分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到6条相关结果,系统用时0.011秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    一、河北沧州平原区地下水与地面沉降国家野外科学观测研究站

    河北沧州平原区地下水与地面沉降国家野外科学观测研究站(简称沧州国家站)依托单位为中国地质环境监测院和中国地质科学院水文地质环境地质研究所,属于“一站多点”形式,包括沧州主站、正定副站和通州、大兴、滨海新区、雄安新区、衡水、正定等5个观测点,总占地约10万平方米。

    以获取长期连续稳定的高精度、高质量地下水与地面沉降科学观测数据为核心,分别考虑了影响地下水降落漏斗与地面沉降的活动断裂、软土、重大工程建设、地下空间开发利用等因素,重点开展地下水与地面沉降观测技术方法研究、地下水降落漏斗与水平衡响应关系研究、地面沉降演化机制及防控对策研究、重点区域地面沉降风险评价等4方面研究。

    沧州国家站主要观测地下水动态、水分通量、沉降量、孔隙水压力等4大类指标7项具体观测内容,最早自2008年开始数据观测,累计接收数据154万条。目标是建成世界一流的科学观测研究设施和具有重要国际影响的人才培养与交流合作平台,大幅提升我国地下水保护利用与地面沉降防控科学研究水平,为京津冀地区水安全、粮食安全、生态安全、城镇安全和重大工程安全提供可靠的科技基础支撑。

    二、自然资源部地下水科学与工程重点实验室

    自然资源部地下水科学与工程重点实验室,始建于1990年3月,依托单位为中国地质科学院水文地质环境地质研究所,是自然资源部系统首个以地下水环境同位素示踪与测年技术为核心的权威实验室,是国际原子能机构的长期合作单位。

    重点实验室聚焦国家重大战略需求和地下水科学与工程前沿基础,依托拥有的加速器质谱仪、多接收电感耦合等离子体质谱仪、大型MAT 253稳定同位素比质谱仪、液相色谱—质谱联用仪、超低本底闪烁谱仪、惰性体质质谱计等大型设备,以地下水循环演化基础研究、地下水可持续性应用基础研究和重大关键技术研发为主要研究方向,构建完整的(年龄从数百万年至今)地下水测年技术方法体系与应用示范。

    重点实验室自主研发了地下水同位素测试及其他测试前处理装置的技术开发和改造工作15项,其中痕量惰性气体核素激光冷却技术、水中低水平氚测试技术、地下水14C年代测定真空脱气鼓气法采样技术达到国际同类实验室水平,并研制了一系列地下水同位素国家一级标准物质,通过技术研发促进了水文地质环境地质相关学科发展。

    三、自然资源部岩溶动力学重点实验室

    自然资源部岩溶动力学重点实验室依托单位为中国地质科学院岩溶地质研究所,成立于1997年,是自然资源部成立最早的实验室之一,建有丫吉试验场、毛村地下河观测站、官村地下河观测站等野外研究场地。

    重点实验室坚持以地球系统科学为指导,以岩溶动力学与资源环境为研究核心方向,具体包括:岩溶动力学与水文水资源、岩溶沉积记录与全球变化、岩溶作用与碳循环规律及源汇效应评价、岩溶生态系统演变与可持续利用,实现岩溶探测方法、岩溶水野外观测技术、岩溶水数值模拟等研究方向的创新。

    重点实验室围绕我国南方具有代表性的峰丛山区岩溶泉系统,进行岩溶含水介质结构和水动力场研究,建立岩溶含水系统物理模式及其相应的数学模型。自1986年持续开展表层岩溶带、岩溶泉、地下水水位的数据积累,评价了石漠化恢复的水文效应。建立了反映南方岩溶水运动规律和调蓄机制的空间分布式数学模型。今后将继续促进岩溶含水层的研究与水资源可持续管理的结合,为实现岩溶地区“绿水青山”和“低碳发展”提供更多具有推广应用前景的科技成果。

    四、自然资源部陕西榆林地下水与生态野外科学观测研究站

    自然资源部陕西榆林地下水与生态野外科学观测研究站,始建于2010年,依托单位为中国地质调查局西安地质调查中心,属于“一站多点”形式,包括红石峡主站、红石桥副站和植物园观测点、林场观测点、小壕兔观测点等。

    观测研究站以解决水与生态的关键科学问题为目标,开发植被生态与水的动态监测技术,研究大尺度的植被生态和地下水关系,提出流域尺度植被指标与地下水位变化的耦合方法,揭示场地尺度植被利用地下水规律,建立识别优势植被对地下水依赖程度的方法体系,为基于生态环境保护的地下水开发利用提供科学依据。

    采用分析根系耗水来源的氢氧同位素技术,揭示了旱柳、杨树等乔木生长受水分胁迫机理以及水分恢复期植被根系吸收水分来源与分配机制,计算出毛乌素沙地与黄土高原过渡地带旱柳、杨树等乔木人工栽植间距应大于6.4米,为毛乌素沙地等干旱区植被生态环境防治提供了科学依据。

    (作者系中国地质调查局科技外事部科研处四级调研员)

     
    地下水相关科技创新平台简介

    资源、环境与生态问题已成为事关人类发展前景的全球性问题。近几十年来,随着人口急剧增长与经济快速发展,世界工业化、城市化进程不断加快,人类活动已成为全球变化的重要驱动力。在经济全球化、区域一体化不断深化的推动下,各国经济发展对相互之间资源、环境与生态的影响不断加大,人类进入了生态全球化时代。面对前所未有的重大而紧迫的全球性环境问题,世界各国在持续努力探索解决之道。党的十八大从新的历史起点出发,做出“大力推进生态文明建设”的战略决策;习近平总书记从新时代基本方略的高度提出要树立“两个共同体”理念——“人类命运共同体”理念与“山水林田湖草生命共同体”理念,为推进全球经济社会发展指明了方向,地质调查工作迎来了新的转型发展。地质调查工作如何适应与服务全球与国内生态文明建设并推动全球与区域问题的解决,亟待深入思考。

     

    11990~2015年不同国家矿产资源人均开采量与消费量变化

    地球系统问题的全球性与区域性

    20世纪50年代以来,人类活动对地球系统影响的程度和频度发生了急剧变化,人类施加于地球系统的各种压力进入“大加速”时期,地球从全新世跨入了新的地质年代——人类世。人类活动对地球系统的影响已经接近或超过自然因素引发的环境变化,并正在继续加剧,有可能产生不可逆转的后果。在第23届联合国气候大会上,来自世界各国的科学家发出警告:地球系统越来越抵近危险的“临界点”。

    1. 全球自然资源开发从线性增长转变为指数增长,发展中国家增长尤为突出

    过去的100多年,矿产、水、土地等自然资源开发经历了从线性增长到指数增长的转变。

    (1)矿产资源:全球开采总量快速增长,发达国家主导矿产消费,发展中国家开采快速增加

    1901年以来,全球矿产开采总量经历了缓慢增长、快速增长、稳定增长与急剧增长的变化。与1901年比较,2015年全球矿产开采总量增长了32.0倍,其中化石能源增长14.6倍,金属矿石增长41倍,非金属矿石增长49.3倍。根据开采量增长情况,矿产资源开发可划分为4个阶段:1945年以前,矿产开采量缓慢增长,年均增长0.59亿吨,人均开采量1.73吨;1946~1973年,矿产开采量快速增长,年均增长6.40亿吨,人均开采量增长到5.78吨,年均增长4.0%;1974~1997年,矿产开采增速减缓,年均增长6.15亿吨,人均开采量增至6.34吨,年均增长0.4%;1998~2015年,矿产开采量急剧增长,年均增长16.05亿吨,人均开采量增至9.01吨,年均增长2%。

    近几十年来,全球矿产开采与消费格局发生了重大变化。从开采来看,20世纪90年代中期之前,OECD国家主导全球,开采量占全球的41.8%,之后开采量占全球比例不断降低,到2015年降至23.0%,并且自2007年开始由增长转变为下降趋势;金砖国家开采量快速增长,在1995年超过OECD,占全球比例由1995年的37.9%升至2015年的51.6%。从消费来看,直到2007年,OECD国家消费量呈不断增长趋势,1990~2007年平均占全球总量的52.1%,2007年之后消费量降中趋稳,近年来稳定在295.42亿吨左右,占全球比例降至2015年的36.4%;金砖国家消费量在2000年之后快速增长,年均增长6.3%,在2010年超过OECD国家,到2015年增至360.57亿吨,占全球总量的44.0%;其余国家矿产消费量保持稳定增长趋势,年均增长3.1%。

    全球资源治理体系变革滞后于全球矿产开采消费格局的变化。1990~2015年,OECD国家人均矿产消费量大大高于其人均开采量,平均高出42.2%,且这一比例有增大的趋势。这表明,发达国家所开发的矿产根本满足不了其消费需求,通过进口越来越多的原矿石、矿产品与各种制成品来补充。金砖国家、其余国家人均开采量一直大于其消费量,说明发展中国家所开采的矿产在满足本国需求之外,有相当比例以原矿石、矿产品、各种制成品等形式出口。以金砖国家为例,2015年矿产开采量14.6吨/人,消费量11.7吨/人,在满足本国需求的同时,每人平均为其他国家贡献了2.9吨的矿产。目前的全球资源治理体系与发展中国家的贡献不相适应,亟需变革,以促进全球资源优化配置。

    (2)水资源:开采总量保持增长态势下呈现出显著的区域分化

    全球水资源开采在总量持续增长态势下呈现出显著的区域性差异。1901年~1950年,全球水资源开采量缓慢增长,由6713亿立方米增至12265亿立方米,年均增长1.3%;1951年~1980年,水资源开采量快速增长,年均增长3.2%;1981年以来,水资源开采量增速趋缓,年均增长0.8%。OECD国家水资源开采量在1980年由快速增长转变为稳定波动趋势,近年来稳定在9200亿立方米,占全球总量的23%。金砖国家水资源开采量自20世纪60年代以来保持快速增长的趋势,1960年~2000年年均增长2.4%以上,2000年以后增速有所减缓,到2015年增至17500亿立方米,占全球总量的43.7%。全球水资源开采量增长的主要原因是灌溉农业的快速发展与农业经济的持续增长。中国、印度等新兴经济体农业快速发展,加上持续的工业化和城市化,用水量有较大幅度的增长;欧盟、美国等发达经济体由于越来越多地进口工业制造产品与粮食,同时技术进步促使工业与城市用水下降,用水量自以前的增长转变为稳定或下降。

    地下水开采量快速增加,部分发展中国家含水层疏干问题严重。全球地下水开采量自20世纪60年代的3120亿立方米增至2010年的9820亿立方米,增长了3倍多。与水资源类似,地下水开采亦呈现出显著的区域差异。发达国家地下水开采在经历了一段时期的快速增长后已趋于稳定或缓慢下降。例如,美国地下水开采1950年~1980年保持了30年的增长,之后趋于稳定。发展中国家地下水开采自20世纪七八十年代以来处于快速增加的态势。例如,埃及1972年~2000年地下水开采量增长了6倍。地下水开采主要集中在亚洲国家,印度、中国、巴基斯坦、伊朗、孟加拉国等5个国家地下水开采量占全球总量的53.2%。地下水开采量的快速增加导致部分地区地下水位持续下降,引发了严重的生态环境问题,如泉水消失、湿地萎缩、地面沉降、海水入侵等。

    (3)土地资源:城市与农业用地持续扩展,生态空间不断萎缩

    1901年~2015年,全球土地利用变化的趋势是拓荒草原与森林来扩展农业用地,开发农业用地来扩展城市和基础设施建设用地,森林、草原、湿地等生态空间不断萎缩。农业用地面积扩展趋势趋于减缓。1901年~1955年,全球农业用地面积快速增长,年均增长0.88%,占全球土地面积的比例由20.6%增至33%;1955年~2015年,农业用地面积增速趋缓,年均增长0.23%,约占全球土地面积的38.0%。从区域上看,欧盟、东欧和北美的耕地面积有所下降,而南美、非洲和亚洲的耕地面积呈扩大态势。全球森林面积不断减少。1901年~1960年,森林面积平均以每年减少0.18%的速度逐年缩小,1960年以后森林面积缩小速度减缓,年均减少0.1%。

    城市化以前所未有的速度在扩张。遥感图像分析表明,全球城市面积6587.6万公顷,占全球土地面积的0.51%。城市用地占土地面积比例最高的地区是西欧(2.11%),其次是东亚(0.97%)、北美(0.72%)、东南亚(0.63%)。据统计,1950年~2015年人口大于1000万的城市群数量由2个增加到29个,人口500万~1000万的城市群数量由5个增加到45个。联合国粮农组织(FAO)估计,目前城市面积以每年200万公顷的速度扩展,80%的土地来自于农业用地。虽然城市占用土地面积比例很小,但是由于城市集聚了全球一半以上的人口,城市发展对生态环境的影响是巨大而深远的。

    2. 全球生态环境恶化趋势加剧,区域分化明显

    在不断加快的世界工业化、城市化进程作用下,气候变暖、自然灾害、水土污染等日益成为影响全球发展的重大生态环境问题。

    (1)二氧化碳等温室气体浓度不断攀升,全球气候变化加剧

    根据观测数据,大气中二氧化碳等温室气体浓度上升呈加剧趋势。1901年~1960年,大气二氧化碳浓度由296ppm增至316ppm,年均增长0.11%;1960年之后,增长速度逐渐加快,1961年~1997年均增长0.36%,1997年~2015年均增长0.55%,2015年大气二氧化碳浓度增至399.57ppm。大气二氧化碳浓度升高的主要原因是化石燃料燃烧和水泥生产排放了大量的二氧化碳。2015年化石燃料燃烧与水泥生产排放了360.2亿吨二氧化碳,是1990年的1.6倍。

    发展中国家开采了越来越多的化石能源,来满足发达国家的能源消费需求。在世界经济发展竞争加剧的背景下,很多发展中国家为了获得竞争优势,降低或放松了环境标准要求,推动高耗能、高污染、高碳产业发展;而发达国家对环境标准要求不断提高,以提高本国环境质量和生活舒适度。受此影响,高碳产业可能从环境标准高的发达国家向环境标准宽松的发展中国家转移,从而导致碳排放转移。全球碳计划(GCP)对1990年~2015年二氧化碳排放量估算表明:OECD国家因消费造成的碳排放大于其生产造成的碳排放,且差值越来越大;相反,金砖国家生产造成的碳排放大于其消费造成的碳排放,差值亦越来越大。这说明,发展中国家开发了本国越来越多的化石能源,加工、制造成各种产品出口到发达国家,承担了碳排放量上升与环境污染的代价。

    (2)重大突发性地质灾害呈上升趋势,经济损失快速增加

    全球重大地质灾害发生频次不断上升。联合国国际减灾战略机构EM-DAT灾害数据库收集了各国发生的重大自然灾害。入库灾害至少满足下列条件之一:造成10人以上死亡;100人以上受到灾害影响;政府宣布应对灾害紧急状态;政府在救灾过程中呼吁国际援助。1940年~2015年,全球发生重大崩塌、滑坡、泥石流地质灾害697次,造成6.5万人死亡,有记录的经济损失约89.4亿美元。上世纪40年代到80年代初重大地质灾害增长较慢,80年代以后发生频率快速增加,从80年代初的年均不足10次增加到近10年的年均18次。虽然发生频次增加,但是因灾死亡人数没有明显增长,单次地质灾害造成的死亡人数总体上是下降的,从1970年~1979年的136人/次下降到近5年的38人/次,说明各国地质灾害防治取得了一定成效。然而,地质灾害造成的经济损失自80年代以来快速增加,从70年代的平均每年0.14亿美元增加到近10年的平均每年1.76亿美元。

    不同国家地质灾害发生与防治情况存在显著差异。美国1960年~2009年地质灾害共造成336人死亡,直接经济损失12.4亿美元(按1960年折算)。1970年以后,美国地质灾害造成的死亡人数保持在很低的水平,平均年死亡人数在4人以下;1985年以前直接经济损失呈快速增加趋势,之后直接经济损失则呈减少的趋势。墨西哥1997年以前地质灾害发生在低水平波动,平均每年发生10次左右,平均每年导致近14人死亡;1998年以来,地质灾害显著增加,平均每年发生的地质灾害增加至86次,平均每年导致50人以上死亡。尼泊尔1971年~1992年发生地质灾害频次保持稳定,多在19次上下波动;1993年以后发生频次明显增加并呈周期性波动,平均每年发生120次以上,在高发年可达380次以上。

    (3)全球水土污染处于上升态势

    已有数据研究表明,全球水土污染呈上升趋势,随着部分工业企业(特别是高污染企业)由发达国家向新兴市场国家转移,新兴市场国家水体和土壤面临着越来越大的污染压力。

    地表水和地下水污染日趋严重。据联合国估计,全球每天大约有200万吨工农业和生活废弃物排入地表水体中,全球每年污水产生量高达1500立方千米。在发展中国家,80%的污水未经处理直接排放到河流、湖泊和海洋中。世界卫生组织统计显示,全球有8.84亿人缺乏安全饮用水,全球88%的腹泻与不安全饮用水、缺乏卫生条件有关,大部分分布在发展中国家。在快速城市化和农业种植区,地下水中的氮浓度不断上升,地下水质趋于恶化。在人类活动的作用下,孟加拉国、缅甸、阿富汗、柬埔寨、印度、中国等地区发生了地下水砷污染,影响了3500万~7500万人口的饮水安全。土壤污染问题在发达国家和发展中国家普遍存在。由于长达200年的工业化过程和现代工农业的发展,欧洲土壤污染严重。据欧盟调查,38个欧洲国家发现大约有250万个场地存在污染风险,其中有34.2万个已被确认为污染场地,需要进行修复。由于土壤污染的隐蔽性和复杂性,土壤污染问题在很多国家尚没有引起足够重视。

    地球系统问题解决的理论框架 

    不断加速的工业化、城市化与全球化耦合在一起对地球系统产生了前所未有的影响,促使人们必须从全球尺度去认识地球系统的变化机理;同时,不同区域或国家自然资源与生态环境变化出现了明显分化,与人类相互联系最为密切的近地表圈层资源、环境与生态问题呈现显著的区域性特征,促使人们必须从近地表圈层去认识地球系统的变化机理。在问题驱动下,随着全球观测、信息等技术进步,地球科学形成了一门新的分支——地球系统科学;在地球系统科学理论指导下,聚焦近地表圈层形成了一个新兴领域——地球关键带。

    近年来,我国从生态文明建设实践出发,提出了“构建人类命运共同体”和“山水林田湖草生命共同体”的理念。“人类命运共同体”的内涵是从生态、经济、政治、合作等方面构建全球治理体系,推动形成新型国际关系和国际新秩序;在生态方面强调生态环境问题无边界,保护地球系统是全人类的共同责任。“山水林田湖草生命共同体”的内涵是按照生态系统的整体性、系统性及其内在规律,统筹考虑自然生态各要素、山上山下、地上地下、陆地海洋以及流域上下游,进行整体保护、系统修复和综合治理。由此,学术界与政界在应对人类面临的地球系统问题方面高度契合,共同构成了完整的理论框架。

    1. 地球系统科学:服务构建人类命运共同体

    地球系统科学把地球看成一个由相互作用的岩石圈、水圈、大气圈、生物圈等圈层构成的统一系统,重点研究各组成部分之间的相互作用,了解整个地球系统的过去、现今及未来的行为,为全球生态环境问题的解决提供理论基础与对策方案。上世纪80年代以来,地球系统科学以全球气候变化研究为重点,技术方法不断发展,研究内容不断丰富,研究体系日趋完善与成熟。

     

    地球系统问题解决的理论框架

    (1)以观测、机理、建模与解决方案为重点,地球系统科学研究取得重大进展

    地球系统观测网不断扩展与升级,地球系统监测能力不断增强。美国NASA于1991年建立地球观测系统(EOS),利用卫星与其他手段对全球陆地表面、生物圈、地球空间、大气以及海洋进行长期观测;EOS之后,启动了地球系统任务(ESM),加深对气候系统与气候变化的认识;2017年,启动了下一代联合极轨卫星系统,用于天气预报和环境监测。美国地质调查局自1972年起陆续发射LandSat系列卫星,用于探测地球资源与环境,包括调查地下矿藏、海洋资源和地下水资源,监视农、林、畜牧业和水利资源利用,监测自然灾害和环境污染等。法国国家空间研究中心自1986年开始研发SPOT系列卫星,进行土地利用/覆盖变化、植被监测、自然灾害评估等。欧盟与欧洲航天局自2005年资助地球观测计划——全球环境与安全监测系统(GMES),由遥感卫星与陆地、海洋、大气等监测传感器组成,2013年更名为“哥白尼计划”,以扩大地球观测计划在公众中的影响力。

    地球系统变化与过程机理研究不断深化,揭示了地球系统要素不同时空尺度下的变化规律与影响。地球系统变化包括大气过程、海洋过程、陆地过程、冰冻圈过程等,这些过程相互影响、相互作用。由于碳循环是地球系统物质和能量循环的核心,全球碳循环及其对全球变化的响应研究一直是被广泛关注的前沿问题。人们对岩石圈、陆地生态系统、海洋、大气以及人类社会等碳库的储量、在全球碳循环中的地位及其作用机制有了深入的认识。人们认识到土地利用、覆盖变化是造成全球变化的重要原因,很多学者对土地利用变化引起的区域气候、土壤、水文、地质等因子变化及其对生态系统影响进行了大量研究。针对全球变化的生态系统影响,学者从植物群落、植物生理生态、地下生态、水生态系统、生物入侵、生物多样性等方面开展了深入研究。

    先后建立了多个地球系统模拟模型,地球系统变化预测能力大幅度提升。上世纪80年代以来,很多研究机构陆续开展了大气模式、海洋模式、陆面模式、海冰模式等地球系统模拟模型的研发和应用。2000年美国NASA提出构建地球系统建模框架ESMF,包括核心框架、天气及气候建模、数据同化应用等,为地球系统建模提供了一个标准的开放资源的软件平台。ESMF发展至今,已经拥有40多个模型,包含大气圈模型、大气动力学/物理学相关模型、海洋模型、陆地和陆表模型、水文学/分水岭模型等。欧洲提出了欧洲地球系统模拟网络(ENES)计划,包括地球系统模拟集成和气候资料存储与分发两个计划,目标是建立一个高效的欧洲地球系统模拟和气候预测系统进行集成模拟研究。日本在上世纪90年代启动了“地球模拟器”计划,于2002年研制成功,并在国际上率先开展了超高分辨率的全球气候系统模式的发展和模拟研究。中国科学院开发了地球系统模式CAS-ESM,集成了大气、陆面、陆冰、海洋、海冰等分量模式。

    应对全球变化提出了系列减缓、适应方案,服务制定政策、编制规划和措施决策。基于地球系统观测、机理研究与模型模拟预测,开展全球变化的适应与可持续发展研究是地球系统科学研究的重点之一。2015年,《联合国气候变化框架公约》近200个缔约方在巴黎气候变化大会上达成《巴黎协定》,将所有国家都纳入了呵护地球生态确保人类发展的命运共同体当中,目标是把全球平均气温较工业化前水平升高控制在2℃之内,并为把升温控制在1.5℃之内努力。越来越多的研究强调通过人类自身行为的改变,主动适应地球系统变化;通过土地系统和景观的重新设计,协调生态系统服务和人类福祉之间的相互关系;通过社会-经济-环境可持续性的综合协同,降低地球系统变化的风险。

    (2)促进自然科学与人文科学融合和推进更加平衡的多学科集成,成为地球系统科学发展的未来趋势

    国际科学理事会(ICSU)于2010年提出了面向全球可持续发展地球系统科学面临的5大挑战:一是如何提高对未来环境条件及其影响预测的实用性;二是如何发展、增强和集成必要的观测系统用以管理全球和区域环境变化;三是如何预见、识别、避免与管理破坏性全球环境变化;四是采取什么样的制度、经济和行为变化以迈入全球可持续发展路径;五是如何在技术研发、政策制定与社会响应中鼓励创新来实现全球可持续性。

    面临这些重大挑战,地球系统科学将会从自然科学主导的研究转变为有广泛的科学和人文领域参与的研究,从单学科主导的研究转为更加平衡的多学科集成研究。“未来地球计划”未来10年将集中在3个方面:动态行星地球——观测、解释、了解和预测地球、环境和社会系统趋势、驱动力和过程及其相互作用;全球发展——获得管理食物、水、能源、材料、生物多样性和其他生态系统功能和服务所需要的知识;可持续性转型——了解转型过程与选择,评估跨部门和跨尺度的全球环境治理与管理战略。

    中国所提出的构建人类命运共同体理念,得到了国际社会的高度认可。这一理念被联合国纳入相关决议,与“未来地球计划”等一起共同引导与推进全球生态文明建设。

    2. 地球关键带理论:服务构建山水林田湖草生命共同体

    地球关键带是指异质的近地表环境,岩石、土壤、水、空气和生物在其中发生着复杂的相互作用,在调控着自然生境的同时,决定着维持经济社会发展所需的资源供应。地球关键带科学为近地表圈层地球系统研究提供了一个整体框架,在此框架内开展全面、系统、持续、深入的跨学科研究。可以说,地球关键带科学是地球系统科学在近地表圈层的具体实现,为地球系统科学提供区域理论基础并服务于区域与全球可持续发展。

    (1)融合地质、水文、土壤、生态等学科,地球关键带科学快速发展

    通过探索,地球关键带科学形成了一条整合研究的技术框架:循环上升的调查-监测-研究体系。通过调查、监测和研究的循环进行,不断深化对关键带及其过程时空变化规律的认识;在此基础上,通过对图件、数据和成果集成分析,针对管理者、科学家、社会公众等服务对象生产各种产品,将关键带研究成果最大程度地传递给社会。

    调查是了解地球关键带组成与结构的基础,也是部署监测和开展建模的基础。2012年,美国地质调查局发布了其核心科学体系科学战略(2013~2023),明确将地球关键带作为其研究的核心靶区,提出针对关键带的结构和过程进行调查,建立关键带3D/4D地质框架模型。针对土壤侵蚀、盐渍化、有机质减少和滑坡等土壤环境问题,欧盟委员会发布了土壤保护主题战略,将传统的1~2m深的土壤层扩展到地表至基岩之间的未固结土层进行调查和研究。关键带调查的主要目标之一是回答“关键带如何形成与演化”这一基本科学问题。欧盟资助的欧洲流域土壤变化项目选择了代表土壤形成不同阶段的4个地区进行调查研究,分析确定关键带形成演化的影响因素和关键带生态服务的可持续性。

    监测是了解地球关键带随时间变化的基础,为建模提供所需的输入数据和校正数据。美国国家科学基金会于2007年启动了关键带观测计划,先后建立了10个关键带观测站,以流域为单元,对关键带各种要素进行长期观测。德国亥姆霍兹联合会于2008年启动了陆地环境观测建设项目,先后建成了4个陆地环境观测站,为区域尺度气候变化研究提供地下水、包气带水、地表水、生物和大气的基础观测数据。法国则通过提升现有的“河流盆地网络”所属的观测站,建设关键带观测设施,以流域为单元对关键带要素进行观测。欧盟委员会于2009年启动了“欧洲流域土壤变化”项目,选择4个典型地点建立了地球关键带观测站,将土壤监测作为长期观测的重点。

    建模对于深化对关键带形成、运行与演化的科学认识具有重要的作用,始终是关键带科学研究的重要领域之一。例如,美国关键带观测计划的重要目标之一是建立能够描述关键带生态过程、生物地球化学过程和水文过程的系统模型,定量预测气候变化、地质作用和人类活动下关键带结构和功能的响应。关键带过程模型大致可分为两类:一类是描述单个过程的数学模型,一类是描述多个过程叠加的耦合过程的数学模型。对于前者,目前已建立了较为成熟的模拟模型;而对于后者,是关键带建模的重点和难点,尽管近年来做了很多探索工作,耦合模型还远不成熟,仍在不断发展中。

    (2)随着地球关键带科学的形成与发展,或将促使地球表层研究发生科学变革

    地球关键带将与经济社会最密切的近地表环境作为独立的开放系统,为区域资源、环境和生态问题研究提供一个完整的系统框架。地球关键带科学研究尚处于探索阶段,近年的进展表明地球关键带科学有潜力促使地球表层研究发生科学变革,为经济社会面临的气候变化、生态系统管护、水资源安全、自然灾害防治等重大问题的解决展示了一种新的图景。未来地球关键带科学研究发展方向包括4个方面:开发一个统一的地球关键带演化理论框架;开发耦合的系统模型来探究地球关键带服务;开发一个集成的数据和测量框架并进行验证;建立多学科集成的地球关键带观测站。

    从国内生态文明建设的实践中,我国提出了“山水林田湖草是一个生命共同体”的理念。在内涵上,地球关键带与山水林田湖草异曲同工,前者侧重理论,后者侧重实践,目标均是推进区域生态环境治理。地球关键带科学是山水林田湖草系统治理的理论基础,后者则是前者与实践相结合的应用体现。地球关键带科学与山水林田湖草生命共同体理念共同构成了区域生态环境治理的理论框架,共同推进区域可持续发展。

    对地质调查工作的思考

    地球系统问题得到了政府与学术界的高度关注。在社会治理层面,围绕人类社会持续发展需求形成了“两个共同体”理念——人类命运共同体与山水林田湖草生命共同体。在学术层面,随着全球观测、信息等技术的进步,以问题为导向,地球科学形成了新的分支——地球系统科学,聚焦近地表圈层衍生了“地球关键带”新领域。由此,政府与学界在应对地球系统问题方面高度契合,共同构成了完整的理论框架。地质调查工作应树立人类命运共同体与山水林田湖草生命共同体理念,以地球系统科学理论为指导,以地球关键带为重点,加强调查、监测与机理研究,加强综合评价,服务和支撑生态文明建设。

    一是以地球关键带为重点加强综合调查评价。将地球关键带作为地质调查工作的重点靶区。按照统一的技术规范和标准,开展不同尺度的专业性基础性地质调查,充分反映地质框架的成土条件、成矿条件、水文条件等多种属性,建立地球表层三维地质框架模型。充分利用现代信息、网络、大数据等技术,加强区域问题综合评价,形成基础扎实、数据可靠、形式多样的综合评价产品,服务区域生态治理与自然资源综合管理。

    二是以服务生态保护修复为目标加强生态地质调查。根据自然资源管理与生态保护修复需要,选择典型地区探索开展生态地质调查,形成生态地质调查技术规范。根据自然资源勘查开发的源头保护、利用节约与破坏修复全过程需要,推进不同尺度生态地质调查,提出生态保护修复地质解决方案。

    三是以服务全球资源治理为重点加强全球问题合作研究。以“一带一路”倡议为抓手,加快推进矿产资源勘查开发国际合作,加强产能合作,促进全球资源优化配置。立足我国优势,在前沿与关键领域,策划实施地学大科学计划,以全球岩溶动力系统资源环境、地球化学调查、青藏高原特提斯演化与资源-环境效应等为重点,推进国际地学大计划合作。

    四是以资源环境要素为重点加强地球系统探测与监测。采用卫星遥感、航空遥感等对地观测技术,定期采集全球与区域资源环境要素数据。协调、整合、新建观测站点,形成地球关键带综合监测网。开展区域自然资源数量、质量与生态综合监测,及时提出预警。围绕深部资源勘查开发与灾害防治需要,加强地壳深部探测。

    五是以提升自然资源管理决策支撑能力为重点加强地质大数据建设。整合现有地质、资源、环境、生态等调查数据,构建地质大数据核心数据库体系。建立资源环境要素数据动态更新机制,实现地质大数据与自然资源管理需求在时空上的契合。与经济、管理、社会等相关基础数据无缝链接,为自然资源管理与资源环境治理提供全方位支撑。

     

    地球关键带研究的调查-监测-研究循环体系框架

    六是以过程机理研究为基础加强综合评价。基于三维地质框架模型,加强地球系统物理过程、化学过程、生物过程的机理研究,建立地球系统或地球关键带模拟模型。基于机理模型,考虑不同社会经济发展情景,对所面临的问题进行综合评价,有针对性地提出地质解决方案。

    (作者单位:自然资源部中国地质调查局发展研究中心)

    解决地球系统问题需要新站位

     

    2002年10月,应埃及总统穆巴拉克夫人之邀,参加沙姆沙赫国际生态保护会议时,考察金字塔。

    袁道先:地质学家(1933年8月24日出生于浙江诸暨)

    1952年毕业于南京地质探矿专科学校。1991年当选为中国科学院学部委员(院士)。国土资源部岩溶地质研究所研究员。

    20世纪60-70年代提出岩溶地下水最基本的特征是含水介质不均匀性的概念,指导水文地质勘查工作。80年代建成岩溶水文地质实验场,建立了包气带地下水运动机制,调蓄功能的数学模型。总结中国区域岩溶的基本特征,进行全球岩溶对比。总结了中国开放系统和半开放半封闭系统岩溶发育的地球化学机制。用岩溶地球化学场及示踪技术验证钓突泉的补给途径。研究岩溶作用与全球碳循环的关系,以石笋信息研究全球变化,提出岩溶动力学。代表作有《岩溶地区供水水文地质工作方法》《岩溶学词典》、《碳循环与岩溶地质环境》。

    附件《院士传记》之袁道先

     

    袁道先

    2018年,自然资源部科技创新团队——自然资源部中国地质调查局发展研究中心地质调查主流程信息化团队有关地质填图PRB三维建模技术研究成果获国家发明专利一项。专利名称为“基于地质路线(PRB)过程双重建模生成三维地质图的方法”,专利号为ZL201410522738.4,授权公告日为2018年6月26日。

    2010年以来,地质调查主流程信息化团队在不断完善数字地质调查理论与方法、实现地质调查全流程数字化的基础上,针对国内外常规三维地质建模现状、特点和需求,以地质填图为核心开展三维地质建模研究,通过地质填图过程直接把传统方法与三维建模技术方法融合的方式重造地质填图流程,基本形成我国三维地质图智能建模技术方法体系,初步实现了数字地质填图从二维向三维提升。

    地质填图PRB三维建模技术始于野外地质路线和实测地质剖面,通过PRB路线数据,在水平方向上进行地质图建模,在垂直方向上,确定地质体往下延伸或(演化)的形态,通过地质图框架约束,进行水平和垂直方向联合双重约束,构建三维地质图。同时提出了地质填图PRB 双重约束动态三维建模相关组合算法,为提高填图精度提供了数学模型支持。初步形成了自主的智能化地质调查二三维GIS平台和建模工具。在多个试点项目中的应用,表明该软件是一个以地质填图为核心开展地质建模的通用软件工具。

    地质填图PRB三维建模技术对重造地质填图流程具有重要作用,使地质填图更加智能,效率和精度更高。这种建模方法解决了建模效率低下问题,通过三维建模组合算法和工具等,地质人员把当前认识的地质体三维空间关系通过模型动态显示,可以对地下空间实体做出更精细的模拟与多维视角表达,把以可视化为主要目标的建模提升到与业务流程一致的研究+动态建模模式,并在野外调查阶段对地质体的空间关系进行反复认识和研究,及时纠正和逐步完善三维模型,对野外地质工作具有很好的指导意义,为提高地质调查精度和研究精度提供多维视角奠定基础。

    团队目前结合地质对象描述知识框架的构建,并与基于孔斯曲面拟合算法相结合,进一步完善了地质填图PRB三维建模技术流程。该成果在第10届国际三维地质建模技术大会做技术报告和宣传,团队研究成果得到了各国参会专家和同行的一致认可,为我国数字地质调查技术更广泛的国际推广应用奠定基础。

     

     

     

    地质填图PRB三维建模技术获国家发明专利一项

     

    2002年10月,应埃及总统穆巴拉克夫人之邀,参加沙姆沙赫国际生态保护会议时,考察金字塔。

    袁道先:地质学家(1933年8月24日出生于浙江诸暨)

    1952年毕业于南京地质探矿专科学校。1991年当选为中国科学院学部委员(院士)。国土资源部岩溶地质研究所研究员。

    20世纪60-70年代提出岩溶地下水最基本的特征是含水介质不均匀性的概念,指导水文地质勘查工作。80年代建成岩溶水文地质实验场,建立了包气带地下水运动机制,调蓄功能的数学模型。总结中国区域岩溶的基本特征,进行全球岩溶对比。总结了中国开放系统和半开放半封闭系统岩溶发育的地球化学机制。用岩溶地球化学场及示踪技术验证钓突泉的补给途径。研究岩溶作用与全球碳循环的关系,以石笋信息研究全球变化,提出岩溶动力学。代表作有《岩溶地区供水水文地质工作方法》《岩溶学词典》、《碳循环与岩溶地质环境》。

    附件《院士传记》之袁道先

     

    袁道先

    地下水是全球经济一体化的重要资源保障,为支撑“一带一路”国家战略,中国地质调查局部署了“中国及周边地区地下水资源与地质环境系列图编制”子项目,由中国地质调查局水文地质环境地质研究所承担,主要目标任务是通过亚洲重大地质环境问题研究,与亚洲主要国家合作编制《亚洲地下水系列图》和续编《亚洲地下水环境系列图》工作,中国地质科学院岩溶地质研究所参与开展了中泰岩溶水文地质对比研究。项目周期为2013年至2016年,是“全国系列基础地质综合编图项目”的子项目,实施单位为中国地质调查局发展研究中心。

    中国及周边地区地下水资源与地质环境系列图编制”项目取得重要成果主要包括《亚洲地下水系列图》、《亚洲地下水环境系列图》2套6张1:800万国际性地质制图系列图件;编写了《亚洲地下水与环境》1部专著;完成“澜沧江-湄公河流域跨界含水层研究”、“克鲁伦河流域地下水资源与环境地质”与“黑龙江-阿穆尔河流域生态地质环境”3份专题报告;编制《亚洲地下水与环境图集》1部。该系列研究成果,重要的洲际性文献资料,可为绿色“一带一路”建设、资源开发和重大基础设施建设提供水文地质、地下水资源与地热资源的重要的资料和数据依据,对于亚洲地下水资源、地热能源和环境地质研究具有推动性作用。该系列成果尤其是《亚洲地下水系列图》被联合国教科文组织在跨界含水层研究与管理中应用,被作为亚洲跨界含水层管理的基础数据;诸多成果已被国内和亚洲国家许多科研院所、大学作为水文地质、地下水资源、地热研究和自然资源开发利用的基础资料广泛应用。《亚洲地下水环境系列图》可为保障我国与周边国家和谐的地质环境关系提供重要依据,为合理开发利用资源和更好地保护环境提供科技支撑,该系列成果还填补了许多国际上的空白,对亚洲乃至世界水资源研究将起到重要作用,对解决国际资源环境矛盾和生态环境问题具有深远的科学与政治意义。

    一、出版《亚洲地下水系列图》(1:800万)填补了洲际地下水资源及地热图件亚洲地区的空白,建立亚洲地下水资源与环境信息平台,为亚洲各国自然资源开发利用、水资源规划、地质环境保护防灾减灾提供科学依据。

    《亚洲地下水资源图》是通过亚洲地下水系统的划分,提出气候地貌为主控依据的宏观地下水系统划分的准则,综合气候地貌、地质构造、水文地质结构、地表水系等因素,划分了亚洲11个地下水系统36个子系统,并评估了不同类型地下水的补给和可采资源量,是首个亚洲地下水资源分布的成果图件。

    《亚洲水文地质图》是在张宗祜院士1992年主编的“亚洲水文地质图”和地质所最新编制的“国际亚洲地质图”基础上,重新划分了亚洲地下水赋存类型及富水程度,将亚洲地下水划分为孔隙水、岩溶水、裂隙孔隙水和裂隙水,更为准确地揭示了亚洲地下水的水文地质特征的循环规律。

    《亚洲地热图》反映了亚洲的地热存储类型,将亚洲热储类型划分为现代火山型、隆起断裂型和沉积盆地型,并且反映了大地热流及其分布规律,表示了3000 m深度地温场及其地热资源分布的内在规律。

    二、编制《亚洲地下水环境系列图》(1:800万)以资源可持续利用和地质环境保护并重为理念,应用地下水与环境地图时空认知理论,通过国际间合作总结了亚洲地下水与地质环境关系特征和规律,开展了与地下水相关地质环境问题研究,剖析了亚洲地下水质量状况,归纳了地下水过量开发的地质环境负面效应,地下水与生态环境的依存关系,探索了地下水环境地图时空认知及变化规律总结研究亚洲地下水与地质环境的特征和规律,开展地质环境系列图件编制及相关地质环境问题研究,剖析我国及周边国家地下水资源开发所引发的环境地质问题,开展黑龙江(阿穆尔河)流域主要地质环境问题专题研究。工作是在研究国际编图技术与亚洲地质环境编图特点基础上,借鉴已出版的国际编图成果,特别是美国和欧洲等国家地质环境的编图模式,同亚洲地质环境特征及其问题相结合开展的。

    《亚洲地下水环境系列图》由亚洲地下水质量图,亚洲地下水开发地质环境效应图,亚洲地下水生态环境图三张图件和说明书组成,该成果分析了原生地质环境与现代全球变化及其人类活动的关系,将亚洲地质环境背景与地下水环境问题联系起来,建立了新的亚洲地质环境编图理念,反映与地下水密切相关的地质环境,揭示了地质环境时空特征及分布规律。走在了国际同类编图研究成果前列,在编图内容和表现形式上体现出亚洲地质环境特色。

    《亚洲地下水质量图》亚洲地下水水质分带受到气候和地形地貌的主导和控制。地下水循环交替条件决定着地下水质量优劣,通过综合评价亚洲地下水质量编制的,研究了地质环境对地下水质量的影响以及对生命健康的危害。地下水的溶滤淡化和浓缩盐化作用的程度,划分出亚洲四大水质分带,其空间分布特征主要是由南北向中间的阶梯状地势、海岸带走向和气候的综合影响的结果,自补给区淡水带,到径流区淡水-微咸水带,逐渐演变成微咸水-咸水带,直至到大陆盐化作用的咸水带。

    亚洲地下水开发地质环境效应图首先根据地下水开发利用所引起的地质环境负面效应,作出单要素分析图件,然后以地下水开采引起的地质环境负效应为依据,以不同的地形地貌和含水岩组类型作为重要判断标准,划分出地下水开采的6个地质环境效应分区是:平原盆地地下水强烈开采大范围缓变危害效应区;平原盆地地下水一般开采无明显危害效应区;岩溶地下水局部开采易发突变性危害效应区;矿区地下水疏干开采易发突变性危害效应区;丘陵山地地下水分散开采无明显危害效应区;其他地下水零星开采常态效应区。归纳出地下水不合理开发引起的地质环境负效应主要危害有:区域地下水位持续下降、地面沉降、岩溶塌陷、地裂缝、海水入侵、油田地下水开采水位下降和矿区采空塌陷等7大危害。

    《亚洲地下水生态环境图》是用系统理论将地下水与生态环境建立起有机的联系,反映地下水生态环境主要类型、时空特征分布规律。揭示大气圈、岩石圈、水圈与生物圈之间的物质迁移和能量转换关系尤其是气候地貌对地下水生态环境的控制作用,结合人类和其他生物的改造作用,确定出地下水生态环境三大类型分别是:地下水调蓄支撑生态环境、地下水涵养维持生态环境、地下水贫乏脆弱生态环境。主要分区有:沿海口岸三角洲与滨海低地地下水调蓄支撑区,平原、盆地及丘陵低地地下水调蓄支撑区,低山丘陵地下水涵养区,高原山地地下水涵养区,高寒冻原地下水(生态)涵养区,沙漠、戈壁地下水贫乏区,黄土高原地下水贫乏区,岩溶石漠化地下水贫乏区。

    完成“澜沧江-湄公河流域跨界含水层研究”、“克鲁伦河流域地下水资源与环境地质”专题研究报告,对亚洲主要跨界含水层进行了评价,创建了跨界含水层和谐度定量评价的数学模型,建立了湄公河流域跨界含水层和谐度定量评价模型和指标体系,功能指标-社会经济管理指标-法律效应指标权重迭加的数学模型,并进行了跨界含水层定量评价,为跨界含水层研究提供了示范。

    三、实现亚洲地下水资源与环境地质空间信息技术共享建立了亚洲地下水资源与环境空间信息系统,解决了流域、国家、地区和单元等多尺度的信息元在洲际尺度上的信息处理问题;协调了不同年纪、不同时段等多时态的空间信息认知;规范了10种气候地貌类型、4种含水类型、3种地下水资源类型和3种热储类型等多类型的图面表达;图面结构合理、表现形式精细、色彩协调美观、科学普适易读。

    四、参与地调局《“一带一路”地质矿产资源图集》编制,服务国家决策。水环所与岩溶所共同参与编制了《“一带一路”地质矿产资源图集》中的地下水资源和地热资源图件,为服务国家决策提供了科学依据。

    五、中国与中南半岛岩溶地质对比研究,国际间专家携手共同提高科研水平。岩溶所与泰国自然资源与环境部地下水资源厅合作,在泰国中西部典型岩溶区开展了岩溶水文地质调查与碳循环监测、地球物理探测技术应用试验与研究工作,并建立了2个地下水与碳循环中泰联合监测站,对比中泰岩溶形态组合特征与发育环境差异,初步估计了泰国岩溶作用与碳循环强度。

    六、开展黑龙江(阿穆尔河)流域生态地质环境研究通过不同时段卫星遥感数据解译对比分析和实地考察验证,一是原生地质环境问题主要有地方病、多年冻土与冻胀融陷、界河坍塌等;二是次生地质环境问题主要有江河水质污染、城市地下水超采地下水位持续下降、矿山开采地面塌陷等;三是人类与自然共同作用下的生态地质环境问题包括土壤盐渍化、土地沙化、湿地退化、草场退化、森林退化、水土流失以及冻结层退缩等,这些问题的存在一方面是气候变化下自然生态缓慢的发展趋势,更重要的一方面是人类在发展社会经济的同时违背了自然规律,给大自然和人类造成重大损失。

    七、亚洲地下水与环境专著出版发行在即通过项目研究的不断深入,对大量的信息资料归纳分析,编撰了亚洲地下水与环境专著。

    八、《亚洲地下水与环境图集》即将付梓。为了更广泛体现编图成果的应用性,编辑了亚洲地下水与环境图集

     

    图片1_副本

    亚洲地下水系列图 

    图片2_副本

    亚洲地下水资源与环境空间信息系统 

    图片3_副本

    地下水与碳循环中泰联合监测站

    亚洲地下水与环境专著

    亚洲地下水与环境图集

    中国及周边地区地下水资源与地质环境编图成果支撑绿...