分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到3条相关结果,系统用时0.014秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:
    我国煤矿资源丰富,长期开发形成了巨大的可利用特殊地下空间,为发展地下生态城市创造了得天独厚的条件。据调查,我国现有煤矿地下空间约139亿立方米,到2030年,预计将达到241亿立方米,长度约160万千米,可绕赤道40圈。

    开发利用废弃煤矿地下空间,既可以避免煤矿采空区被充填造成极大的特殊地下空间浪费,又可以缓解地面城市发展面临的土地紧缺等问题,可为废弃矿井企业提供一条转型脱困和可持续发展新路径,不断推动资源枯竭型城市的转型发展。

    煤矿井下可利用空间的类别 

    煤矿经过长期开采会产生大量的地下空间,这些空间主要包括井筒、巷道、硐室和采空区。

    井筒是指在井工采矿或地下工程建设,从地面向矿体开凿的垂直或倾斜一类工程,垂直的工程称为立井,倾斜的工程称为斜井。井筒是矿井通达地面的主要进出口,是矿井生产期间提升运输煤炭(或矸石)、运送人员、材料和设备以及通风和排水的咽喉工程,是整个矿井结构最“牢固”的地方。

    巷道分为开拓巷道、准备巷道和回采巷道。一般来说,巷道空间上呈条带状,绵延数公里,断面形式为拱形和矩形。开拓巷道服务年限最长,服务于全矿井,准备巷道服务年限其次,服务于矿井的一个区域,回采巷道服务时间最短,基本随着采矿活动的结束而坍塌消失,很少能够保留下来。采矿活动结束,将对准备巷道和回采巷道进行封闭,封闭之后的空间会直接淹没在矿井积水或有毒有害气体中。因此,判断巷道可利用性时,需要考虑空间环境的恶劣性,再对其进行有针对性地改造、修复甚至直接放弃。

    井下硐室主要有排水泵房、变电所、避难硐室等。这些硐室空间大,直径一般在8米,直立高度一般为50米。煤矿井下硐室在设计之初普遍采用了高强支护材料和特殊的结构形式,服务年限一般较长,结构较为牢固。因此,矿井关停后,井下硐室的空间可利用性较好。

    采空区一般是指将地下煤炭开采完成后留下的空区。由于煤炭的赋存一般呈层状煤层出现,因此可以形成大片连续的采空区。一般来说,煤矿开采过程中,采空区顶板需要在特定时间自动垮落或被强制垮落,形成垮落区。顶板岩石会重新充填采空区,因此,煤矿采空区的空间利用局限性很大。

    煤矿地下空间的优缺点 

    废弃煤矿地下空间主要有三大优点:一是防护性和安全性优越。煤矿地下空间具有天然抗灾性,对于防御战争的空袭、核冲击、抗御地震破坏等明显优于普通浅层城市地下空间。二是空间环境条件较稳定。由于埋深较大,煤矿地下空间具有隔音隔震、低本底无辐射、恒温恒湿的特点,受外界影响小,冬暖夏凉。三是节省投资。由于煤矿地下空间在形成过程中已经进行了开拓和加固,因此废弃煤矿地下空间在开发利用时只需要稍加改造、加固和修缮即可,较新建地下工程空间可以节省大量投资。四是有利于就业安排,具有很好的社会效益。煤矿地下空间开发利用对于废弃矿井转型发展提供新的生命,可以缓解当地的就业问题,促进社会稳定,为资源枯竭型城市的转型发展提供新的思路。

    尽管煤矿地下空间具有上述优点,但在开发利用时需要考虑几个问题:

    一是煤矿地下空间结构稳定性和可靠性。在开发利用之前,需对围岩和支护结构进行全面评估,并采取措施进行修复和加固以提高其稳定性和可靠性。二是矿井地质条件与井下环境问题。煤矿地下空间埋深较大,地质条件复杂,地下水、地压、地热、瓦斯及其他有害物质等都会对其可利用性产生重要影响,在开发利用时需要额外注意并采取相应措施。三是提升运输及基本维护费用问题。煤矿地下空间埋深较大,地质环境复杂,二次开发利用时候,通风、进出口提升、巷道运输、排水以及照明等日常维护成本较高。而且,煤矿地下空间一般出口较少,在二次利用时提升运输能力稍显不足。

    煤矿地下空间开发利用的模式 

    基于煤矿地下空间的基本特点,研究人员和工程技术人员开发出多种二次利用模式,主要包括:

    地下储库。煤矿地下空间具有隔音隔震、低本底无辐射、恒温恒湿的特点,为此,利用煤矿地下空间作为地下储库最为适宜,这也是目前其最主要的开发利用模式。煤矿地下空间可以用来储存炸药、雷管等易爆有毒危险品,甚至作为地下水库等。

    博物馆、地下旅游和文娱活动场所。以煤矿地下空间作为博物馆、地下旅游和文娱活动场所在国内外已有较多实例。例如,德国鲁尔工业区的埃森煤矿在关停后改造成地下矿井博物馆,开展煤矿采矿科普教育、矿井旅游等活动,取得巨大成功,并于2001年被联合国教科文组织评为世界文化遗产。国内唐山开滦煤矿是2005年批准建设的全国首批28家国家级矿山公园之一,并被评为国家AAAA级旅游景区。

    开滦国家矿山公园运煤小火车 

    抽水蓄能电站。由于煤矿地下空间体积大且埋深较大,可以将其改造成抽水蓄能电站的地下水库,并将地面矿坑改建抽水蓄能电站的地上水库。在用电低峰的时候,利用便宜、多余的电力,将地下水库的水提升到地表水库中;在用电高峰时段再将地表水库的水向下排放到地下水库发电。目前,德国鲁尔区普斯波(Prosper-Haniel)煤矿正在建设一个抽水蓄能电站,将其埋深1200米、绵延26公里的井巷系统改造成一个100万立方米容积的地下水库。

    地下生态城市示范区。由于煤矿地下空间具有环境清洁、隔音隔震、天然抗灾等优势,可以构建地下宜居城市、地下房地产、地下轨道交通系统等,打造地下生态城市示范区。

    变废弃矿石为可利用资源 

    □田 敏

    矿产资源在我国的国民经济发展中起着举足轻重的作用,我国95%以上的能源、80%以上的工业原料、70%以上的农业生产资料等都来自矿产资源。

    早期受科技水平的限制,人们对矿石中矿物的使用具有单一性粗放性,矿石中低含量矿物或伴生矿物均作为废矿被抛弃,造成极大的浪费。经过长期的科学研究,矿物加工领域的工程师们已经取得了巨大进步,大量低含量或复杂伴生的可利用矿物能够被综合回收。但据不完全统计,全世界每年排出的矿业固体废物仍然在100亿吨以上。

    为了解决这些问题,科研人员通过长期研究,将废石变成了可利用资源。首先,科研人员利用高倍显微镜研究废石的矿物组成,探究其内部结构,尤其是不同矿物之间的连接架构,同时还要仔细了解不同矿物的生长粒度,分析每一种矿物内部的晶格形态。比如,标准石英矿物是由4个氧原子和两个硅原子组成的硅氧四面体,在分析该废石石英矿物时必须考虑其在自然界中是否受外力影响,氧原子被其他矿物如铝原子替换形成类质同相现象。因此,随着对废石中矿物性质的深入研究,将为下一步不同矿物分离奠定坚实的基础。

    玻璃制品在人类的生活中无处不在,其主要是以高品质石英矿物作为原料。石英矿物中的主要成分二氧化硅含量不同则制作的产品也不同,达到90%以上的可以制作玻璃器皿,达到98%以上时可以制作精密的光学产品,达到99.9999%以上时可以作为目前具有高科技性质的芯片原料。江西钨矿属蚀变规模不大的石英脉型钨矿床,废石中矿物含量达到40%~70%的为石英矿物。其内部晶型发育良好,杂质含量极低,具备成为制备高品质石英的原料。经过破碎-分级-物理除杂-化学除杂,利用石英无磁性、硬度较高耐磨性、耐腐蚀性、巨变温差下产生裂隙性等性质,可以生产出高品质石英原料的产品。

    废石中除石英矿物外,还有含量分别在10%~20%的萤石、长石、云母等矿物,萤石是无机盐工业的重要原料,长石在陶瓷工业具有举足轻重的作用,云母天然形态呈现片状,具有良好的弹性、韧性,广泛应用于电器、橡胶、塑料、造纸等行业。针对这几种矿物的不同晶体结构,采用具有针对性络合试剂,通过浮选工艺可以有效地分离,获得不同高纯度优质产品通过变废为宝,再次应用在不同的工业领域,创造更高的经济价值。

    通过采取综合利用技术,将几乎90%的废石变成可以利用的资源,从而实现“变废为宝”,既能产生重要的经济价值,又可以彻底解决土地污染,可谓一举多得。

    钨矿共伴生组分的综合回收 

    □张红新 赵恒勤

    世界钨矿资源储量比较丰富,发现的钨矿物和含钨矿物有20余种,但具有开采价值的只有黑钨矿和白钨矿,黑钨矿约占全球钨矿资源总量的30%,白钨矿约占70%。钨矿资源特点之一是共伴生矿床多,综合利用价值大。我国许多钨矿床伴共生有益组分多达30多种,主要有锡、钼、铋、铜、铅、锌、金、银等。

    根据矿石赋存状态的差异,有些共伴生组分可以在选矿过程中分离,比如锡、铜、铅、锌、萤石等,有些需要在冶炼过程中分离,比如金、银、铟、镓、铼、钪等稀有元素。对钨共伴生组分的综合回收方法的选择则需要根据矿石性质差异采用合适的工艺流程和设备进行分离,主要的分选方法有拣选法、重选法、磁选法、浮选法等,由于钨矿共伴生组分较多,几乎涵盖了所有的选矿方法。

    拣选法。根据物料中不同颗粒之间某些易被检测的物理特性差异,通过对颗粒的逐一检测和鉴别,然后以一定外力使欲拣颗粒分离出来的一种选矿方法。对颗粒进行逐一检测和鉴别,以及依靠外力分离欲拣颗粒,这是拣选不同于其他选矿方法的独特之处。手选是最古老、最简单的拣选。它是根据物料颗粒之间颜色、光泽、密度、硬度、形状等物理性质的差异进行分选的。手选法在黑钨矿中应用较多,通过手选可分选出黑钨矿和石英初级产品。

    重选法。根据矿物密度不同而分离矿物的一种选矿方法,进行重选时除了要有各种重选设备之外,还必须有介质,重选过程中矿粒受到重力(如果在离心力场中则主要是离心力),设备施加的机械力和介质的作用力,这些力的组合就使密度不同的颗粒产生不同的运动速度和运动轨迹,最终可使它们彼此分离。通过重选法可以得到密度较大的锡石。

    磁选法。基于被分离物料中不同组分的磁性差异,采用不同类型的磁选机将物料中不同磁性组分分离的一种选矿方法。在磁选过程中,强磁性矿物所受磁力最大,弱磁性矿物所受磁力较小,非磁性矿物不受磁力或受微弱的磁力。在磁选过程中,矿粒受到多种力的作用,除磁力外,还有重力、离心力、水流作用力及摩擦力等。当磁性矿粒所受磁力大于其余各力之和时,就会从物料流中被吸出或偏离出来,成为磁性产品,余下的则为非磁性产品,实现小同磁性矿物的分离,通过磁选法可以获得黑钨矿。

    浮选法。根据矿物颗粒表面物理化学性质的差异,从矿浆中借助于气泡的浮力实现矿物分选的过程。现代的浮选过程一般包括:磨矿,先将矿石磨细,使有用矿物与其他矿物(或脉石矿物)解离;调浆加药,调整矿浆浓度适合浮选要求,并加入所需的浮选药剂,以提高效率;浮选分离,矿浆在浮选机中充气浮选,完成矿物的分选;产品处理,浮选后的泡沫产品和尾矿产品进行脱水分离。通过浮选法可获得共伴生组分中的铜、铅、锌、硫等有色金属。

    有些稀散元素,由于其含量极低,常常以载体形式依附于其他矿物,比如金、银和铜、铅、硫结合紧密,通过以上选矿方法难以有效回收,需要在后续冶炼过程中回收。

    以上所述方法通常需要组合使用,然后再选择合适的设备,才能将各种矿物得到有效的回收。通过综合利用,在钨矿利用的同时,也综合回收了其他伴生组分,一方面提高了资源的利用率,增加了矿山企业的经济效益,另一方面也减少了金属矿物的排放,降低了环境污染。

    石英矿床类型及用途 

    □张亮 刘磊

    石英资源是一种重要的非金属矿资源,可作为加工玻璃砂、工业硅等原料,是冶金、化工、玻璃、陶瓷、铸造、橡胶等行业的重要原料,也是电子信息产业、光伏、新能源产业和有机硅新材料产业发展的基石。自然界石英矿床成因多种多样,目前常见可供开发利用的石英矿床工业类型有天然水晶、石英砂岩、石英岩、脉石英、粉石英、天然石英砂和花岗岩石英七类。

    天然水晶 天然水晶为透明的大型石英结晶体矿物,主要成分为二氧化硅。水晶多是在岩洞、岩石裂缝或节理、断层中自然生长形成的,其生长条件比较苛刻,必须同时满足4个条件:充裕的生长空间,能够提供富含二氧化硅的热液,一定的温度和压力,足够生长时间。我国天然水晶资源分布广泛,其中以江苏东海地区最为丰富。

    天然水晶 

    天然水晶矿床储量小,开采条件差,资源匮乏,价格昂贵,难以满足大规模工业生产的需要。但由于天然水晶的色彩丰富,晶莹剔透,美丽纯正,目前主要用作雕刻各种工艺品。

    石英砂岩 石英砂岩是经过沉积作用固结的砂质沉积岩,其石英和硅质碎屑含量一般>95%,副矿物多为长石、云母和黏土矿物,胶结物一般为硅质。目前,我国石英砂岩在各省均有分布,其中云南大关、盐津、彝良及四川沐川等地区资源较为丰富。

    石英砂岩矿床一般规模较大,地质产状稳定,开采条件较好。同时,矿石硬度一般相对较低,天然粒度适中,易于破碎分级和大规模工业化生产。但由于石英砂岩胶结物成分比较复杂,因此通常用于生产日用玻璃砂、玻璃纤维、金属硅、耐火材料、白炭黑、有机硅等领域。

    石英岩 石英岩通常是由石英砂岩或其他硅质岩经区域变质作用或热接触变质作用而形成的变质岩石,伴生矿物除长石、云母和黏土矿物以外,往往还含有微量的电气石、赤铁矿和锆石等。与石英砂岩相比,石英岩其矿石更加致密坚硬。我国石英岩资源十分丰富,开发利用量大,主要分布在安徽凤阳等地区。

    石英岩矿床具有规模大、地质产状稳定、开采条件较好等优点,其矿石一般致密均匀,块度好,比较适合日用玻璃砂、浮法玻璃砂、玻璃纤维、金属硅、耐火材料、石英板材等SiO2含量 99%左右传统应用领域产品大规模工业化生产。

    脉石英 主要是在岩浆热液作用下形成的,通常呈致密块状构造,其矿物成分单一,几乎全部为石英,SiO2含量一般在99%以上。脉石英矿床规模一般不大,产状陡,厚度一般在几米至几十米,长度一般为十几米至几百米,一个矿区可由一条矿脉或由多条矿脉组成。

    脉石英矿床资源储量规模一般相对较小,开采难度相对较大,但由于其杂质含量少、资源品质稳定等特点,因此多将其用于制备SiO299%~99.9%的硅微粉、低铁石英砂、光学玻璃、半导体等高品质石英产品。

    粉石英 通常由硅质母岩在特殊的地质构造条件下(温湿的古气候、地形平缓古地理、水力作用等)风化解体而成的沉积风化型矿床,石英含量通常为95%~98%,有的可高达99%以上。该类矿床在我国南方分布较多,如贵州贵定、江西莲花、渝东云峰山等。

    与石英岩和石英砂岩相比,该类矿床规模相对较小,其主要优点是自然白度高,天然疏松多孔,容易超细粉碎加工,可作为陶瓷原料、硅微粉填料等。

    天然石英砂 天然石英砂是由花岗岩、石英岩、石英砂岩和脉石英等母岩经过自然界长期风化而形成的一种以石英为主要矿物成分的砂状石英矿物原料,其伴生矿物包括长石、岩屑、云母、黏土矿物及锆英石、电气石、钛铁矿和角闪石等重矿物,主要为海相沉积砂矿床和河湖相沉积砂矿床。

    该类矿床规模一般较大,其主要优点是通常具有天然适中粒度和角形因数,开采简单,是加工铸造用石英砂产品理想原料,但该类矿床缺点是杂质成分比较多,如果杂质充分去除可用于SiO2含量99%左右所有石英产品加工。

    滨海石英砂开采现场 

    花岗岩石英 指由于岩浆作用固结成岩形成的大颗粒花岗岩或花岗伟晶岩(白岗岩)中的石英。该类矿床中的石英品位多在25%左右,矿物杂质主要来自石英颗粒中的流体包裹体级晶格杂质元素。该类矿床为生产高纯石英的主要原料,目前主要产自美国北卡罗来纳州Spruce Pine地区。

    和谐共生 资源综合利用大有可为

    当地时间11月26日13时,“嗡嗡嗡”,久违的声音响起,右推进电机终于正常工作,中国地质调查局所属的广州海洋地质调查局“海洋六号”船重启双桨,奋力向位于东太平洋的工区驶去。然而,对船上的所有人来说,刚刚过去的70多个小时里发生的一切,回想起来仍然心有余悸,“鬼知道轮机部都经历了什么!”

    “低速运行时右推进电机轴承部位声音和振动异常。”当地时间11月23日15时,轮机部二管轮耿强林在值班检查时发现了问题。

    闻讯后,轮机长耿志爱、大管轮李宗超、电气工程师郑正大马上赶到了舵桨舱,初步判断是电机轴承或者连接部位有问题,继续排查故障点。三个小时后,拆下联轴节,电机空转仍有异响,振动明显,轴承成为最大隐患。

    “问题严重了。“大家立即紧张起来。船长蓝明华告诉记者,右推进电机与右侧舵桨相连,为其提供动力,如果推进电机发生故障,就相当于“海六”的“右腿关节”出问题了。

    怎么办?这种“大手术”,一般来说都需要“住院治疗”,或者待停泊靠港后在厂家技术人员的专业指导下完成。显然,目前不具备如此条件,船已经离开夏威夷行驶到赤道附近,方圆5000公里都是海,无法寻找外援。

    去智利船厂维修,是最稳妥的方案,但路程太远、代价太大。单桨推进的速度仅接近正常航速的一半,如果仅靠一条“腿”蹦,中途不去工区开展作业,直接驶向最近的码头,也赶不上靠泊计划,再进厂修理,时间上吃不消,可能严重影响后续的南极科考任务。

    “自己动手吧!”轮机部主动请缨。有了这句话,“海六”临时党委书记孙雁鸣一直悬着的心稍稍安顿,但他也深知难度有多大:“这么大的故障,如果在船厂或者车间,有专业的拆装工具还好办一些,但船上的条件实在有限,以前还从来没做过,只能靠经验和技能。”

    缺少专业工具,说明书上没有完整的零部件结构图,更没有拆装工艺流程图……对于即将要面对的困难,老轨耿志爱心里也很清楚,但他们没有多余的精力去担心和焦虑,“就算遇到问题,也不用害怕,总会有办法的”。

    位于二层的舵桨舱,犹如一个机器的迷宫,四周是各种大型设备,头顶管道密布,侧身走在里面,一不留神头就撞上了。

    将疑似有问题的轴承拆下来,是目前最重要的任务。当地时间11月24日12时,在不足一人高,约2平方米的空间里,塞进了8个人,老轨、大管、郑师傅、助理电机员戴文军、机工方国明、梁安林、邱石、三管轮段开明,正忙得不可开交,轮机部其他人值完班后也陆续赶来帮忙。今早已经干了四个多小时了,他们刚刚又拆下一块“硬骨头”——动力输出法兰,即电机与舵桨之间的连接件。

    下午16时,坏消息传来:拆卸过程中,大家发现厂家随船提供的图纸与实际情况有差别。“按照图纸标识,轴承外面有道保护环应该是螺纹连接,但我们按照对应的方法却没法拆下来。”耿志爱的脸上不再有笑容,在和孙雁鸣、蓝明华和首席科学家邓希光商量后,决定向“家里”寻求支援。

    电话打通,广州海洋地质调查局领导和船舶大队负责人听闻海上的突发情况,立即与国外设备销售方联系,希望获得更详细的拆装说明书。

    然而,新图纸传来,却是空欢喜一场:与船上的图纸一模一样,厂商也无法提供更多支持。

    “总会有办法的。”大管轮带着大伙儿反复地研究图纸上的加工尺寸,再结合各方面的验证,最后判断——保护环的连接方式应该不是螺纹连接,而是过盈配合。所谓过盈配合,就是为了确保轴套配合得尽可能紧密,一般在设计轴和套的配合时,有意将套的尺寸加工得比轴更小一些,然后通过加热套膨胀后安装到轴上,待温度冷却后达到“抱死”效果。这也意味着,在船上的既有条件下,拆卸难度超乎想象。

      

    轮机部船员使用液压工具拉离故障轴承 

     

    安装调试轴承 

     

    使用手动葫芦吊装联轴节设备

    费了九牛二虎之力拆下轴承外的保护套后,就要拆卸轴承了,轴承也是过盈配合,而且直径近200毫米,和传动轴咬合得极为紧密,在狭窄的空间里,没有专业工具,人力也不可为,怎样才能拉出来?

    “需要什么工具,自己动手做就行了。”轮机部成员没有被困难吓倒,能想到的任何办法都要试一下,十八般武艺样样不放过,最后锁定了船上的液压工具,同时又是切割又是焊接“捣鼓”出好些件自制工具。尽管大家心急如焚,可每个人都清楚,这台主推电机是进口的精密设备,“娇气”得厉害,必须耐着性子一毫米一毫米往外拉轴承。

    功夫不负有心人,当地时间11月25日12时,轴承顺利拆下,大伙儿终于可以长舒一口气。正如所料,马达的轴承磨损严重,即使手推都能感觉到明显滞阻。

    接下来的事情就更加明确了,换上备用的新轴承。于是,好不容易才卸下的每一个零件,又要艰难地重新装回去,有时仅仅装一个环就需要7、8个人忙上一个小时。

    次日早晨9时,通过加热膨胀,新“关节”终于装上了。17时,通过打表测量推进电机输出轴和舵桨输入轴轴线符合要求后,联轴节安装完毕,一切准备就绪。半小时后,耿志爱与驾驶台联系,开始测试。李宗超和郑师傅一左一右,侧耳仔细辨别声音,同时用手感受马达的振动。其它的小伙子们也没闲着,或是拿起扳手紧螺丝,或是俯身倾听周边设备的声音是否正常。

    “无异响,无振动。一切正常!”直到此刻,这台“外科手术”才算真正成功了。“太不容易了!”孙雁鸣反复地说:“这次海上抢修的难度史无前例,真没想到能如此迅速地顺利完成。”

    喜讯传到万里之外的广州海洋地质调查局,张光学副局长也特意发来祝贺信息:“同志们的敬业精神和高超的自修工艺值得称颂。”

    是啊,如此复杂的一台“手术”,完全以自己的力量完美解决,靠的是什么?回想起这三天来的一幕又一幕,我好像找到了答案。

    首先是担当精神。在海上遇到突发问题,无论“海六”临时党委,还是轮机部,都是沉着应对,不推诿、不畏难。身处深海大洋,相信自己、依靠自己才是最重要的动力源泉。

    其次是“钉钉子”精神。在海上抢修的70个小时里,有大大小小数不清的难题,但比问题更多的是解决方案。在每一个重大关头,“总是有办法的”,这句话就会响起。正是凭着这股劲儿,一寸一寸地推进,才有了最后的胜利。

    最后是团队精神。无论是前方和后方的配合,还是“海六”上各个部门之间的支持,无不述说着“海六是一个无比团结的集体”。具体到轮机部,更让人印象深刻。

    发现故障后,我第一时间询问耿志爱,自己动手修有把握吗?“应该没问题,除了水下的部分我们没有条件修,其它的基本都可以搞定。”他既谨慎又肯定地回答。第二天,轴承拆不下时,我又问了他同样的问题。回答依然是,“应该没问题,我们团队里的每一个人都非常优秀,一定能找到办法。”

    抢修完成后,有一个场景始终在我脑中挥之不去。11月26日上午9时许,轴承已经装好了,接下来需要“对中线”,可怎么试误差都比较大。于是,分歧出现了,不同于大管李宗超的方案,段开明和戴文军提出了另外的想法。在逼仄的空间里,大家或蹲,或跪,或坐,或弯腰,或屈膝,手上拿着扳手、锤子或其他工具,想到什么就脱口而出。在这里,没有老轨、大管、大师傅、机工、助理这些身份,每个人都是毫无保留地提出自己的意见,不为争出输赢高下,而是共同找寻最佳的答案,像极了一群学生在课间讨论数学题的场面。

    毫无疑问,这一场硬仗,“海洋六号”赢得漂亮,成功通过了考验。新的征途已在前方铺开,我们相信,只要有“海六精神”护航,未来将无坚不摧。

    “海洋六号”首次海上成功抢修“右电推”

    近日,中国地质科学院岩溶地质研究所朱同彬副研究员在曹建华研究员指导下,利用毛村野外试验场地为研究平台,采用15NH4NO3和NH415NO3同位素双标记结合MCMC (Markov chain Monte Carlo)优化数值模型,计算了碳酸盐岩石灰土和碎屑岩红壤两种林地土壤不同形态氮库的转化速率。结果显示,与红壤相比,虽然石灰土无机氮的总供应(矿化和异养硝化)能力小,但铵态氮氧化为硝态氮的自养硝化速率显著提高且硝态氮的微生物同化速率降低,导致土壤无机氮以硝态氮为主。考虑到岩溶区降雨强和碳酸盐岩裂隙及孔隙多等特点,石灰土中多余的硝态氮会很快通过淋溶或径流损失掉,使得土壤中的氮素匮乏,并造成水体硝态氮含量偏高。研究结果丰富了对岩溶生态系统氮循环的认识。

    该项研究得到地科院岩溶所基本科研业务费项目(2015004)和环保部公益性行业科研专项项目(201309049, 201409055)的共同资助。相关研究成果以Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China为题,发表在国际土壤类权威学术期刊Soil Biology and Biochemistry (2016, 97: 99–101)。

     

        石灰性土壤和红壤氮转化过程速率

    桂林毛村岩溶基地土壤氮转化研究取得新进展