇八研究所“梦想”号总设计师张海彬也深有体会,为配合大洋钻探的科学要求,“梦想”号进行了一系列创新设计。

    张海彬:成功解决了大洋科学钻探、天然气水合物勘查试采、海洋油气勘探以及深远海科学考察等多种功能同船融合设计的难题,完成了创新船型方案,新型连体双月池,DP3级蓄能闭环电网等多项国际首创设计,研发了具有完全自主知识产权的大洋钻探船,实现了综合性能的大幅提升和运营成本的有效控制。

    航行中的“梦想”号(中船黄埔文冲船舶有限公司供图)

    2015年底,张海彬进入“梦想”号设计建造团队。彼时,面对这样的设计建造目标,在国内乃至国际上都没有成熟的经验可供参考。张海彬说,这让“梦想”号的设计建造过程困难重重;其中,最大的难题就是,如何在确保大洋钻探、油气勘探、科研实验等各项功能集于一身,在恶劣海况仍能够安全平稳运行的前提下,又让“梦想”号具备优越的航行通过性和运营成本控制方面的国际竞争力。

    张海彬:如何以“小吨位”实现“多功能”?这是一个最大的挑战。“梦想”号在立项论证之初,中国地质调查局就提出了总吨的控制目标,吨位越大的话,船的体积就会越大,相应的,它的建造和运营成本都会上去。我们在整个研发过程中,应用了模块化的设计理念,采取了钻机主体固定、钻材堆场切换、营运设施共享的原则。这个船的吃水是9.2米,吃水的量级可以满足全球大部分航道的航行、码头的停泊。船的总高81.2米,比日本的“地球”号降低了将近40%,即使是在8米的轻载吃水下,都完全可以满足深中通道大桥的安全通行要求。

    “梦想”号(中国地质调查局宣传教育中心供图)

    除了遵循“小吨位、多功能、模块化”的设计建造理念,既然是大洋钻探船,“梦想”号还集成了全球最先进的钻采系统。广州海洋地质调查局研究员孙珍介绍,这套系统完全可以实现对以往国际上大洋钻探船各项关键技术指标的超越,让人类距离实现“打穿莫霍面、进入上地幔”的科学梦想更进一步。

    孙珍:我们研制了首台兼具油气勘探和岩心钻取功能的液压举升钻机,有4种作业模式和3种取心方式。首创了主动补偿和被动补偿于一体的液压举升技术,提升能力达到907吨。这是个什么概念?就是说如果我们要想打到莫霍面,就是海水4000米,然后再向下打6公里,再进入莫霍面一段距离,11000米的话,我们的钻杆就要有11000米,钻杆的自重大概有500吨,所以我们907吨的抓举能力完全可以支撑11000米钻进。隔水管作业可以用于油气的勘探开发,有助于海洋新能源的勘探开发。

    海洋新能源,都有哪些呢?孙珍进一步解释,天然气水合物、天然氢气、无机甲烷等等,都是“梦想”号未来的勘探目标。

    孙珍:全球的天然气水合物资源多,海底还有氢气资源,还有大量的无机甲烷资源,海底到处在冒着冷泉资源,已经远远超过了人类所原来认知的可能发现能源的领域。“梦想”号未来可以大展神威,大胆地去尝试开发这些新的资源,在我们原来不敢去和没有能力去的地方寻找油气资源。

    “梦想”号的双月池设计(中国地质调查局宣传教育中心供图)

    月池,是诸多大型科考船上的必备。它是船体内部贯穿各层甲板,与海水相通,直通船底的一个井道,钻探船上的钻杆可以由这个井道下放到海底,潜水员和水下机器人也可以从这里前往水下作业。张海彬介绍,科考船上往往都只有一个月池,但为了配合4种钻探作业模式,设计建造团队经过反复迭代优化,终于让双月池设计在“梦想”号上实现;同时,船上还搭载涵盖海洋科学、微生物、古地磁等在内的九大实验室,采用数字孪生等关键技术,可实现钻采作业全过程监测、科学实验智能协同。

    张海彬:特别是对于无隔水管泥浆闭式循环钻探来说,需要有一个泥浆返回通道,主井口需要超过12米,我们在国际上首创了连体双月池的设计方案,尽可能降低由于月池的存在造成船舶阻力的增加,反复做了多次迭代优化,完全可以满足我们航速指标的要求,还有4种作业模式的兼顾。设计了全球海洋领域全学科的船载实验室,打造了面积最大、功能最全、流程最优的海上移动实验室,可以引领全球海洋科学多学科交叉研究。

    “梦想”号设计建造团队(中国地质调查局宣传教育中心供图)

    如此之多的全球领先、全球首创集于一身,让“梦想”号无愧于国之重器的称号。张海彬感慨,随着“梦想”号的设计建造同步成长的,不仅仅是包含他在内的全体设计建造团队,这一设计建造过程,也带动了我国船舶制造业向高端船舶及海工装备方向发展。

    张海彬:2015年之前,我们国家设计建造这种深水钻探装备,基本是依赖国外设计公司。“梦想”号整个作业系统非常复杂,技术难度也非常大,对于国内自主研发设计力量的信任和培育是非常难能可贵的。我们船舶行业现在接单量在全世界已经遥遥领先,占70%;但高端海工装备这块在国际市场的占有率是不高的,特别是自主研发能力是落后的。船舶和海洋工程装备领域发展新质生产力,主要就是针对高端海工、船舶装备。通过“梦想”号大洋钻探船的自主研发,构建了超深水钻探装备的设计建造技术体系,是我们国家发展蓝色新质生产力的一个代表性成果。

     
    央视中国之声:我国首艘大洋钻探船“梦想”号入列 如...

    由我国自主设计建造的首艘大洋钻探船“梦想”号今天(17日)在广州正式入列,标志着我国深海探测关键技术装备取得重大突破。全球仅有3个国家建有大洋钻探船,我国就是其中之一。“梦想”号具备海域 11000 米的钻探能力,集成了全球最先进的钻采系统,搭载目前全球面积最大、功能最全、流程最优的船载实验室,将为我国深海资源开发应用提供重要装备保障,有力支撑我国谋划实施大洋钻探国际大科学计划。

    大洋钻探,是为研究地球内部结构特征、大洋底部矿产、探寻深海生命存活下限,而对大洋底部进行钻探的工程。可燃冰、氢气、稀土、多金属结核……近年来,深海资源,尤其是油气资源,已成为我国能源资源开发新的增长点;同时,全球科学家“打穿莫霍面、进入上地幔”的梦想至今仍在持续攻坚。在此背景下,“梦想”号的入列将为我国建设海洋强国、开发地球深部资源、实现人类大科学目标提供怎样的支撑保障?

    我国首艘大洋钻探船“梦想”号(中国地质调查局宣传教育中心供图)

    中国科学院院士 王成善:既高兴又兴奋,从船头走到船尾,从船顶走到船下。

    中国科学院院士 潘永信:血压都上来了,心率也快了,高兴得不行。

    中国工程院院士 李华军:性能各方面都做得非常棒,这是非常好的开始。

    中国科学院院士 郭正堂:梦想变现实了,我觉得真是了不起!

    中国科学院院士 郝芳:非常震撼,真正是一个国之重器!

    中国科学院院士 翦知湣:作为一个科学家,有了这艘国之重器后,希望要在地球科学重大理论上取得突破!

    登上“梦想”号的前甲板,看着这艘排水量42600吨,总长179.8米、型宽32.8米,具备全球海域无限航区作业和11000米钻探能力,并且是由我国自主设计建造的首艘大洋钻探船“梦想”号,多位两院院士难以抑制自己的激动之情。中国科学院院士翦知湣说,“梦想”号的入列,无疑给我国地球科学和海洋科技领域的科学家提供了一个强大“心脏”。

    翦知湣:地球表面71%是海洋,其中84%是水深超过2000米的深海。20世纪地球科学的两次最重大革命都是来自深海海底,一个是20世纪60年代地球动力的板块构造学说,一个是70年代气候演变的米兰科维奇理论,都是在深海海底得到验证的。20世纪,我国由于深海技术装备能力有限,对地球科学重大理论的突破没有贡献,在国际海底资源勘探开发、大洋权益争取等方面也长期受制于人。现在有了“梦想”号大洋钻探船以后,在这个领域我们肯定能够与欧美“并驾齐驱”,甚至在某些方面可以引领了。因此,也可以说是“划时代”或者“里程碑”成果。同时,也顿感我们这一代肩上的担子和责任更重大了。

    “梦想”号上的直升机停机坪(王泽华\摄)

    “梦想”号的什么特点,让国际大洋发现计划(IODP)368航次首席科学家,为我国海洋深钻、深网、深潜科学技术发展作出重要贡献的翦知湣有如此高的评价?IODP367航次首席科学家、广州海洋地质调查局研究员孙珍透露了其中的秘密。她说,“梦想”号在最大钻深、钻探方式、动力定位、自持力、排水量,包括年度运维费等多方面的综合性能都已经达到国际领先水平。

    孙珍:“梦想”号对标“决心”号和“地球”号这两艘国际上常用的大洋钻探船,核心指标方面已经达到了国际领先水平。比如说最大钻深,“决心”号是7500米,“地球”号是9500米,而我们的“梦想”号可以达到11000米;建设了全球面积最大、功能最全,包括基础地质、古地磁、微生物、天然气水合物实验室等九大船载实验室;2万多个监测点,能够实时地,对全船态势进行监测和感知。另外我们在钻探、取心、动力定位方式等各个方面,都达到了国际领先甚至国际首次。“梦想”号在16级超强台风下可以安全生存,让我们的作业海域和时间窗口都明显增长;它的钻采系统全球领先,让我们离“打穿莫霍面、进入上地幔”的梦想更进一步。

    航行中的“梦想”号(中船黄埔文冲船舶有限公司供图)

    “打穿莫霍面、进入上地幔”,这是什么意思?原来,地球的结构,由内到外包括地核、地幔和地壳,莫霍面,指的是地壳与地幔的分界面,但是人类活动和科学探索一直局限于地壳表层,因为越往下钻,钻井越深、岩石越硬、温度越高、压力越大,所以尽管有多次尝试,人类从来没有成功打穿过这个界面。然而,莫霍面之下的地幔,占地球体积的五分之四、质量的四分之三,是地球最大的“化学储库”,充满未解之谜。孙珍说,“梦想”号,给人类久攻不下的这一科学探索目标带来了希望。

    孙珍:深海钻探,被誉为深海科技领域的皇冠。当时我们发起国际大洋钻探的时候就是想打穿莫霍面,莫霍面在距离海底6公里左右的深度,看上去不遥远,但是实际上很遥远。深远海的海况经常是比较恶劣的,实施作业难度大,作业投入也非常高,需要很好的保障系统,因此人类“钻穿莫霍面”的梦想已经提出接近60年了,但是实际上只钻透了不到1/3的深度。要想实现它,光用老的思想、老的工艺是不足的,一定要有新型的科考船。

    “梦想”号(中国地质调查局宣传教育中心供图)

    于是,2017年,中国人自己的大洋钻探船“梦想”号立项筹建,2021年11月启动连续建造,此后,“梦想”号基本上以一年迈上一个大台阶的速度,陆续完成主船体贯通下水、动力系统首次试航、具备交付使用条件等关键节点,迎来了今天的顺利交付使用。孙珍表示,实际上,“梦想”号不仅仅是一艘大洋钻探船,还以自身为核心形成一整套深钻体系,在科学和能源资源等各领域发挥重要作用。

    孙珍:我们希望服务国家的重大战略,包括在南海的新区或者中生界海区进行油气勘探,推动天然气水合物试采和产业化,推动深海结核和稀土开发,以及天然氢气的勘探和评价。还希望能够带动装备产业发展,包括船舶的智能制造、海工装备的升级,以及材料科学和信息通信技术方面。深钻是一个非常尖端的科技,必然会面对高温、高压等极端环境,需要推动新材料的研发,让我们能够实现科学目标,在大洋钻探方面承担起大国重任。

    全时全域立体探测观测监测体系(王泽华\摄)

    科学无国界,全球海洋之大,当下没有任何一个国家可以完全独立完成大洋钻探的研究。那么,如何最大限度用好我国首艘大洋钻探船,使“梦想”号真正成为让梦想成真的大国重器?中国科学院院士王成善认为,要通过建立全球共商共建共享的合作机制,发起由中国牵头的新一轮国际大洋钻探大科学计划,凝聚全球科学家的力量,使“梦想”号成为改变人类地球科学进程的利器。

    王成善:建立一种把我们的技术和硬件优势转变成科学优势的全球共商机制,这艘船应该解决全球性的科学问题,能不能建立一个全球的对话联盟,有分歧不要紧,没有共商,就不会有共识,更不用谈到共享。以“梦想”号大洋钻探船能力为核心,建立支撑扬帆远航的、全球认可和积极参与的科学规划、实现全球地球科学家的规划,这样才能使我们的“梦想”号变成一艘真正的革命性工具。

    根据计划,“梦想”号将在未来两年内完成大洋钻探首钻。广州海洋地质调查局局长许振强表示,“梦想”号将瞄准莫霍面钻探等突破性理论变革、深海能源资源安全高效绿色开发利用、海洋防灾减灾等重大前沿科学问题,聚焦服务国家能源资源安全、科技自立自强和海洋强国建设的重大需求,加快关键技术准备,推动原创性、引领性重大成果产出。

    许振强:特别是围绕能源资源勘探与开发工作,包括新区和新层系的油气勘探工作,也包括新型能源资源,可燃冰、天然氢气、无机甲烷,海底战略性矿产资源的一些实验性技术攻关,都会进行探索和实施。11000米钻探是整个科学界一个宏伟的梦想,需要我们不断地探索和努力,一步一步来实现。希望通过“梦想”号这条船,能够推动全球对海洋、对地球的认知,共同合作打造人类命运共同体。

    央视中国之声:我国首艘大洋钻探船“梦想”号入列 它...

    时而平静,时而狂躁的海浪;时而温柔,时而如刀似剑的海风,还有海底神秘的暗流造成“颠簸”—这是海上工作与生活永恒的旋律。然而,即使在波涛汹涌、暗流涌动中,“梦想”号上的科学家却能够平稳的实施科学钻探。“梦想”号可以在6级海况下正常作业、16级台风下安全生存,仿佛在吟唱“不管风吹浪打,胜似闲庭信步”。

    什么是三级动力定位系统?

    “梦想”号能如此的“稳”,很大原因是该船配备了三级动力定位系统(DP-3)。动力定位系统因其不依赖抛锚或系缆、部署和撤离迅速、对水深不敏感等优点,被广泛应用在深海油气开发、潜水作业、海底管道和电缆敷设及科学考察等方面。它的工作原理是,计算机通过控制推进器的推力大小和方向,以对抗由风、浪、流等造成的外部作用力,从而使船体位置和船头朝向保持不变,保证船体稳稳地保持在同一个定位。在“梦想”号上,动力定位控制系统中的传感器、位置参考系统和控制器均采用冗余设计,动力和辅助系统分布在三个防火分隔区域。这样设计的优势是,任何单个舱室的动力系统一旦发生故障,其它舱室的依然能发挥作用,这就是三级动力定位系统。

    动力定位示意图

    动力定位系统是如何知道自己的位置?

    精确的位置测量是动力定位系统的基础。“梦想”号安装了6套位置参考系统,分别基于卫星和声呐等两类不同的工作原理。其中,3套差分全球卫星定位系统,1套北斗卫星定位系统,2套超短基线声呐定位系统,所有系统的位置测量精度都达到分米级别,并不受作业区域的影响,任何一套位置参考系统都能满足定位要求,大大地提升了动力定位系统的可靠性。如遭遇太阳风暴,卫星定位系统可能会受到影响而失效,这时2套声呐定位系统依然能够保证动力定位系统有可靠的位置参考。

    动力定位系统的大脑—动力定位控制器

    动力定位控制器是动力定位系统的大脑,它接收位置测量、风速风向、船舶姿态以及艏向等信号,通过精密计算,输出正确的控制信号以控制推进器的转速和转向,这样就能使船舶保持在设定的位置和艏向上。三级动力定位系统配置了三个控制器,其中一个作为主控制器,其输出信号控制推进器。当主控制器故障时,另外一个控制器将自动切换为主控制器,实现定位功能不受影响。因此三级动力定位系统可靠性非常高。

    动力定位系统用的电从哪里来?

    “梦想”号安装了七台推进器,采用全电力驱动,为动力定位系统提供动力。为了保障电力供给的稳定,“梦想”号采用了闭环电网技术,即将多个中压配电板首尾互联,形成一个环形的供电网络。与传统的分段电网相比,闭环电网可减少运行发电机的数量,提高发电机的效率,还能减少发电机运行时间,降低维护成本。此外,闭环电网还具有容量大、抗冲击能力强、可靠性高、使用灵活的特点。然而,闭环电网中可能会出现的短路、接地和发电机故障等将会影响其他配电板和发电机的正常运行。为了避免上述情况的发生,“梦想”号闭环电网采用了先进的计算机综合保护系统和高级发电机保护技术,实现了对电网及发电机故障点的精准判断和快速切除。

    目前,闭环电网技术在船舶的应用并不多,主要应用于深水钻井平台或者钻井船等发电机装机数量较多的工程船舶。据了解,国内只有“蓝鲸二号”和“海洋石油982”等钻井平台采用了闭环电网,并完成实船短路实验。而“梦想”号的闭环电网也已完成实船接地和短路实验并通过中国船级社和挪威船级社的验收,在我国钻探船中尚属首例。

    闭环电网示意图

    节能法宝——蓄能蓄电池系统

    三级动力定位船舶作业时平均日耗油能高达40多吨,产生高昂运营成本的同时也造成环境的污染。“梦想”号作为全球最先进的大洋钻探船,配备了蓄能蓄电池系统,这好比汽车的混合动力系统。它如同一台大型不间断电源,在发电机发生故障时快速投入,代替故障发电机实现对电网的支撑。这样不仅能确保运行负载不受影响,使电网稳定、可靠,还能减少动力定位时发电机的运行数量,增加在线发电机的功率,提高柴油机的效率,降低油耗。它还能够存储液压钻机下行时产生的再生电能,实现能量回收和利用。由此,还能减少钻机由势能转化为热能所需的冷却水量,从而降低冷却水泵的能耗,实现进一步节能。此外,蓄能蓄电池系统通过削峰填谷功能实现稳定电网,减少发电机启停次数,降低发电机机械磨损,延长大修时间,节约维护成本。“梦想”号的蓄能蓄电池闭环电网比传统的电网节约超15%的油耗。

    “维稳”高手——能量管理系统

    “梦想”号的能量管理系统由功率管理系统和电池管理系统组成,将它与动力定位系统密切配合,为科学钻探作业的稳定安全实施立下了汗马功劳。为了节能增效、维持电网稳定,能量管理系统使出了2大“高招”。高招1:利用动力定位系统预测推进器负荷,通过提前调节发电机的频率,实现对动态负载的补偿,以减少电网频率的变化。高招2:根据电网中发电机以及蓄能蓄电池系统所能够承担的最大负载变化率(千瓦/秒)来控制大型负载的功率变化速度,实现动态负载的惯性补偿,减小电网波动,进一步增强电网的稳定性,减少在网发电机的数量,提高发电机的运行效率,实现节能增效。

     
    “梦想”号:不管风吹浪打,胜似闲庭信步

    从神秘的深海地质结构到珍贵的能源资源,科学家如何从几千米深的海底中获得这些信息?“梦想”号,这艘全球最先进的大洋钻探船将带领科学家探索地球深部的秘密。“梦想”号肩负多种作业需求,因此设计时便提出“小吨位、多功能、模块化”的理念。为了在同一艘船上同时实现大洋科学钻探、深海油气勘探和“可燃冰”勘查试采等多种功能,“梦想”号建造团队联合国际顶级油气钻机企业研制了全球首台兼具油气勘探和岩心钻取功能的液压举升钻机,国际上首次集成了4种钻探模式和3种取心方式。

    4种钻探模式

    “梦想”号的4种钻探模式分别是传统隔水管模式、“可燃冰”专用测试模式、传统无隔水管模式、无隔水管闭式循环模式。

    传统隔水管模式:这种模式常用于海洋油气的开采。隔水管把海底和钻探船连接起来,可以通过钻井液的循环增加钻井的安全性和效率。简单来说,这种方式能确保钻井过程顺畅且有足够的保护措施,是海洋油气开采的“标配”。

    水合物专用测试模式:天然气水合物是一种新型能源,经实践证明其开采过程安全环保可控。如使用传统隔水管进行试采,不仅显得过于笨重,成本也高。为此,“梦想”号专门设计了一种轻型隔水管系统,能减轻设备负担,降低钻探成本。

    传统无隔水管模式:该模式下,钻杆直接暴露在海水中,并从海底往下钻探,适用于大洋钻探。在钻进海底的时候,需要加入特殊的泥浆(钻井液),起到冷却钻头、润滑钻具和带走钻出的岩屑等作用。虽然没有隔水管保护,但正是因为没有隔水管的负重,钻杆可以达到更大的深度(水深最高可达8000米),适合深海钻探任务。

    无隔水管闭式循环模式:传统无隔水管模式下加入的泥浆一般会直接排到海里,既污染环境又增加成本。“梦想”号钻采系统中配置了专门的泥浆循环管线,通过水下泵将泥浆抽回到船上,通过过滤等处理,这些泥浆就能实现循环利用。这种模式既实践应用了绿色勘查的理念,又可以有效做到保护海洋环境。

    三种取心方式

    “梦想”号的3种取心模式分别是提钻取心、绳索取心、气举反循环取心,可实现不同地层和岩体持续钻进取心。

    提钻取心:这是一种很直接的取心方法,把整根钻杆从钻孔中提出来,从而取出暂存在钻杆最底端的岩心。

    绳索取心:通过一根钢丝绳从钻杆内取出岩心,不需要将整个钻杆拉出钻孔。它就像是一种“取巧”的方式,不但省力,还节省时间。虽然绳索取心有很多限制条件,操作稍显繁琐,但依然是较为适合较深钻深的取心操作。

    气举反循环取心:在常规的钻探中,钻井液从钻杆内壁注入并从孔隙间返回海底,这叫正循环。而反循环则是,钻井液从孔隙进入并从钻杆返回。气举反循环是一种特殊的取心方式,通过往上部钻杆内注入空气,上部钻杆的液体混入空气后的密度变小,而下部液体密度不变,因为上部和下部液体存在的密度差,上部的液体会往上“举”,从而带动下部的钻井液和岩心被“吸”到地面。

    “梦想”号的4种作业模式3种取心方式,就像打开通往地心秘密大门的钥匙,将为我们探索地球深部奥秘问题,寻找深海深地资源提供强大助力。

    神奇钥匙:“梦想”号的钻探模式与取心技巧

    “年轻的时候什么工作都要做一点,现在年轻科技工作者学历很高,在某一个专业领域钻研得很深,但是也应该具有战略性的长远的思维,应该做到‘博观而约取,厚积而薄发’。”

    ——中国科学院院士、著名地质学家

    沈 其 韩

    1950年 

    一名年轻的地质工作者 

    怀抱炽热的爱国情怀 

    投身于 

    新中国找矿事业中 

    辽宁鞍山 

    湖北大冶 

    山西中条山 

    ... 

    他走南闯北、不知疲倦 

    沉浸在为国家寻获矿产的 

    巨大喜悦中 

     

    中国科学院院士、著名地质学家沈其韩

    回首当年

    他激情澎湃:

    “如果一辈子能够跑十几个地区

    帮助建立十个八个矿山

    也就很知足了。”

    1984年,沈其韩在实验室用显微镜观察岩石薄片

    1956年

    他响应“国家需要”

    迎来职业生涯的转变:

    从热火朝天的

    地质找矿一线

    转入

    当时相对冷僻的

    地质科学研究

    1985年,沈其韩(左4)在内蒙古野外进行地质观察

    “我上大学的时候,

    地球化学根本没有学过,

    年代学也不知道,

    都是在工作中边做边学起来的。”

    知不足而后学

    他在

    变质岩石学

    前寒武纪地质学

    等研究领域

    奋发图强

    1991年10 月,沈其韩(左1)在北京密云观察变基性岩脉的特征

    到了1980年

    努力终得回报

    他的研究成果屡次获得

    地质矿产部科技成果奖

    和国家自然科学奖

    得到国际地质学界的

    广泛关注和认可

    2006年7月,沈其韩在黑龙江五大连池火烧山北侧考察

    如今

    这位年逾九旬的老人

    仍在地质科学研究道路上

    不倦跋涉

    他对科学的热爱和求索之心

    仿若大地上最寻常的岩石

    历经风雨

    坚韧如初

    他是中国科学院院士、著名地质学家

    沈 其 韩

     

    破译地球的秘密

    ——记中国科学院院士、地质学家沈其韩

    2019年1月,在2018年度国家科学技术奖励大会上,自然资源部项目《中国最古老大陆的时代和演化》荣获国家自然科学二等奖,这项成果是研究团队三代科学家近30年研究的结晶,获奖团队中就有时年96岁高龄的沈其韩院士。

    在70多年的地质生涯中,沈其韩把所有的精力投入到早前寒武纪地质、变质岩石学和同位素年代学及铁铜矿产等研究中,在基础研究和应用研究方面作出了重要贡献。一年多之前,年逾九旬的沈其韩还坚持每天上午到办公室,翻阅报纸,了解国际国内重大事件,除了矿产新闻外,他格外关心的是土地污染治理和三农问题等。他还请助手把国内外有关寒武纪地质研究的论文打印出来,一篇篇仔细阅读,认真做摘要。正是这种精益求精的钻研精神,让他在90多岁时依然保持着出色的科研能力,再次摘下国家自然科学奖的桂冠,彰显着他为国家科技进步而努力奋斗的初心。

    满腔热情为国找矿

    1922年4月27日,沈其韩出生于江苏淮阴。1941年秋,在堂兄资助下,19岁的沈其韩经上海转浙西,偷渡日伪封锁线,终于在冬天抵达重庆。沿途祖国美丽的山河、破败的城镇、苦难的民众,给沈其韩留下了深刻印象。他渴望国家早一点强大起来。

    1942年夏,沈其韩考入重庆大学地质系。上课时,沈其韩对岩石学非常感兴趣,尤其敬佩教授矿物学的王炳章先生。经过4年学习,沈其韩成为重庆大学那一届地质系仅有的7名毕业生之一。

    1946年6月,沈其韩考入南京的中央地质调查所岩石学研究室,室主任是著名变质岩专家、中国科学院院士程裕淇。前辈地质学家身上那种严谨的工作态度、扎实的知识素养、开阔的学术视野、服务大局的工作意识、炽热的爱国情怀,深深地影响着沈其韩。

    新中国成立后,国家重点发展重工业以尽快实现社会主义工业化,钢铁成为最急需的资源。发展工业,找矿先行,地质工作者们迅速行动了起来。

    1952年,在湖北省黄石市铁山区成立了新中国第一支大型地质勘探队——大冶资源勘探队,后改称为429勘探队。沈其韩作为业务骨干参与组织铁山矿区和领导金山店矿区的后期详勘工作。他们白天到山野测量,夜晚在室内整理资料,很快完成了整个矿区精细的地形图。在两年多的时间里,沈其韩没有回过家,日夜都待在山上。1954年3月,勘探队向地质部提交了《湖北大冶铁矿地质勘探报告》,估计总储量高达亿吨以上。

    从1950年起,从辽宁鞍山铁矿、湖北大冶铁矿到山西中条山铜矿,沈其韩走南闯北,不知疲倦,沉浸在为国家找到矿产资源的巨大喜悦之中。回首当年,年过九旬的沈其韩依然非常激动:“当时地质勘查工作非常辛苦,几乎都是白天黑夜地干,一个地质队、一两千人、三十几台钻机,就想着赶紧找到矿提交报告。一两年时间矿山就建立起来了,让我很有成就感。我当时就想,如果一辈子能够跑十几个地区,帮助建立十个八个矿山,也就很知足了。”

    投身寒武纪地质研究

    不过,沈其韩为国家建立十个八个矿山的愿望很快就被迫放弃了,另一个重要的领域正等待着他。

    沈其韩在山西找矿劲头十足,这个时候,程裕淇院士向他发出召唤,让他回到地质研究所搞岩石学研究。向来服从工作安排的沈其韩内心有些不情愿:“我觉得找矿挺好的,我就留在山西算了。”

    让沈其韩改变主意的只有4个字“国家需要”,国家需要他去找矿,他无怨无悔地奔波在湖北、山西各地。现在,国家需要一些有实际工作经验的人来搞基础研究,为将来的找矿工作做指导,那么,他也会竭尽全力,绝不辜负国家的期许。

    变质岩石约占地壳总体积的27.4%,广泛地分布于早前寒武纪结晶基底及其以后的各种重要的地质构造单元中,绝大多数本来是见不到的,但是由于后来的构造运动,一些变质岩露出地表,带来深部地壳的各种信息。地质学家通过破解这些变质岩,研究地壳演化的历史。变质岩石学是岩石学的重要分支,但是相关研究一直进展缓慢,直到上个世纪初,变质岩研究才有所突破,而中国的变质岩研究当时还是一片空白。

    程裕淇院士敏锐地意识到变质岩研究的重要性——除了能够了解早期地壳的演化、通过原岩恢复推断原岩的形成环境和构造背景外,还有助于利用变质岩来找矿。就这样,1956年秋天,沈其韩跟随程裕淇院士开始了长达60年的早前寒武纪地质、同位素年代学和变质岩区工作方法研究。

    寒武纪是地质划分的一个年代,时间大约是距今5.4亿年至5.1亿年之间。在寒武纪开始后的数百万年时间里,包括现生动物几乎所有类群祖先在内的大量多细胞生物突然出现,这就是令古生物学家和地质学家百思不得其解的“寒武纪生命大爆发”。但凡所有的大爆发,之前一定有一段长期的力量积蓄储备期,地球上所有的矿产资源也正是形成于这个时期。剧烈的构造运动造成地壳抬升,将覆盖在变质岩之上的岩层剥蚀掉,使得变质岩得见天日。因此,沈其韩的研究便以早前寒武纪地层学为对象,试着从古老的变质岩中去推断地球演化的过程,解读地壳深处的信息。

    在地质学家的眼里,一块看起来很普通的石头,或许比等量的黄金还要珍贵。从热火朝天的地质找矿一线转入到相对冷僻的基础研究领域,沈其韩迅速沉下心来,一步一个脚印,踏踏实实地开始工作。

    博观约取获硕果

    “我上大学的时候,地球化学根本没有学过,年代学也不知道,都是后来在工作中边做边学起来的。”知不足而后学,沈其韩格外关注新技术新方法在实际工作中的运用。后来的实践也证明,没有同位素地质年代学,前寒武纪研究寸步难行。通过向国外专家学习,引进国际上最先进的测定同位素的仪器设备,使得中国的寒武纪地质研究在起步较晚的情况下奋起直追,不断收获累累科研硕果,逐渐缩小与国际寒武纪地质研究的差距。

    从1980年开始,沈其韩在地质科学研究上进入盛产期,他在早前寒武纪研究领域取得了一系列重大进展,研究成果屡次获得地质矿产部科技成果奖和国家自然科学奖。中国寒武纪地质研究的突飞猛进也引起了国际地质学界的广泛关注和认可,相关的研讨会和各种科学合作项目也有条不紊地推进起来。

    回忆一生的科研事业,沈其韩认为,年轻的时候什么工作都要做一点,现在年轻科技工作者学历很高,在某一个专业领域钻研得很深,但是也应该具有战略性的长远的思维,应该做到“博观而约取,厚积而薄发”。

    沈其韩说,他亲自经历了变质岩石学和前寒武纪地质学研究从落后到发展的过程,当前地质科学在飞跃发展,变质岩石学和前寒武纪地质学也应紧随时代的脉搏,不断前进。他勉励年轻地质工作者,紧紧抓住学科发展规律和国家需求,坚定信心,在学科的理论思维和实践应用等方面不断创新前行,为国家作出重要贡献。

    从某种意义上来说,地质学家是这颗星球上最智慧的人之一,他们能够从一块岩石标本乃至一粒矿物晶体中看到整个造山带的动力学过程,推测出地球过去46亿年漫长历史中发生的故事,寻找到蕴藏于地球深处的各种丰富的矿产……斗转星移,寒来暑往,沈其韩院士已经在地质科学路上跋涉了70多年,时光把他从一位热血青年雕塑成一位世纪老人,但他对地质科学的热爱和执着追求科学真谛的心却从未改变过,正像这大地上随处可见的一块块岩石,历经风雨,坚韧如初!

    院士沈其韩:破译地球的秘密

    12月18日,我国自主设计建造的首艘大洋钻探船正式命名为“梦想”号,在广州南沙下水试航。此举标志着我国深海探测能力建设和装备现代化建设迈出关键一步。

    自然资源部中国地质调查局聚焦自主设计建造国际领先大洋钻探船的目标,坚持自主创新与集成创新,与150余家参研参建单位密切协同,于2021年11月30日开工建造大洋钻探船,2022年12月18日实现船舶主船体贯通,2023年12月18日正式命名“梦想”号并试航,预计2024年全面建成。建成后,“梦想”号主要承担国家重大科技项目和国际大洋科学钻探任务。

    “梦想”号由中国船舶集团承担设计建造任务,总吨约33000,总长179.8米、型宽32.8米,续航力15000海里,自持力120天,稳性和结构强度按16级台风海况安全要求设计,具备全球海域无限航区作业能力和海域11000米的钻探能力。

    按照“小吨位、多功能、模块化”设计建造理念,“梦想”号突破十余项关键技术,完成多项国际首创设计,总体装备和综合作业能力处于国际领先水平。该船具有全球最先进的钻探系统,其中深水无隔水管泥浆循环系统(RMR)由我国自主研制,目前已实现400米级RMR研发从“0”到“1”的突破。建有全球面积最大、功能最全、流程最优的船载实验室,总面积超3000平方米,涵盖基础地质、古地磁、无机地化、有机地化、微生物、海洋科学、天然气水合物、地球物理、钻探技术九大实验室,配置世界一流的磁屏蔽室、超净实验间和全球首套船载岩心自动传输存储系统,可满足海洋领域全学科研究要求。建有全球规模最大、最先进的科考船综合信息化系统,由弹性网络、云数据服务、综合调度、作业监控、实验室管理等九大子系统组成,采用超融合、云服务、数据中台、数字孪生等关键技术,全船覆盖超20000个监控点,可实现钻采作业全过程监测、科学实验智能协同。

    此次试航的主要目标是验证动力系统功能。“梦想”号配置了最新一代30兆瓦闭环环网电站,全球首次同时将蓄能技术和闭环电网应用于DP-3级动力定位系统,船舶经济性和可靠性大幅提升,节约能耗超过15%。

    据了解,“梦想”号配套的钻探保障船、码头、岩心库等已全部投入使用。钻探保障船“海洋地质二号”作为国内首艘由海工船改造的科考船,具备伴随“梦想”号进行全球航行作业能力,还可独立开展海工作业和海洋科考,曾完成我国首套海洋漂浮式温差能装置海试等多项重要任务,海上工作近500天。南部码头、北部码头是我国首次建成的深水科考码头,可为“梦想”号运营提供强大岸基支持。世界一流大洋钻探岩心库设置常温、4℃、-20℃、-80℃和-196℃五级不同温度存储条件,可满足不同样品储存需求,可储存累计长度45万米的岩心样品,是全球储存能力最大的大洋钻探岩心库。

    大洋科学钻探被誉为海洋科技领域的“皇冠”,“梦想”号具有国际领先的大洋科学钻探能力,承载着全体中华儿女加快建设海洋强国的共同梦想,承载着全球科学家“打穿莫霍面、进入上地幔”发展地球系统科学的共同梦想,承载着全人类开发地球深部资源的共同梦想,建成后将成为保障国家能源安全的“国之重器”、支撑海洋强国建设的“核心利器”,为天然气水合物勘查开采产业化提供重要装备保障,有力支撑我国实施大洋钻探国际大科学计划,提升“深海进入、深海探测、深海开发”能力。 

    我国首艘大洋钻探船正式命名试航

    “全力服务”做贡献,鲜花掌声送模范。

    3月28日,在自然资源部中国地质调查局成都矿产综合利用研究所(下称成都综合所)召开的第六届三次职工代表大会上,贵州毕节-六盘水大型能源资源基地技术攻关团队毫无悬念地被评为“2018年度优秀创新团队”。

    “‘贵州毕节-六盘水地区能源资源基地综合地质调查’是成都综合所在新形势下向大型能源资源基地建设转型的第一个项目,也是我所‘全力服务于国家能源资源安全和自然资源中心工作,全力服务于地方社会经济发展’的生动实践。”成都综合所所长、党委书记胡泽松说,经过近两年的努力,项目组在乌蒙山扶贫开发区黔西北毕节威宁县哲觉镇一带新发现1处超大型、1处大型新类型沉积型稀土矿床。此次找矿取得的重大突破,不仅拓宽了我国稀土矿成矿规律研究领域和找矿空间,为我国打造又一个新的稀土勘查开发基地奠定了坚实基础,对推动乌蒙山地区扶贫攻坚,以及黔西北毕节-六盘水建成我国重要的战略资源支撑基地具有重要意义。同时,该项目也是对中国地质调查局能源资源基地资源潜力-技术经济-地质环境“三位一体”调查评价的一次新实践。

    一系列成果的取得绝非偶然。对于成都综合所及其项目团队而言,这是一次全新的尝试,也是一次艰巨的考验,更是一次利用传统优势技术支撑服务新型地质调查工作的严格检验……

    强强联合 共克时艰

    黔西北毕节-六盘水地区是我国重要的能源资源基地,覆盖国家重点扶贫的乌蒙山区毕节市和六盘水市。该地区“三稀”矿产资源丰富,特别是上二叠统宣威组底部,发现有大量富含稀土的粘土岩建造。2012年,《国务院关于进一步促进贵州经济社会又好又快发展的若干意见》明确提出,要以毕节、六盘水、兴义为节点城市,充分发挥能源矿产资源优势,建设我国南方重要的战略资源支撑基地。

    事实上,毕节威宁-赫章地区开展地质调查工作由来已久,但针对“三稀”矿产的调查研究并不多。解放前,丁文江、刘之远、黄懿、罗绳武等人对区内的地层及煤、汞等矿产资源层曾做过概略调研。而该地区系统的地质调查、矿产勘查则始于1960年。自上世纪80年代以来,前人对这一地区开展过众多地质矿产研究工作,但是主要针对铜、铅锌、锰矿等。自1997年开始,地质工作者陆续在黔西北地区发现二叠系宣威组底部存在一套富稀土粘土岩,但稀土的赋存状态、成矿模式、成因类型、可利用性等问题均未查明,加之成矿规律不清,找矿迟迟未取得突破。近年来,贵州省地矿局、贵州大学、中国科学院地球化学研究所、成都理工大学等单位瞄准“三稀”资源,对含稀土的磷块岩、铝土岩矿床、磷矿床伴生的“三稀”元素进行了初步研究。然而,真正意义上深入推进该区域“三稀”资源综合地质调查工作的还要从成都综合所和贵州省地矿局的合作说起。

    俗话说:处处留心皆学问。而成都综合所之所以能后来居上,幸运地立项并取得重大突破,既与他们强烈的大局意识和服务意识有关,也与他们平日的留心积累有很大关系。当中国地质调查局党组提出“三位一体”调查评价体系、支撑服务大型能源资源基地建设时,成都综合所就开始了筹划谋局,试图在这方面闯出一条新路。经过资料综合分析,他们了解到当地的稀土矿线索,并深入分析了难以开发利用的“症结”。

    国家能源资源安全的战略需要,中国地质调查局党组的明确要求,地方脱贫攻坚战的迫切需求,加上自身转型升级的客观要求以及技术优势和信息资源优势,使成都综合所上下很快达成了共识,举全所之力,主攻贵州毕节地区稀土矿。

    说干就干,时不我待。2017年1月10日,成都综合所与贵州省地矿局开展了一次座谈。此次会议,双方达成了合作共识,即以能源资源基地综合地质调查为平台,重点开展矿产资源综合利用调查、技术经济与环境影响概略性评价等工作;通过大型能源资源基地综合调查,查明资源现状、资源潜力、矿石可利用性,摸清区域地质环境特征和承载力,共同建立资源基地技术经济与环境影响概略性评价体系,为资源开发利用、环境保护、生态文明建设和矿政管理提供服务。同年2月28日,成都综合所召开会议启动“贵州毕节-六盘水地区能源‘三稀’资源大型基地”建设工作,明确了为贵州资源开发利用、环境保护、生态文明建设和矿政管理提供基础服务的目标。紧接着,3月7日,成都综合所与贵州省地矿局在成都正式签订战略合作协议,共同打造贵州毕节-六盘水地区能源“三稀”资源大型基地。根据协议,双方将以大型能源资源基地建设为引领,围绕“区调、矿调、环调”地质调查评价、能源资源经济性评价工作、重金属污染土壤修复示范,结合精准扶贫行动,共建产学研创新平台,推动地质科技成果集成与转化。

    随后,“贵州毕节-六盘水地区能源资源基地综合地质调查”项目正式启动实施。

    为了加快推进中国地质调查局大型能源资源基地建设工作部署,成都综合所按照“协同创新、融合创新”的思路,特别成立了项目联合推进工作领导小组,同时编制了“贵州毕节-六盘水地区能源资源基地综合地质调查”项目实施方案。通过整合双方资源、技术、业务优势,共同推进基地建设,以服务地方需求实现服务国家需求的目标,有效创新地质调查工作模式。在服务国家能源资源保障战略的同时,助推乌蒙山毕节地区脱贫攻坚。

    科技创新 迎难而上

    开弓没有回头箭。

    正当项目如火如荼地开展时,技术人员却迎来了前所未有的挑战。

    威宁、赫章两县沉积型稀土矿尚处于勘查开发的起步阶段。根据沉积型稀土的赋存状态来看,矿体多出露于地表,开采地质条件较好。含矿层段在威宁及赫章地区分布广泛,资源潜力巨大。但是2018年以前,整个黔西北地区沉积型稀土矿的成矿规律、稀土赋存状态及可利用性均未查明,选冶工艺也未曾取得进展。一度有分析认为,该类型稀土矿并不具备勘查开发价值。业内权威专家对此也是质疑声不断。有人认为,在此地区根本找不到大矿;有人则认为,即便是侥幸找到了矿,也很难“拿”出来。

    成都综合所顶着巨大的压力,通过层层传导,最后落到了项目组全体人员身上。个中滋味,也只有亲历过的人体会最深刻——

    谈起该项目,项目团队成员惠博博士不无感慨地说:“这是我工作至今啃得最难的一块骨头!为了有效富集回收该地区稀土资源,项目组成员都付出了大量心血。”

    其实,从1997年开始,黔西北沉积型稀土就不断受到关注,但是至今尚未有明确的矿石赋存状态研究及选冶工艺突破。“贵州沉积型稀土原矿中稀土氧化物(REO)含量最高时可达1.6%,平均约0.15%。但是,由于无独立的稀土矿物,采用常规的物理选矿方法无法实现稀土的富集回收。”惠博解释说。为了更好地完成任务,惠博与项目组其他成员早在半年前就开始筹划准备。项目开展之初,他们主要采用常规的技术手段进行分析和处理,但是许多问题都没有说透。

    “这不是一类传统的矿石,在对这一类矿石进行研究的过程中,我们必须拿出客观的科学数据来证明它是否具备勘查开发价值。”惠博说,对于该项目的科研攻关,成都综合所领导高度重视,先后两次开动员会,要求技术人员每月向项目负责人、科技处负责人及所长汇报进展情况。

    可是,纵使技术人员使尽浑身解数,倔强的石头依旧不为所动。时间一点一点地过去了,无数次试验都无功而返,研究进展依旧未能达到预期。难道真如前人所说“该类型稀土矿并不具备勘查开发价值?”此时,成都综合所内上下压力倍增。

    专家组与科研人员研讨钻孔岩芯中稀土含矿层的垂向演化趋势

    “锲而舍之;朽木不折;锲而不舍;金石可镂。”

    终于,大家找到了突破口。通过反复试验和实地调查,项目组确定了两个重点攻关方向:一是在工作手段上采取多学科联合的方式,即工艺矿物学、地质学、冶金学联合攻关。二是科学的思维方式。在常规手段没有得出结果的情况下,引入一些假设性的试验。

    首先是工艺矿物学先行。惠博介绍说,这就如同我们在医院看病一般,需要先问诊(即取样),查明病因(即查明矿石成因)。在这个过程中,工艺矿物学发挥了重要作用。我们选用了关于物质和结构分析目前国内最先进的手段,例如化学分析里的荧光、XRD分析、电子探针等,并利用国际先进的矿物分析试验设备将矿石的基本性质从里到外、从粗到细进行了全面分析,同时还与其他类型矿石进行类比分析。在以往的试验中,我们主要采用10倍、20倍的显微镜,但是在该矿石的分析研究中,我们甚至采用了近千倍的显微镜,以及做材料的技术手段,终于查清了矿石中各元素的赋存状态。

    “但是,这些还远远不够。在此基础上,技术人员开始开展选矿研究,却无功而返。冶金技术随后及时跟进,开展了浸出试验,验证理论上的赋存形式。通过试验,对大家通过仪器观察的现象进行了定量化的佐证。综合比对国内外相关资料,整个研究工作中,我们团队做得更深入、科研链条也更长,基本上做到了类似产品的级别。”惠博说。

    而此次项目能够取得重要成果,主要基于两方面的经验:一是多学科联合攻关。这要归功于成都综合所的优势业务领域之一——矿产资源综合利用。成都综合所拥有一支涵盖地质找矿、资源综合利用、综合评价等专业层次布局合理的专业人才队伍。“成都综合所在一矿变多矿、贫矿变富矿等方面具有丰富的经验和技术优势,特别是一些呆滞的、我们认为可能在技术上或者经济上不过关的资源,所里也有成功的案例。所以,多学科联合攻关也成为这次试验研究能够取得成功的一个重要因素。”胡泽松说。

    二是科学的思维方式。胡泽松认为,在研究过程中,不能轻易否定研究对象,要打破传统的思维模式,只有这样才能取得成功。我国是世界稀土资源储量大国,不但储量丰富,且还具有矿种和稀土元素齐全、稀土品位高及矿点分布合理等优势,全国稀土资源总量的98%分布在内蒙古、江西、广东、四川、山东等地区,形成北、南、东、西的分布格局,并具有北轻南重的分布特点。但是,该项目发现的稀土类型完全不同于这两种状态,也区别于深海稀土,在标准上并没有可借鉴性。

    通过综合分析研究,项目组最终确定黔西北地区的稀土矿床为独特的“沉积型”稀土矿床——发生于二叠纪末的巨量岩浆活动是华南陆块演化历史上的一次重大地质事件,导致了扬子克拉通西部峨眉山大火成岩省的形成。在大火成岩省的形成和演化过程中,常伴随有区域岩石圈地壳的大规模抬升和地表岩石的去顶剥蚀。峨眉山大火成岩省的主要岩性为玄武岩和层状-似层状火山碎屑岩,且构成峨眉山大火成岩省主体的玄武岩及火山碎屑岩富含铁族、高场强元素和稀土元素。在晚二叠世温润潮湿的古地理环境和频繁的海侵、海退作用下,玄武岩及火山碎屑岩便易于发生强烈的风化、蚀变和剥蚀作用,经进一步搬运、沉积、富集便形成了黔西北地区独特的“沉积型”稀土矿床。

    同时,项目在开展过程中还形成了绿色高效的“预处理-选择性浸出”冶金新工艺。试验结果表明,稀土元素浸出率高于85%,同时铝、铁、钛和硅等主要杂质浸出率均小于5%。此工艺流程短、选择性强,绿色高效,对推动地质科技成果转化,助推黔西北毕节-六盘水建设我国重要的战略资源支撑基地具有重要意义。

    经过近8个月的科研攻关,沉睡的稀土宝藏终于揭开了她神秘的面纱。

    三大突破 意义深远

    2019年3月28日,在成都综合所召开的第六届三次职工代表大会上,贵州毕节-六盘水大型能源资源基地技术攻关团队被评为该所“2018年度优秀创新团队”。对于贵州毕节-六盘水团队来说,这项荣誉实至名归。

    首先,他们取得了沉积型稀土矿产的重大找矿突破。该团队在对稀土含矿层精细的岩相古地理、沉积微相和稀土沉积成矿要素研究基础上,锁定富稀土层的岩相类型,建立成矿模式,通过矿产检查,于毕节市威宁县麻乍镇新发现超大型稀土矿1处,于威宁县哲觉镇新发现大型稀土矿1处。

    其次,攻克了新类型稀土矿产综合利用的技术瓶颈。通过系统工艺矿物学研究,首次查明了该稀土赋存于以高岭石(83%以上)为主的粘土岩中,无独立稀土矿物,成因类型属“沉积型”,工业类型为类质同象离子吸附型。该类型稀土的粒度极细,选冶难度极大,团队中青年优秀骨干进行了四阶段的选冶试验攻坚,最终创新性研发出针对此类型稀土矿的“预焙烧处理-选择性酸浸”工艺流程,使得该类型稀土的综合回收率超过85%,攻克了选冶难题。

    第三,创新了能源资源基地技术经济评价及地质环境影响评价方法。通过对威宁重点工作区地质环境调查评价,项目组结合已有资料的二次开发和整理,对威宁、赫章地区地表水、地下水、地壳稳定性、植被覆盖率、土壤环境、空气质量、石漠化、矿山地质环境问题等进行了系统总结,编制各类环境图件15张,提出了下一步恢复治理和绿色矿山建设方案,同时建立了一套适用于以黔西北为代表的中国南方岩溶地区地质环境影响评价指标体系。

    对接需求 精准扶贫

    2018年12月12日,自然资源部中国地质调查局成都综合所与贵州省地矿局一行来到贵州省毕节市。与以往不同,他们此行的目的是将前期形成的综合地质调查成果进行移交。

    本次移交的综合地质调查成果,是依托于成都综合所与贵州省地矿局共同实施的“贵州省毕节-六盘水地区能源资源综合地质调查”项目成果,形成的《贵州省毕节-六盘水能源资源基地威宁-赫章地区勘查开发布局建议书(2018)》(以下简称《建议书》)1份,附图图册1套(包含相关附图31份)。《建议书》对毕节市威宁县、赫章县优势矿产资源的现有资源条件、潜在资源条件、技术经济条件、地质环境条件等方面进行了系统的总结和全面评价,在此基础上,划分了3处重点勘查开发区,2处次重点勘查开发区及6处不宜开发区。同时,为了更好地对接毕节市政府需求,有针对性地部署下一步工作,成都综合所还表示,将与贵州省地矿局共同协助毕节市建立“三稀资源绿色勘查开发基地”,做好技术支撑工作。

    两周后,毕节市政府发来信函,对于成都综合所移交的“贵州省毕节-六盘水地区能源资源综合地质调查”项目阶段性成果给予高度评价,对中国地质调查局在毕节开展的地质找矿工作高度认可。信函中写道:

    “《建议书》对我市威宁县、赫章县优势矿产资源的现有资源条件、潜在资源条件、技术经济条件、地质环境条件等方面进行了系统的总结和全面评价,特别针对两县广泛分布、资源潜力巨大的沉积型稀土矿产进行了论述,提供了有进一步工作价值的超大型稀土矿1处,大型稀土矿1处;研发的沉积型稀土综合利用技术原型,将浸出率从5%~20%提高到85%以上,为我市对该类型稀土矿产的采选及利用提供了有力技术支撑。《建议书》及附图图册内容丰富,涵盖了我市威宁、赫章两县优势矿产资源潜力、综合利用潜力、地质环境现状及变化趋势等方面,划分了3处重点勘查开发区,2处次重点勘查开发区及6处不宜开发区,对我市绿色矿业发展和矿产资源勘查开发规划提供了基础地质资料,为我市打造‘三稀资源绿色勘查开发试验基地’奠定了坚实的资源基础。”

    这封信函不仅是对项目成果的肯定,同时也是对技术人员夜以继日工作的鼓励与肯定。

    精准脱贫不仅是地质工作者的历史使命,更是政治担当。

    近年来,中国地质调查局在乌蒙山区等14个集中连片特困地区安排了项目,重点开展能源资源调查、重要矿产资源调查及服务生态文明建设的水工环地质调查等工作。这些项目,均瞄准了贫困地区的实际需求,解决急需问题,有的发现了新的矿产地,有的查清了地质环境情况,对当地经济社会发展和生态文明建设产生了重要的推动作用。贵州乌蒙山片区是整个乌蒙山片区中的重点贫困片区,贫困面广量大,贫困程度深,脱贫形势十分严峻。“贵州省毕节-六盘水地区能源资源综合地质调查”项目阶段性成果提出,毕节威宁地区应从煤炭等传统化石能源基地向沉积型稀土、沉积型锂矿、铅锌等战略性、新兴矿产资源基地转变的发展新思路,对于有效服务地区绿色勘查开发、助力乌蒙山扶贫攻坚具有重要的现实意义。

    尾 声

    采访中,除了科技创新,团队成员严谨求真的钻研精神也给记者留下了深刻的印象。当记者询问惠博技术攻关后的心情时,他的回答出乎意料——如释重负。回望项目整体开展过程,虽然取得了很大的突破和成果,但是团队成员却依然保持着谦虚、谨慎的工作态度。工作结束后,他们没有沉浸在成功的喜悦之中,而是第一时间总结经验和教训:一是不能草率下结论;二是研究工作需要有使命感和责任感。

    的确,成功往往都是眷顾有准备的人。地质调查工作不仅需要科技创新,更需要像他们一样锲而不舍、严谨务实。

    新时代地质调查工作有新定位,即“全力支撑能源、矿产、水和其他战略资源安全保障,精心服务生态文明建设和自然资源管理中心工作”。面对新形势、新任务、新要求,我们相信,在新的征程中成都综合所人将飞得更高、行得更远!

     

    亿万年的等待只为你召唤

     

    17日,“蓝鲸一号”海上钻井平台可燃冰开采现场。广州海洋地质调查局供图

     

    可燃冰又称天然气水合物,是一种甲烷和水分子在低温高压情况下结合在一起的化合物,被看作是有望取代煤、石油的新能源

     

    勘探显示,南海神狐海域有11个矿体、面积128平方公里,资源储存量1500亿立方米,相当于1.5亿吨石油储量

     

    从5月10日起,国土资源部中国地质调查局从我国南海神狐海域水深1266米海底以下203—277米的可燃冰矿藏开采出天然气。截至5月17日15时,总量试采12万立方米,最高产量达3.5万立方米/天,平均日产超过1.6万立方米,其中甲烷含量最高达99.5%。

    这是我国首次海域可燃冰试采成功,这一成果对促进我国能源安全保障、优化能源结构,甚至对改变世界能源供应格局,都具有里程碑意义。

     

    神狐海域可燃冰储量只是我国可燃冰蕴藏量的冰山一角

     

    直升机从珠海九州机场起飞,飞行约90分钟,远远就见到蔚蓝的海面中巍然伫立着的37层楼高的钻井平台,这里就是我国首次完成可燃冰调查的神狐海域,也是我国首次进行可燃冰试采的海域。

    “对于海洋可燃冰的研究,我国是从1995年开始的,并于2007年5月成功获取了可燃冰实物样品,成为世界上第四个通过国家级开发项目发现可燃冰的国家。”试采现场指挥部总指挥叶建良介绍说。

    可燃冰,又称天然气水合物,它是一种甲烷和水分子在低温高压的情况下结合在一起的化合物,因形似冰块却能燃烧而得名,是一种燃烧值高、清洁无污染的新型能源,分布广泛而且储量巨大。1立方米的可燃冰分解后可释放出约0.8立方米的水和164立方米的天然气,能量密度高,资源潜力巨大,估算其资源量相当于全球已探明传统化石燃料碳总量的两倍,科学家们甚至认为它是能够满足人类使用1000年的新能源,是今后替代石油、煤等传统能源的首选。

    2010年底,由广州海洋地质调查局完成的《南海北部神狐海域天然气水合物钻探成果报告》通过终审,科考人员在我国南海北部神狐海域钻探目标区内圈定11个可燃冰矿体,显现出良好的资源潜力。“海洋六号”入列后,再次深入南海北部区域进行新一轮精确调查,调查海域包括琼东南海域、西沙海域、神狐海域和东沙海域等区域,调查的重点是在南海北部前期勘探的基础上圈定重点勘探区域。

    试采现场指挥部地质组组长陆敬安说,勘探显示,神狐海域有11个矿体、面积128平方公里,资源储存量1500亿立方米,相当于1.5亿吨石油储量,“成功试采意味着这些储量都有望转化成可利用的宝贵能源”。

    神狐海域可燃冰储量还只是我国可燃冰蕴藏量的“冰山一角”。在西沙海槽,科考人员已初步圈出可燃冰分布面积5242平方公里;在南海其他海域,同样也有天然气水合物存在的必备条件……

     

    此次试采实现了勘查开发理论、技术、工程、装备的完全自主创新

     

    可燃冰储量丰富,但是如果一直只躺在南海海底,则发挥不了其价值。但可燃冰开采难度巨大,迄今鲜有国家尝试。

    全球可燃冰研发活跃的国家主要有中国、美国、日本、加拿大、韩国和印度等。其中,美国、加拿大在陆地上进行过试采,但效果不理想。日本于2013年在其南海海槽进行了海上试采,但因出砂等技术问题失败。2017年4月日本在同一海域进行第二次试采,第一口试采井累计产气3.5万立方米,5月15日再次因出砂问题而中止产气。

    “此次试采实现了中国可燃冰勘查开发理论、技术、工程、装备的完全自主创新,在这一领域实现了从跟跑到领跑的跨越。” 叶建良介绍。

    “通过这次试采,中国实现了可燃冰全流程试采核心技术的重大突破,形成了国际领先的新型试采工艺。”试采现场指挥部办公室副主任谢文卫说。

    南海神狐海域的天然气为水合物泥质粉砂型储层类型,该类型资源量在世界上占比超过90%,也是我国主要的储集类型。这是我国也是世界第一次成功实现该类型资源安全可控开采,为可燃冰广泛开发利用提供了技术储备,积累了宝贵经验。谢文卫介绍,“我们提出‘地层流体抽取试采法’,有效解决了储层流体控制与可燃冰稳定持续分解难题。我们成功研发了储层改造增产、可燃冰二次生成预防、防砂排砂等开采测试关键技术,其中很多技术都超出了石油工业的防砂极限。”

    本次试开采是世界上第一次针对粉砂质水合物进行开发试验,为此海洋地质学家们在试采思路、井位选择、工程地质勘查、关键技术和工艺确立、试采平台优选等诸多方面,都具有中国特色,可以称之为“中国方案”。

    在试采作业中,大量国产化装备成功投入应用,充分表明“中国造”已走在世界的前列。

    首先,必须要点赞的是试采作业最重要的“大国重器”——我国最新研制成功世界最大、钻井深度最深的海上钻井平台“蓝鲸一号”,这个净重超过43000吨、37层楼高的庞然大物今年2月刚“诞生”,就从中国烟台起航,于3月28日抵达神狐海域实施试采。“蓝鲸一号”是目前全球最先进的双井架半潜式钻井平台,可适用于全球任何深海作业。

    其次,大量拥有自主知识产权工具的成功应用,表明国内石油公司已具有深水工艺及设备研发能力,如完井防砂工艺,已远远超过石油工业的防砂极限;完井与测试系统集成装备,结合可燃冰试采工程开发与科研需求,为我国可燃冰开发研究提供科学数据。

     

    监测结果显示,试采过程安全、友好、可控、环保

     

    试采可燃冰,外界一直有一个疑问,就是会不会对周边海域的环境造成影响。

    由于甲烷是比CO2更高效的温室气体,因此可燃冰的环境问题一直是人们关心的一个重要问题。我国进行海域可燃冰试采,同样非常重视环境问题,为此投入人力物力进行了研究。

    2011年6月至2017年3月,南海水合物环评项目组在南海神狐水合物区先后共组织了10个航次的野外调查工作,对试采区进行了多年系统调查,调查内容包括海底工程地质特征、地质灾害特征、海底环境监测、海洋生物特征、海水溶解甲烷含量、海水物理化学及水文特征、海表大气甲烷含量特征等,基本查明了可燃冰试采区的海洋环境特征,同时,发展了一系列我国自主产权的环境评价技术,为可燃冰试采、开发提供了良好基础。

    可燃冰试采的环境问题,主要是试采过程中是否发生不可控的可燃冰分解,导致甲烷泄漏,从而引起海底滑坡等地质灾害,甚至是甲烷泄漏到海洋或者大气中而引起环境问题。针对这些问题,在试采过程中,一方面根据水合物区海底地形地貌特征、工程地质特征、水合物储层特征,通过合理设计井位及降压方案,从工程设计上避免发生甲烷泄漏所引发的环境问题和灾害问题,另一方面通过布设海底地形、气体渗漏等监测设备,构建了海水—海底—井下一体化环境安全监测体系,实现对温度、压力、甲烷浓度及海底稳定性参数的实时、全过程监测。监测结果显示试采未对周边大气和海洋环境造成影响,整个过程安全、友好、可控、环保。

    本次开采试验还为后续研究提出了很多课题。下一步重点是研究如何解决本次试验当中发现的一些问题,并在之后3—5年内开展第二次试采,进一步为商业化开采做好技术准备。

    《 人民日报 》( 2017年05月19日 12 版)

    打开一个可采千年的宝库

    摘要:英国地质调查局和英国著名学府赫瑞瓦特大学联合组建莱伊尔中心,这是一个“开创性”的国家级研究中心,重点研究地球与海洋科学问题,并且将在应对气候变化方面走在世界前列。

    英国政府对莱伊尔研究中心的总投资为2100万英镑,联合投资方还包括英国自然环境研究理事会(NERC,英国地质调查局的上级单位)、苏格兰高等教育资助委员会(SFC)和赫瑞瓦特大学,其中苏格兰高等教育资助委员会将提供350万英镑经费支持。该中心位于苏格兰爱丁堡的赫瑞瓦特大学校园内,汇集了英国地质调查局的专业知识和大学的学术创新,可以确保后代研究者应对“世界面临的全球性科学和技术挑战”。目前,莱伊尔中心正在撒哈拉以南非洲研究气候变化问题,研究深海采矿的方案,以及研究海岸带生态系统的保护工作。

    赫瑞瓦特大学与英国地质调查局的这次联姻,在研究型实验室创建了英国唯一的深海底钻探设施和英国最先进的研究型水族馆。莱伊尔中心将通过倡导创新、协作和企业精神,致力于以可持续的方式解决自然资源和能源供应与安全中的一些重大问题,致力于培养应对全球性挑战的新一代优秀科研人才。在国际顶尖科研人员的共同努力下,莱伊尔中心正在由世界领先的学者和科学家解决重大全球性问题的解决方案:从海岸带生态系统保护到如何依靠内陆水系解决未来水需求问题;从撒哈拉以南非洲地区应对气候变化到寻求不会危机全球环境的深海采矿解决方案。

    莱伊尔中心的研究主题集中在两个主要方面:应用地球科学和生态科学。该中心将面临科学大挑战(见图1),其第一战略阶段,所确定的4大研究主题包括:

    (1)气候、生命及地表环境;

    (2)水以及地下环境中的生命;

    (3)地球能源资源;

    (4)风险、灾害及不确定性。

    图1 莱伊尔中心面临的科学大挑战

    莱伊尔中心目前已经涵盖非常广泛的综合研究领域,包括:

    • 海洋生态系统变异性的生物地球化学驱动力;

    • 海底生态学和生物地球化学:从热带海岸到深海的模式与作用过程;

    • 水母爆发对深海生态系统的生态影响;

    • 水生生物的生态毒理学和病理生理学;

    • 支撑海洋空间规划(MSP);

    • 能源:生物地球科学中的一个统一原则;

    • 河流和沿海地区是全球碳和营养素循环的“热点”;

    • 北极生态系统和全球变化;

    • 缺氧的海洋:生物地球化学热点和极端气候模式;

    • 表层和深部环境中的地质微生物学;

    • 碳酸盐岩储层;

    • 与CO2储存和非常规天然气生产相关的潜力和风险。

    莱伊尔中心旨在通过与其他国家和国际性研究机构的战略合作伙伴关系巩固和拓展这些核心优势,包括:

    • 能源:包括地震技术、碳捕获和储存、页岩气、清洁煤和非常规天然气、地热能、地下储气库;

    • 气候变化:包括土壤中的碳、土壤可持续性、海岸带污染、海岸线变迁、古气候、环境响应;

    • 海洋地球科学:包括大陆边缘、海洋地质灾害、油气勘探远景区、海洋钻探研究;

    • 土地利用/开发:包括浅层地质灾害、地球物理作用过程、城市地质(开发/土地利用的地下相互作用过程);

    • 水:包括水资源、水质和保护、生态和生物多样性、流域过程、洪水;

    • 矿产和废物:包括资源可供性、废弃矿山和受污染的土地、放射性废物;

    • 地球科学技术:包括地球和行星观测和填图、摄影、数学建模、数字建模与可视化系统;

    • 地球灾害:包括地震、火山和地磁;

    • 信息学:包括传感器开发和部署、数据创新、大数据、遥测。

    莱伊尔中心的科学创新精神体现在:(1)激发超越传统界限的、新的和变革性思想;(2)鼓励新的科学文化素质;(3)为新一代学术带头人、初级和高级研究人员以及学生创建一个充满活力的家园;(4)成为内外部专家参与的平台和交流的焦点,为非学术利益相关者、政策制定者和社会提供知识交流和建议的窗口。

    背 景:

    英国自然环境研究理事会(NERC)作为英国环境科学的最重要资助者,正在通过获得商业、能源和工业战略部(BEIS,这是2016年7月才由英国几个部合并组建的一个部,可能是目前全球最大的“部”)的资助来支持英国地质调查局和莱伊尔中心。NERC在英国是一个非部门公共机构,每年来自BEIS的经费大约为3.3亿英镑。

    赫瑞瓦特大学是一个全球性机构,学生超过30000名,专注于科学、技术、工程、商业和设计,特别专注于对发展至关重要的全球性问题的解决,如气候变化和能源。成立于1821年,大学校园在爱丁堡、迪拜和马来西亚也有专门的校区。该大学在思想和解决方案方面是公认的全球领导者。该大学在苏格兰排名第一,在英国排名前十,82%的研究领域处于国际先进水平,在世界范围内享有盛誉,是一所古老而又充满活力的学校。在学科排名中,矿业与采矿工程位居全球第34名。

    英国地质调查局是NERC的一个组成机构,是全球历史最悠久的地质调查局,是国家客观、公正和最新地质知识与信息的主要提供者,供政府、商业界和个人用户进行决策。地质调查局的主要职能是维持和发展国家对其地质情况的了解,以改进决策,提高国民财富和降低风险。也与国家和国际科学界合作在战略领域开展研究,包括能源和自然资源,环境变化和灾害的脆弱性,以及对地球系统的一般知识。

    英国地质调查局和赫瑞瓦特大学在此前已经开展过多方面的合作,成功的项目数不胜数,其中的一些旗舰项目包括:(1)创新型研究生教学和研究计划(英国自然环境研究理事会石油和天然气领域博士生培养研究中心);(2)海洋环境和生态系统评估(地平线2020计划:跨大西洋评估和基于深水生态系统的欧洲空间管理计划);(3)深时科学钻探(IODP);(4)全球领先的水资源和能源管理系统。其中的一些合作项目包括但不限于:(1)苏格兰碳捕获和储存(SCCS);(2)与政府机构其他极具影响力的合作伙伴关系如海上苏格兰、苏格兰国家遗产(SNH)、联合自然保护委员会(JNCC)、农业食品与生物科学研究所(AFBI)、英国海道测量局(UKHO)、海事和海岸警卫局(MCA)和国家环保总局(SEPA);(3)石油工业(石油和天然气管理局OGA以及二十一世纪勘探路线图古生代项目)。

    (摘自《国外地质调查管理》2017年第18期(总第55期))

     

    英国政府成立莱伊尔研究中心

    加拿大矿山。 张锦洪 摄

    澳大利亚矿石港口

    目前,世界各国高度重视关键矿产(也译为“危机矿产”),国际机构、政府部门、行业组织和科研院所均从不同侧面开展了专项调查或研究。

    关键矿产是出于资源、经济、环境、技术等各种原因而导致供应上可能存在一定障碍和风险的矿种,具有重要性、战略性、稀缺性、动态性等特点,是现代化经济体系建设急需、生态文明建设必需、新能源等新兴战略产业发展特需的矿种。

    世界主要国家管理关键矿产在战略、清单、风险、政策等方面都有各自的经验,对我国关键矿产的研究和管理工作具有借鉴意义。

    1 战略管理

    当前,世界范围内对关键矿产的理论研究、评估方法、产业政策等方面的管理,已经上升到全局、系统、长远的战略高度,逐步形成了各个国家或地区关键矿产发展战略。

    美国:将确保关键矿产安全和可靠供应上升为联邦战略

    2008年,美国国家科学研究委员会发布《矿产资源、关键矿产和美国经济》研究报告。2011年,美国能源部发布《关键矿产战略》研究报告。2017年,美国总统特朗普签署《关于确保关键矿产安全和可靠供应的联邦战略》总统行政命令,强调关键矿产是对美国经济和国家安全至关重要的非燃料矿产或矿物原材料,如果没有这些矿产资源,将会对美国经济和国家安全产生重大影响。

    研究数据表明,美国拥有大约价值6.2万亿美元矿产资源储量,但每年仍进口近70亿美元矿产品,美国军工部门每年需要进口75万吨矿产品,包括夜视镜使用的镧、光学跟踪设备使用的铍、防弹衣使用的镍和阿帕奇直升机使用的银。调查表明,美国90%的制造业高管对能否及时获得所需关键矿产表示担忧。美国地质调查局数据表明,42种非燃料矿产中,有11种净进口依存度高于90%,而且国外生产高度集中,对新兴技术来说是不可替代的矿种。因此,美国将确保关键矿产安全和可靠供应上升为联邦战略。

    欧盟:以安全获取关键原材料为目标

    欧盟于2008年发起《原材料倡议》,提出以安全获取关键原材料为目标的关键矿产战略。2010年,欧盟定义“关键原材料”是经济意义重要的、供应风险高的非燃料矿产或矿物原材料。欧盟委员会(欧盟唯一有权起草法令的机构)于2012年起6年内先后发布《为欧洲未来福祉提供原材料》《迈向循环经济》《关于欧盟循环经济行动的报告》《投资智能、创新和可持续发展工业——重新制定欧洲工业政策战略》《关键原材料和循环经济报告》,均涉及关键矿产发展战略。

    其中,关键矿产发展战略要点包括:支撑欧洲工业政策,提振欧洲工业竞争力;加强新矿山开发,增加关键原材料产量;促进关键矿产有效利用和再循环,将循环经济作为欧盟优先领域;提高欧盟各国各机构和广大投资者对关键原材料潜在供应风险和发展机会的认识;在贸易谈判、处理纠纷过程中重点关注关键矿产进口依存度,在实施《2030年可持续发展议程与目标》中充分发挥关键原材料的作用。

    欧盟成员国也相继制定关键矿产发展战略。比如:《法国战略金属计划(2010)》《德国原材料战略(2010)》《荷兰原材料政策(2011)》《葡萄牙地质资源和矿产资源国家战略(2013-2020年)》《瑞典关键矿产发展战略》《芬兰矿产资源战略(2010)》等。

    英国:提出以关键矿产为重点的自然资源联合战略

    英国《资源安全行动计划(2012)》是一项自然资源联合战略,详细介绍英国政府认识到关键矿产的重要性和必要性,加强国家资源战略和关键矿产的评估研究,为企业提供解决关键矿产供给风险的行动框架,建立一个在政府与现有伙伴关系基础上的关于自然资源问题的行动计划。2018年7月,英国政府发布《国家规划政策框架》强调,促进关键矿产的可持续利用,为国家发展的需要提供足够的矿物供应,并对此制定专门的规划和政策。

    澳大利亚:战略强调抢抓机遇、发挥优势、延续繁荣

    澳大利亚是一个大宗矿产品主要出口国,2018~2019年度,资源和能源出口总额将创下2520亿澳元的新高。该国2013年发布研究报告《高科技世界的关键矿产:澳大利亚供应全球需求的机会》,分析了澳大利亚关键矿产的资源潜力,认为关键矿产是对全球及主要经济体发展至关重要的矿产资源。2018年,澳大利亚“资源2030工作组”发布近20年来最新一份国家资源声明《澳大利亚资源:确保子孙后代的繁荣》研究报告。研究报告高度重视电池产业和其他关键矿产下游产业,进一步强调寻找生产、加工和出口新材料的机会。

    日本:战略要求高度重视海外矿产资源可靠供应

    2012年,日本政府发布《矿产资源安全战略》,其战略重点是安全有效地从世界各资源国家获取关键矿产,战略要求是政府高度重视海外矿产资源的可靠保障。在《矿产资源安全战略》指导下,日本当年就与越南签署了在越方境内联合勘查稀土的协议。

    2 清单管理

    近年来,世界各国关于关键矿产评估方法的研究比较活跃,并在实际操作中运用相关模型形成了关键矿产的目录清单,成为关键矿产管理的重要手段和基本方法。

    国外关键矿产目录概况

    2011年,美国能源部分析了风能涡轮机、电力汽车、太阳能电池和节能照明设备所需要的14种关键矿产。2016年,美国国家科学技术委员会发布《关键矿产的评估方法和初步应用》研究报告,确定了32种关键矿产目录,其中对铂族金属的研究更加充分,对硅以及有关合金高度重视,在关键矿产目录中突出铂族金属、硅及有关合金的排序。2018年,美国内政部公布新的关键矿产目录共35个矿种,与2016年目录相比增加了砷等非金属,以及铀、锂、铷、铯等高技术产业应用广泛且发展前景看好的矿产。

    2010年,欧盟发布关键原材料评估方法,决定建立关键原材料目录,并且每3年一次更新目录。2011年评估出14种关键原材料,2014年评估出20种关键原材料,2017年从61个原材料中评估出27种关键原材料。

    澳大利亚资源能源和旅游部结合自身国情和矿情发布关键矿产目录,评估分为一类和二类资源关键性指数。2013年,澳大利亚地质调查局确定了稀土、铂族金属、钴、镍、铬、锆、铜、铟等22种关键矿产目录。

    英国地质调查局在2011年和2012年研究矿产资源供应风险指数,并定期进行关键矿产目录更新。英国地质调查局的评估方法不断改善,2015年确定了稀土元素组、锑、铋、锗、钒、镓、锶、钨、钼、钴、铟等40种关键矿产目录。

    国外目录清单主要特征

    一是关键矿产目录中的矿产种类,大多数大宗矿产不在目录之中。而铜和铝这两种20世纪的大宗金属,在21世纪仍将有较大的需求量,主要原因是能源产业发展的驱动,特别是电动汽车和输配电、电缆等领域的需求。这在一定程度上也表明,随着全球的经济发展和技术进步,经济结构调整和产业结构升级,所需要的矿产种类在发生变化。

    二是关键矿产目录中的矿产种类,非金属矿种数量不多但相对集中。主要包括天然晶质石墨、萤石、重晶石、硅藻土、滑石等少数几种特种非金属。与金属矿产相比,非金属矿产的开发利用仍然存在很大程度的不足,这需要材料技术方面的重大创新与突破。

    三是关键矿产目录中的矿产种类,相似度非常高的矿种是“三稀金属”。主要包括稀土、锂、钴、镍、锰、钨、铍等稀有、稀土和稀散金属。这些都是未来国际竞争的重要矿种,是高新技术发展的关键矿种,是生态文明建设的必需矿种。

    四是一些国家或地区将不少特种金属合金列入关键矿产目录。合金元素指的是在冶炼金属的过程中加入一定数量的一种或多种金属或非金属元素从而获得材料的特殊性能,如提高强度、改善抗氧化性能、提高塑性和工艺性能等,而这些添加进去的辅助性元素材料就叫作合金元素。

    五是关键矿产目录是动态的,不同关键矿产的危机性也是动态的。这主要取决于技术的进步和产业的调整。比如,欧盟委员会关键矿产目录,原则上每3年调整一次,每次调整时,可能增删一些关键矿产的种类,也可能对一些关键矿产的危机性进行调整。比如锂,在早期一些关于关键矿产的研究报告中,或者将锂排除在外,或者评估锂的危机性较低,但随着电动汽车的发展,近期一些关于关键矿产的研究,均将锂列入目录之中并加以重点分析和研究。

    3 风险管理

    近年来,全球范围内围绕关键矿产竞争日趋激烈,并呈现复杂化、扩大化的态势。强化关键矿产风险因子管理,成为各国政府矿政管理的重点工作。

    重点矿种是关键矿产管理重中之重

    美国地质调查局研究的42种非燃料矿产中,国内资源或产能无法满足国内需求的矿种有11种,包括铼、铂、钯、钛、锰、铬、锂、锆、钽、铌、铑,都是在现代社会发挥重要作用的关键矿产。

    未来的资源冲突和供给风险则可能更多地集中于对某些非燃料矿产的竞争,比如锂、镍、钴等,其原因是这些危机性十分突出的重点矿种的广泛运用,使得一批又一批新兴技术成为可能或现实。例如:锂是电动汽车的重要燃料。研究预测,2035年全球锂需求量可能比2017年增长30倍,未来关于锂资源的市场竞争将非常激烈。由于电池中含镍钴锰三元材料,未来镍需求量也将会大幅度增加。而钴作为一种非常稀缺的矿产,2016全球钴消费中用于电池生产的钴的比例上升至46.5%。

    净进口依存度是关键矿产管理的基本因子

    美国地质调查局认为,净进口依存度是量化一个国家对某种矿产品来自国外的消费量,可以观察国外来源的关键矿产的潜在供应中断风险。2017年,美国地质调查局提供了90多种非燃料矿产和原材料的生产、消费和进口依存度数据,将这些数据合并为每种矿产品的“净进口依存度”,对美国关键矿产进行分析,并提出满足美国关键矿产需求的建议。

    生产集中度是关键矿产管理的重要指标

    生产集中度,是指某个行业的相关市场内若干家最大的排名靠前的企业所占市场份额的总和,是对整个行业的市场结构集中程度的测量计算,是市场实力的重要量化指标。在美国等国家或地区关键矿产评估方案中,生产集中度是主要指标。

    根据美国地质调查局的数据,全球70%的锂资源储量在智利、玻利维亚和阿根廷,锂矿生产的国家集中度已经远远高于10年前水平,由此导致锂矿供不应求,价格维持强势。另外,2017年刚果(金)钴矿资源占全球钴储量和产量的50%和60%。

    地缘政治是关键矿产风险的一个瓶颈

    地缘政治是根据各种地理要素和政治格局的地域形式,分析和预测世界或地区范围的战略形势和有关国家的政治行为,把地理因素视为影响甚至决定国家政治行为的一个基本因素。在世界范围的关键矿产竞争中,地缘政治往往发挥出难以预测的作用。对于政府主导自然资源海外投资尤其是关键矿产投资的国家而言,总体上看,更加关注地缘政治而非市场意义,使地缘政治成为关键矿产供给中断的突发风险和管理瓶颈。以钴为例,当前全球最大的钴供应国刚果(金),政局时有动荡,政府治理指数扭曲,导致钴供应风险加大。

    综合协调是关键矿产风险减缓的有效途径

    一是各国政府在关键矿产竞争中扮演着重要角色。美国于1970年颁布相关法律,强调提振美国矿产资源产业,促进国内矿业发展,积极开展循环利用;1980年又提出确保涉及国家安全和经济发展的关键矿产的稳定供应;近几年特朗普签署总统行政命令,高度重视关键矿产问题。其他各国政府矿政部门在关键矿产管理也中积极作为,其主要职能是确定关键矿产目录清单,开展关键矿产调查评价,简化矿业权审批程序,营造良好投资环境,促进关键矿产勘查,鼓励关键矿产开发。

    二是学术界在关键矿产研究中发挥出基础性作用。关键矿产是全球矿产资源政策研究的热点课题。比如:美国国家科学研究委员会2008年发布研究报告和矿种目录;白宫成立危机原材料研究小组,主要职能是推进关键矿产基础研发,促进关键矿产供应多样性,提供关键矿产市场风险信息,建立联邦基金,评估市场风险,提供决策支撑。

    三是矿业界将矿产勘探开发的重点向关键矿产转移。2014年,英国石油公司BP公司发布研究报告,其特点是从能源消费角度予以考虑,分析未来可能出现的新能源消费路径,加大关键矿产勘探开发的投入。

    4 政策管理

    目前,世界范围内的关键矿产管理政策,可以概括为扩大国内供给、稳定全球供应、加强循环利用、推进技术研发等4个方面。

    扩大国内供给

    一是加强国内关键矿产资源评价。美国开展了现代历史上首次关于关键矿产的全国地质调查。欧盟提出建立原材料战略数据库,通过有效畅通的数据来支撑矿产资源评价。利用欧盟资助的各类项目,提供有关地质信息,以支持获取关键矿产的空间土地利用计划。2010年欧盟特设改善矿产资源开采框架条件工作组,实施相关计划,其目标都是评价尚未查明储量的矿产资源,重点是关键矿产。

    二是鼓励开展国内关键矿产勘查。美国强调查明关键矿产新的来源,确保美国矿业公司和生产企业可以采取电子方式获得美国国土范围内最先进的地形、地质和地球物理数据。欧盟鼓励成员国增加国内采矿业投资,加大关键矿产勘查力度。

    三是简化关键矿产矿业权审批流程。美国要求精简矿业权租让和许可程序,加快关键矿产资源准入速度,推动勘探、生产、加工、回收和冶炼进程。欧盟鼓励成员国制定矿产资源政策,使得矿产资源勘查和开发审批流程更加有效、清晰、易懂,简化行政程序。

    稳定全球供应

    稳定全球供应是世界主要国家保障关键矿产供应的重要手段。提高国外来源的关键矿产保障程度,是各个国家对关键矿产关注的重点,也是关键矿产管理的要点。美国政府明确提出,改变关键矿产依赖国外供给的格局,欧盟的主要目标是加大国外关键矿产供给力度。稳定全球供应、降低国外供给风险,成为各国关键矿产管理的重要任务。

    加强循环利用

    当前,全球关键矿产最终产品的回收率很低,许多情况下不到1%。世界各国都在研究制定和积极实施关键矿产最终产品回收利用的措施,形成全产业链的高效回收利用,推进循环经济。欧盟于2015年提出《迈向循环经济》报告,2017年提出《关于欧盟循环经济行动的报告》,2018年提出《关键原材料和循环经济报告》,大多涉及关键矿产最终产品的回收利用。

    推进技术研发

    目前的研究,以减少关键矿产使用强度、寻求替代技术突破等创新创造为主,重视基础性研究,促进清洁能源发展,拓展关键矿产供应多样性。美国地质调查局全面开展全球评估,确定关键矿产新的资源,关注矿产品使用效率、替代、回收等技术。日本经济产业省与资源开发企业和大学合作,促进关键矿产的高效使用和循环利用。欧盟《原材料倡议》提出后,已经实施56个项目,其中技术类项目2.67亿欧元,包括勘探、开采、选冶、替代性、废弃物处理等技术;非技术类项目2830万欧元;国际合作750万欧元。

    启示与建议

    加强关键矿产调查研究及勘查工作

    鉴于国际经验,建议我国提高对关键矿产工作的重视程度,加强关键矿产的调查研究及勘查工作。

    一是建议组织专门力量,进行关键矿产目录编制研究。对此,要建立专责小组,确定关键矿产评价指标体系,提出关键矿产清单,尽快形成我国关键矿产目录。同时,加强对备选关键矿产的形势分析,加强跟踪监测、预警和研判,有针对性地提出关键矿产的发展战略和产业政策。

    二是抓好关键矿产潜力调查评价与规划。建议针对重点地区、重要成矿带加强关键矿产资源潜力调查评价,加强关键矿产成矿理论模型研究,摸清我国关键矿产资源潜力,并以此为基础做到关键矿产资源潜力调查工作制度化。

    三是加大关键矿产勘查力度。建议将关键矿产勘查作为今后“找矿突破战略行动”的主攻矿种,进一步创新找矿机制,采取积极有效的激励措施,吸引社会资本对关键矿产勘查的投入。对此,要重视理论及方法、机制创新等研究,着重加强绿色勘查工作,为提高关键矿产国内保障能力奠定扎实的资源基础。

    四是制定相应的关键矿产矿业权制度。建议在深化矿产资源管理制度改革过程中,充分发挥市场在资源配置中的决定性作用,优化矿业权出让流程,完善矿业权出让收益标准,降低企业矿业权获取和持有成本,加快关键矿产地质调查成果的应用转化,尽快将找矿靶区转化为可以向社会出让的探矿权。

    五是加强关键矿产全流程和生命周期管理。建议确立跨部门协调机制,由资源管理部门、产业管理部门乃至境外投资促进部门采取统一政策和目标导向,确保关键矿产的安全稳定供应。同时,要采取多种政策手段加强技术研发工作,重点是关键矿产的高效利用和循环利用以及替代品研究,提高国内关键矿产资源的勘查开发和利用效率。

    六是优化境外关键矿产资源战略布局。加强对国外关键矿产战略布局研究和前期基础调查,引导企业“走出去”获得矿权。尤其要关注“一带一路”沿线国家集中度高的关键矿产,如南美铜、锂矿,非洲的镍、铜及钴矿等,要作为战略布局的重点。

    作者单位:中国地质调查局发展研究中心(自然资源部矿产勘查技术指导中心)

    从战略高度谋划对策保障供应

    为提升资源建设和服务能力,自然资源部中国地质调查局地学文献中心于2018年11月28日赴中国科学院文献情报中心开展资源建设调研,文献情报中心资源部相关负责人与调研组举行座谈,双方围绕资源采访、资源开发与利用、资源管理、创新团队建设、资源长期保存等方面进行了广泛深入的探讨,并就深化拓展两单位合作进行了深入细致的交流。

    座谈会上,中科院文献情报中心资源部主任表示,知识资源是中科院文献情报中心发展的根本,有效地服务科研,只有依靠围绕科研组织良好的资源才能发挥服务效益。中科院文献情报中心以需求为导向,通过基础采编团队、开放资源建设团队、知识组织团队和数据资源建设团队齐心协力,利用先进技术,做好各类文献、数据等资源的揭示、汇集、组织、管理、保存和保障,与行业单位共建共享,共同服务国家持续推动的创新驱动发展战略目标。此外,长期保存中心相关负责人表示,资源的长期保存对我国科研、教育、创新的信息环境可持续发展具有重要意义,所有图书馆都应积极合作共同推动这项工作。

    地学文献中心感谢文献情报中心分享资源建设经验,目前,地质工作正面临着经济社会发展内生动力转换、生态文明体制改革、自然资源综合管理等重大形势变化,地学文献中心迫切需要放开眼界找准目标,虚心学习借鉴国内外最先进的发展经验,围绕中国地质调查局服务支撑自然资源管理的新需求,以地球系统科学为指导,以文献大数据为基础,整合集成各种来源、类型、层次的信息资源,进行知识大数据平台的资源体系建设。文献情报中心的经验为地学文献中心下一步资源建设提供了更为清晰的工作思路,同时双方就下一步推动数字资源长期保存工作达成共识。

    此次调研有效推动了地学文献中心与文献情报中心的交流与合作,对于拓展资源建设,共同服务国家持续推动的创新驱动发展战略目标具有积极意义。

     

     
     
    地学文献中心赴中科院文献情报中心开展资源建设调研