分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到107条相关结果,系统用时0.019秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    中国可燃冰勘查利器——海马号无人潜水器

    新华社发

    勘查团队在祁连山南缘钻探发现“可燃冰”。

    冀 业摄(资料图片)

    近日,俗称“可燃冰”的天然气水合物成功获批为中国第173个矿种。这虽然是业界和公众意料之中的事,但还是引起了广泛关注和热烈讨论,人们由此预见,可燃冰作为一种战略性绿色能源,在中国获得了相应的法律地位,必将在勘查和开发利用方面迎来新的发展机遇。

    可燃冰被誉为“未来能源、洁净能源和21世纪能源”,这一方面在于其有能量密度极高、非常洁净等特质,另一方面在于其分布范围广、资源量巨大,可以为人类提供持久能源支持。对于环境资源压力巨大的中国来说,可燃冰更是承载着变革能源结构、实现绿色可持续发展的梦想。20多年来,中国科技工作者不懈努力、忘我奋斗,不仅系统提出了被实践证明正确的可燃冰成藏理论,而且形成了具有国际先进水平的可燃冰资源综合勘查高新技术体系,为可燃冰的开发和利用奠定了坚实基础。

    中国储量家底知多少

    在标准状况下,1立方米可燃冰可释放出164立方米天然气和0.8立方米的水,能量密度是天然气的2-5倍、是煤的10倍。这是人们对神奇的“冰火”津津乐道的主要原因之一。这样一种能量密度极高的物质,在地球上储量非常丰富。国土资源部天然气水合物重点实验室总工程师刘昌岭研究员介绍说,如果把全球可燃冰的储量折算为有机碳资源,其有机碳占总量的比例超过53%,而煤、石油、天然气三者有机碳之和仅占26.6%,也就是说,前者是后三者之和的约2倍。国际上广泛引用的可燃冰储量数据来自美国科学家科温沃登,他预测全球储量为21万亿吨油当量,与美国能源部2011年发布的数据大致相当。

    具体到中国,可燃冰的储量如何呢?中国地质调查局副局长王昆给出了一个数字:约800亿吨油当量。他强调,这是根据天然气水合物资源类型及赋存状态,结合地质条件对中国海域可燃冰源量的初步预测量。冻土区是陆域可燃冰的可能成矿区,而中国是世界上第三冻土大国,冻土区总面积达215万平方公里,具备良好的可燃冰赋存条件和资源前景。据科学家初略估算,陆域可燃冰远景资源量至少有350亿吨油当量。王昆介绍,总体上看,中国可燃冰分布广、类型多、储量非常丰富。目前,已在南海发现两个超千亿立方米的矿藏,圈定11个成矿远景区、25个有利区块。

    四个勘查阶段迎头赶上

    与一些国家从上世纪70年代就投入可燃冰勘查研究相比,中国在可燃冰资源调查研究方面起步无疑是较晚的。据刘昌岭介绍,如果从1995年原地质矿产部设立可燃冰调研项目开始算起,不过20多年,而这20多年又可以分为四个阶段。

    一是预研阶段。主要开展对国外调查研究情况的调研跟踪、文献整理等工作。这个阶段有两个标志性年份。1995年,“西太平洋水合物找矿前景与方法的调研”“中国海域水合物勘测研究调研”等项目设立,中国地质科学院矿产资源研究所和广州海洋地质调查局等机构参与其中,对水合物在世界各大洋中的形成、分布等方面进行了初步研究,明确指出了中国近海海域具有水合物成藏条件和资源远景。1998年,在国家“863”计划支持下,“海底水合物资源探查的关键技术”前沿性课题研究顺利启动。此外,中科院兰州冻土研究所开展了实验室合成天然气水合物研究,并通过书籍翻译将外国可燃冰领域研究进展系统介绍进来。

    二是前期调查阶段。1999年,国土资源部启动了“西沙海槽区天然气水合物调查与评价”项目,首次在该区域发现了可燃冰存在的重要标志。在东沙群岛南部和台湾西南等海域,调查团队也发现了蕴藏可燃冰的证据和标志,并综合利用多种海底调查手段,包括海底取样和摄像等,对这些证据和标志进行了研究分析,初步确认了可燃冰的存在。

    三是专项调查阶段。此阶段从2002年持续到2010年,参与调查的众多科研院所和大学与中石油、中石化等历时8年,实施了与可燃冰相关的4个专项,优选了南海的数个海域,开展了可燃冰调查与评价,并获得了可燃冰实物样品,取得了重大突破。与此同时,中国陆域可燃冰调查也在大力推进,初步结果显示,祁连山和漠河盆地等冻土地区具备较好可燃冰成矿条件和找矿前景。

    四是“127”工程国家专项阶段。2011年,“127”工程天然气水合物专项设立,按照“海路并举,先易后难”的思路,加强对南海、东海等海域和陆域冻土区的调查研究,查明中国海陆可燃冰家底,并为进一步开展资源评价和开发做好准备。上述专项实施的目标之一是实施赶超战略,使中国可燃冰勘查等技术与国际先进国家同步,为商业开发打好基础。

    推进理论和技术装备创新

    四个阶段,22年努力,中国不仅摸清了可燃冰家底,而且实现了一系列勘查理论和勘查技术、装备的创新。实际上,注重创新的引领作用,把地质调查过程变成科技创新的过程,全面提升科技创新解决资源环境基础地质问题的能力,也是中国地质领域工作的指导思想。

    中国地质调查局基础调查部副主任邱海峻指出,根据国际上的研究,可燃冰在全球主要分布有两类地区:一类是水深300米—3000米的海底,在海底以下0米—1500米的沉积物中产出;另一类是陆上冻土区。成功进行可燃冰勘查,光靠上述大体模糊的判断显然是不够的,必须摸索出适合中国海域和陆域地质特征的探测理论和方式。

    刘昌岭指出,中国科学家根据可燃冰成矿原因,创新性提出“渗漏型可燃冰”概念,并将可燃冰划分为“扩散型”和“渗漏型”等几种,总结出各自的特点,指出它们在南海北部具有密切的成藏关系,具备形成的地质条件,并揭示出该地区形成了南北成带状的可燃冰富集规律。

    工欲善其事,必先利其器。可燃冰勘查离不开先进的装备,而4500米级深海遥控潜水器海马号就是中国可燃冰勘查的一大利器。它历时6年研发而成,实现了一批关键技术突破,包括本体结构、浮力材料、液压动力和推进、作业机械手和工具、观通导航、控制软硬件、升沉补偿装置等,是中国迄今为止自主研发的下潜深度最大、国产化率最高的无人遥控潜水器系统。该潜水器研发成功后迅速转化为应用,在南海北部陆坡发现了海底活动性“冷泉”,实现了南海天然气水合物资源调查领域的突破性进展。

    在可燃冰勘查过程中,中国科学家摸索出一套成熟的调查技术和特效探测技术。刘昌岭举例说,针对可燃冰赋存的相关地貌、沉积矿物等,勘查人员集成了一套可燃冰综合探测系统,综合“地质、地球物理、地球化学”等调查手段,该技术已成为服务海域可燃冰常规勘探的主打技术。

    《 人民日报海外版 》( 2017年11月25日 第 08 版)

     

    人民日报:“冰火”勘查诠释中国地质速度(“瞄准世...

    编者按 

    “是那山谷的风,吹动了我们的红旗……我们满怀无限的希望,为祖国寻找着富饶的矿藏。”

    新一轮找矿突破战略行动启动以来,广大地质工作者大力弘扬爱国奉献、开拓创新、艰苦奋斗的优良传统,把智慧、汗水洒遍山川大地,为地质找矿事业书写崭新的时代篇章。《中国自然资源报》开设“地质足迹印山川”栏目,通过系列报道展示地质人物和团队的感人事迹,推动新一轮找矿突破战略行动取得更大成果。

     

    “要想立足国内实现资源自给,资源勘查必须往深走。”这是第十八次李四光地质科学奖获得者吕庆田一贯的观点。

    地层深处高温高压,遍布坚硬的岩石。“入地”之旅怎么走?如何才能“入地”更深?20多年来,中国地质科学院地球深部探测中心研究员吕庆田带领团队在陆内成矿理论和深部找矿预测新方法研究、深部勘探仪器设备研发等方面取得系列成果,给出了答案。

    吕庆田2017年参加在美国阿拉斯加举行的 EarthScope会议。

    加强地球深部探测

    破解资源环境及灾害问题

    1981年,17岁的吕庆田在老师建议下,顺利考入长春地质学院应用地球物理专业。1988年硕士毕业后,他被分配到中国地质科学院矿床地质研究所(现中国地质科学院矿产资源研究所),从一名实习研究员干起。之后,他一直在各个项目区通过地球物理的手段研究岩石圈结构等地球科学问题。

    2000年,国土资源部“十五”专项研究计划“大型矿集区深部精细结构探测研究”启动,吕庆田参与其中。自此,他的学术方向开始了明确的变化——执着于探向地球深部。

    为什么要探测深部、认识深部?“两大因素使然。”吕庆田说。

    一是当时全球的矿产勘查都在向深部500米以下进军,我国起步已晚,必须加速赶上。

    二是深部因素对成矿的控制作用逐渐被认识到,如幔源岩浆、新生地壳熔融、拆沉与底侵和深大断裂对成矿金属类型和矿床分布的一级控制等。

    但深部地质结构、物质性质不清,控矿要素不明确等原因,让勘查深度难以突破,拓展深部资源遇到严峻挑战。为此,吕庆田带领团队先后承担了“十三五”重点研发计划项目“华南陆内成矿系统的深部过程与物质响应”、深部探测专项第3项目等20余项深部金属矿勘查技术和应用研究工作。

    2016年5月30日,习近平总书记在“科技三会”上指出,“向地球深部进军是我们必须解决的战略科技问题”。同年,我国酝酿启动深地国家科技重大专项,瞄准国际地球科学前沿进行布局。吕庆田积极参与其立项和申报工作,并负责相关内容的编写。

    此后近十年,吕庆田带领团队,以我国东部长江中下游成矿带和西部东准噶尔成矿带为探测对象,在成矿系统理论框架下开展了多尺度地球物理综合探测和研究,在陆内成矿系统的三维结构、深部找矿思路和找矿发现等方面取得重大进展。

    选择我国东部长江中下游成矿带和南岭成矿带,以及铜陵、庐枞、于都—赣县等典型矿集区,吕庆田带领团队在成矿带岩石圈层次、矿集区地壳结构层次、矿床(田)精细探测层次,部署开展了三个层次的“入地”探测研究工作。

    三个层次的探测研究工作,在揭示区域成藏成矿控制因素、开辟找矿新空间的同时,把握地壳活动脉搏,为提升区域地质灾害监测预警能力提供技术支撑。吕庆田说:“加强地球深部探测,对我国资源能源安全和减灾防灾意义重大。”

    发展陆内成矿理论

    解开地球深部成矿奥秘

    岩石圈结构、物质和深部过程对成矿系统具有关键控制作用,但存在诸多认知“盲区”。

    对此,综合20多年开展的综合探测研究,吕庆田带领团队创新性开创了以多尺度探测为特色的成矿系统研究新领域,提出陆内成矿系统受岩石圈拆沉、地壳属性和块体边界控制的新认识,发展了陆内成矿理论。相关成果在“十三五”国家重点研发计划深部探测专项中被充分吸纳。

    “比如,以往认为成矿作用大都发生在板块边缘,与板块边缘造山作用密不可分,如洋—陆俯冲造山、陆—陆碰撞造山,而对于大陆板块内部的成矿作用及深部动力学机制却鲜有了解。”吕庆田说,他带领深部探测专项第3项目组在长江中下游成矿带经过4年努力,解开了大陆板块内部成矿的“深部奥秘”。

    他们在长江中下游成矿带发现了岩石圈增厚、拆沉和软流圈隆起的关键证据,建立了陆内成矿的深部动力学模型。更为重要的是,他们获取了陆内下地壳和岩石圈地幔俯冲的清晰图像。

    “这些发现诠释了为什么在长江中下游这个狭窄的带内,形成了数百个金属矿床。”吕庆田进一步解释说:“与板块边缘成矿类似,大陆内部在远程应力的作用下,也可以发生大陆俯冲,俯冲导致壳幔强烈相互作用,最终沿俯冲带形成大陆内部的巨型成矿带。”

    前期扎实的探测研究工作,为钻探验证奠定了良好的基础。庐枞矿集区深部异常验证钻孔取得了深部重大找矿线索,发现了高强度的铀矿化,深部铀矿化为交代碱性岩复合型铀矿的新认识据此被提出。这一发现对庐枞深部找铀具有重大的理论和实际意义,并被推广到华南陆内造山等成矿系统的研究中。

    创新深部探测技术

    让矿集区结构“透明化”

    知道深部有矿,怎么找?当时,国内外都没有多少经验可以借鉴。“

    对深部矿产勘查来说,不仅需要突破精度、灵敏度更高的各种传感器技术,提升野外测量设备的稳定性,还要发展新的数据解释技术,把观测的数据转换为‘透视’地下的图像。”吕庆田说。

    这一目标,在他带领深部探测专项第3项目组开展长江中下游成矿带深部探测试验时实现了。他们形成了一套针对大型成矿带岩石圈结构探测的技术解决方案,发展了多种地球物理数据处理与解释技术。

    通过骨干剖面的反射地震探测和重磁数据的全三维反演,项目组揭示了庐枞、铜陵矿集区的地壳结构框架,发现了一批新的断裂,建立了该地区的三维地质模型,初步实现了矿集区的“透明化”,为认识成矿作用和助力深部找矿起到了关键作用。

    “希望我们在长江中下游成矿带、矿集区到矿田的探测模式和技术思路可以推广到其他成矿带去。”吕庆田这样表示。为此,他带领团队经过长期实践探索,提出了稀疏地震剖面、地表地质约束的三维重、磁交互反演地质建模方法,并以此为物性反演初始模型,采用求取置信区间确定物性变化、通过逻辑拓扑实现岩性识别,完善了岩性填图技术,为矿集区结构“透明化”提供了技术手段。

    在以上成果基础上,他带着团队经过进一步研究,形成“三维结构+成矿模式+综合信息”相融合的深部找矿“三元”预测方法——通过提取已知矿床地质属性特征,通过三维证据权方法、专家系统、机器学习算法,实现深部成矿预测的自动化和定量化。

    利用该方法,他带领团队在安徽庐枞矿集区井边—巴家滩预测区深1500米~1740米之间,发现累计厚97米的高品位铀矿化体;在新疆伊吾县戈壁滩,发现拉伊克勒克大型隐伏斑岩—矽卡岩铜铁矿床,获得333+334铜资源量118.8万吨。矿集区“透明化”探测和“三元”成矿预测方法的有效性得到验证。

    目前,“三元”成矿预测方法已推广应用到安徽、新疆、江西、山东等地区,取得了良好深部找矿效果。

    研发系列勘探设备

    推动我国勘探技术进步

    多年的深部探测实践,让吕庆田越来越深刻意识到,突破“卡脖子”核心技术,降低对外依赖,对保障国家资源安全意义重大。强烈的使命感、责任感使吕庆田和他带领的研发团队担起了“十二五”国家863计划“深部矿产资源勘探技术”研发任务。

    作为该计划重大项目首席专家,吕庆田带领团队先后突破了高精度微重力传感器技术、铯光泵磁力仪传感器技术、宽带感应式电磁传感器技术等10项关键核心技术。其中,微重力传感器的突破使我国成为国际上为数不多的可以自主生产高精度重力仪的国家。

    在重磁、电磁、地震、井中勘探仪器和钻探设备方面,他们研制出高精度地面数字重力仪、大功率多功能电磁探测系统、4000米地质岩心钻探成套技术装备等18套急需的勘探地球物理仪器设备,形成了从地面到地下的系列仪器装备。

    在地球物理方法数据处理和解释方面,他们完善了直流电阻率与极化率三维反演方法、重磁三维约束反演方法等20多项地球物理数据处理解释方法,研制出多参量地球物理数据处理与反演软件系统、金属矿地震处理解释新技术与软件系统2套大型软件系统,形成了多功能三维电磁正反演与可视化交互解释软件系统、金属矿地下物探数据处理解释系统等8个专用软件系统。

    “这一轮的技术研发,使我国在地球物理勘查技术领域极大地缩小了与国外的差距,大幅度降低对国外勘查设备和解释软件系统的依赖,一定程度上打破了国外在此领域的仪器设备垄断,大幅提高了我国深部资源勘查技术自主研发能力和国际竞争力。”吕庆田说。

    他带领的团队因此荣获2022年自然资源科学技术奖特等奖,获得发明专利授权66项、实用新型专利授权45项、软件著作权105项。现在,相关成果广泛应用到矿产勘查、国防、科研和工程等领域,替代国外进口,解决国家重大需求,极大促进了我国金属矿勘探技术的系统提升、整体跨越和进步。

    收获“深地”成果

    一路艰辛成为美好回忆

    系列重大成果的取得并不是一帆风顺的。

    “我带着深部探测专项第3项目组在庐枞、铜陵矿集区开展三维立体探测施工的时候困难重重。在野外,我们遇到的最大困难是各种看不见的电磁和振动干扰,这些干扰来自各种电线、工厂、高速路和居民生活区。”吕庆田苦笑着说,因为反射地震的数据采集要记录地下几十千米反射上来的信号,需要绝对的安静。

    为了获得高信噪比的数据,项目组不得不在夜深人静的时候采集数据。有时,他们还需要设置警戒,或与周边的工厂协调暂时停工。这需要他们和当地相关部门和百姓反复沟通。

    “技术上的难题、施工上的困难、与当地相关部门协调等,多年下来,大家都成了多面手。”吕庆田笑着说。

    20多年在深地探测领域的不懈努力和学术积累,让吕庆田及其团队先后获得国家科技进步奖一等奖、二等奖各一项;国土资源科学技术奖一等奖3项,二等奖1项。他本人于2009年入选国家“新世纪百千万人才工程”国家级人选,2019年入选自然资源部高层次科技创新人才第二梯队人才和科技创新团队(负责人),2023年获得第十八次李四光地质科学奖(科研奖)。他先后为国家培养了18位硕士、20多位博士和10多位博士后,带领的深部资源探测研究团队于2018年入选自然资源部高层次科技创新团队。

    “与6000多千米的地球半径相比,我们的研究还仅仅停留在地球的表皮。”吕庆田说,“我毕生奋斗的方向就是带领团队拓展深部空间,认识地球深部运行规律,发现更多的资源。为了在这个方向走得更远,我们比以往任何时候都更加需要弘扬李四光等老一辈科学家的精神,坚持真理、严谨求实、锐意创新,以李四光先生的崇高精神为标杆,主动服务国家发展战略需求,积极投身地球科技创新前沿,努力为建设科技强国贡献力量!”

     
    中国自然资源报:“入地”之旅怎么走?他给出了答案

    我国首艘大洋钻探船“梦想”号今天(17日)正式入列,使我国成为全球第三个设计建造大洋钻探船的国家。据介绍,“梦想”号是目前全球钻探能力最强、科研实验功能最全、智能化水平最高、综合运维成本最低的超深水钻探科考船,是面向全球科学家开放共享的大型科学研究装置。

    作为保障国家能源资源安全的大国重器、支撑海洋强国建设的核心利器,建造大洋钻探船的构想从2008年就已经萌芽,2013年开始调研,2015年开始写立项建议书,2017年开始申请立项,2021年底启动连续建造,直至今天成功建成入列。十年磨一剑,我国自主设计建造的首艘大洋钻探船“梦想”号如何建成?

    “梦想”号设计效果图(中国地质调查局宣传教育中心供图)

    说起“梦想”号在设计建造过程中遇到的困难和瓶颈,自然资源部中国地质调查局“梦想”号指挥部主要负责人周昶至今依然历历在目。

    周昶:这艘船,要把它建好,我们需要举全国之力,甚至是全球之力。它是拿困难堆积出来的,是泪水和汗水堆积出来的。

    他说,这艘船的设计建造目标既承载着人类“打穿莫霍面、进入上地幔”的科学梦想,又承担着为国家勘探开发深海能源资源的重任,因此,它既是科考船、钻探船,又是地质调查船、油气开采船,是我国海洋科考船舶建造历史上的重要里程碑。中国船舶第七〇八研究所“梦想”号总设计师张海彬也深有体会,为配合大洋钻探的科学要求,“梦想”号进行了一系列创新设计。

    张海彬:成功解决了大洋科学钻探、天然气水合物勘查试采、海洋油气勘探以及深远海科学考察等多种功能同船融合设计的难题,完成了创新船型方案,新型连体双月池,DP3级蓄能闭环电网等多项国际首创设计,研发了具有完全自主知识产权的大洋钻探船,实现了综合性能的大幅提升和运营成本的有效控制。

    航行中的“梦想”号(中船黄埔文冲船舶有限公司供图)

    2015年底,张海彬进入“梦想”号设计建造团队。彼时,面对这样的设计建造目标,在国内乃至国际上都没有成熟的经验可供参考。张海彬说,这让“梦想”号的设计建造过程困难重重;其中,最大的难题就是,如何在确保大洋钻探、油气勘探、科研实验等各项功能集于一身,在恶劣海况仍能够安全平稳运行的前提下,又让“梦想”号具备优越的航行通过性和运营成本控制方面的国际竞争力。

    张海彬:如何以“小吨位”实现“多功能”?这是一个最大的挑战。“梦想”号在立项论证之初,中国地质调查局就提出了总吨的控制目标,吨位越大的话,船的体积就会越大,相应的,它的建造和运营成本都会上去。我们在整个研发过程中,应用了模块化的设计理念,采取了钻机主体固定、钻材堆场切换、营运设施共享的原则。这个船的吃水是9.2米,吃水的量级可以满足全球大部分航道的航行、码头的停泊。船的总高81.2米,比日本的“地球”号降低了将近40%,即使是在8米的轻载吃水下,都完全可以满足深中通道大桥的安全通行要求。

    “梦想”号(中国地质调查局宣传教育中心供图)

    除了遵循“小吨位、多功能、模块化”的设计建造理念,既然是大洋钻探船,“梦想”号还集成了全球最先进的钻采系统。广州海洋地质调查局研究员孙珍介绍,这套系统完全可以实现对以往国际上大洋钻探船各项关键技术指标的超越,让人类距离实现“打穿莫霍面、进入上地幔”的科学梦想更进一步。

    孙珍:我们研制了首台兼具油气勘探和岩心钻取功能的液压举升钻机,有4种作业模式和3种取心方式。首创了主动补偿和被动补偿于一体的液压举升技术,提升能力达到907吨。这是个什么概念?就是说如果我们要想打到莫霍面,就是海水4000米,然后再向下打6公里,再进入莫霍面一段距离,11000米的话,我们的钻杆就要有11000米,钻杆的自重大概有500吨,所以我们907吨的抓举能力完全可以支撑11000米钻进。隔水管作业可以用于油气的勘探开发,有助于海洋新能源的勘探开发。

    海洋新能源,都有哪些呢?孙珍进一步解释,天然气水合物、天然氢气、无机甲烷等等,都是“梦想”号未来的勘探目标。

    孙珍:全球的天然气水合物资源多,海底还有氢气资源,还有大量的无机甲烷资源,海底到处在冒着冷泉资源,已经远远超过了人类所原来认知的可能发现能源的领域。“梦想”号未来可以大展神威,大胆地去尝试开发这些新的资源,在我们原来不敢去和没有能力去的地方寻找油气资源。

    “梦想”号的双月池设计(中国地质调查局宣传教育中心供图)

    月池,是诸多大型科考船上的必备。它是船体内部贯穿各层甲板,与海水相通,直通船底的一个井道,钻探船上的钻杆可以由这个井道下放到海底,潜水员和水下机器人也可以从这里前往水下作业。张海彬介绍,科考船上往往都只有一个月池,但为了配合4种钻探作业模式,设计建造团队经过反复迭代优化,终于让双月池设计在“梦想”号上实现;同时,船上还搭载涵盖海洋科学、微生物、古地磁等在内的九大实验室,采用数字孪生等关键技术,可实现钻采作业全过程监测、科学实验智能协同。

    张海彬:特别是对于无隔水管泥浆闭式循环钻探来说,需要有一个泥浆返回通道,主井口需要超过12米,我们在国际上首创了连体双月池的设计方案,尽可能降低由于月池的存在造成船舶阻力的增加,反复做了多次迭代优化,完全可以满足我们航速指标的要求,还有4种作业模式的兼顾。设计了全球海洋领域全学科的船载实验室,打造了面积最大、功能最全、流程最优的海上移动实验室,可以引领全球海洋科学多学科交叉研究。

    “梦想”号设计建造团队(中国地质调查局宣传教育中心供图)

    如此之多的全球领先、全球首创集于一身,让“梦想”号无愧于国之重器的称号。张海彬感慨,随着“梦想”号的设计建造同步成长的,不仅仅是包含他在内的全体设计建造团队,这一设计建造过程,也带动了我国船舶制造业向高端船舶及海工装备方向发展。

    张海彬:2015年之前,我们国家设计建造这种深水钻探装备,基本是依赖国外设计公司。“梦想”号整个作业系统非常复杂,技术难度也非常大,对于国内自主研发设计力量的信任和培育是非常难能可贵的。我们船舶行业现在接单量在全世界已经遥遥领先,占70%;但高端海工装备这块在国际市场的占有率是不高的,特别是自主研发能力是落后的。船舶和海洋工程装备领域发展新质生产力,主要就是针对高端海工、船舶装备。通过“梦想”号大洋钻探船的自主研发,构建了超深水钻探装备的设计建造技术体系,是我们国家发展蓝色新质生产力的一个代表性成果。

     
    央视中国之声:我国首艘大洋钻探船“梦想”号入列 如...

    由我国自主设计建造的首艘大洋钻探船“梦想”号今天(17日)在广州正式入列,标志着我国深海探测关键技术装备取得重大突破。全球仅有3个国家建有大洋钻探船,我国就是其中之一。“梦想”号具备海域 11000 米的钻探能力,集成了全球最先进的钻采系统,搭载目前全球面积最大、功能最全、流程最优的船载实验室,将为我国深海资源开发应用提供重要装备保障,有力支撑我国谋划实施大洋钻探国际大科学计划。

    大洋钻探,是为研究地球内部结构特征、大洋底部矿产、探寻深海生命存活下限,而对大洋底部进行钻探的工程。可燃冰、氢气、稀土、多金属结核……近年来,深海资源,尤其是油气资源,已成为我国能源资源开发新的增长点;同时,全球科学家“打穿莫霍面、进入上地幔”的梦想至今仍在持续攻坚。在此背景下,“梦想”号的入列将为我国建设海洋强国、开发地球深部资源、实现人类大科学目标提供怎样的支撑保障?

    我国首艘大洋钻探船“梦想”号(中国地质调查局宣传教育中心供图)

    中国科学院院士 王成善:既高兴又兴奋,从船头走到船尾,从船顶走到船下。

    中国科学院院士 潘永信:血压都上来了,心率也快了,高兴得不行。

    中国工程院院士 李华军:性能各方面都做得非常棒,这是非常好的开始。

    中国科学院院士 郭正堂:梦想变现实了,我觉得真是了不起!

    中国科学院院士 郝芳:非常震撼,真正是一个国之重器!

    中国科学院院士 翦知湣:作为一个科学家,有了这艘国之重器后,希望要在地球科学重大理论上取得突破!

    登上“梦想”号的前甲板,看着这艘排水量42600吨,总长179.8米、型宽32.8米,具备全球海域无限航区作业和11000米钻探能力,并且是由我国自主设计建造的首艘大洋钻探船“梦想”号,多位两院院士难以抑制自己的激动之情。中国科学院院士翦知湣说,“梦想”号的入列,无疑给我国地球科学和海洋科技领域的科学家提供了一个强大“心脏”。

    翦知湣:地球表面71%是海洋,其中84%是水深超过2000米的深海。20世纪地球科学的两次最重大革命都是来自深海海底,一个是20世纪60年代地球动力的板块构造学说,一个是70年代气候演变的米兰科维奇理论,都是在深海海底得到验证的。20世纪,我国由于深海技术装备能力有限,对地球科学重大理论的突破没有贡献,在国际海底资源勘探开发、大洋权益争取等方面也长期受制于人。现在有了“梦想”号大洋钻探船以后,在这个领域我们肯定能够与欧美“并驾齐驱”,甚至在某些方面可以引领了。因此,也可以说是“划时代”或者“里程碑”成果。同时,也顿感我们这一代肩上的担子和责任更重大了。

    “梦想”号上的直升机停机坪(王泽华\摄)

    “梦想”号的什么特点,让国际大洋发现计划(IODP)368航次首席科学家,为我国海洋深钻、深网、深潜科学技术发展作出重要贡献的翦知湣有如此高的评价?IODP367航次首席科学家、广州海洋地质调查局研究员孙珍透露了其中的秘密。她说,“梦想”号在最大钻深、钻探方式、动力定位、自持力、排水量,包括年度运维费等多方面的综合性能都已经达到国际领先水平。

    孙珍:“梦想”号对标“决心”号和“地球”号这两艘国际上常用的大洋钻探船,核心指标方面已经达到了国际领先水平。比如说最大钻深,“决心”号是7500米,“地球”号是9500米,而我们的“梦想”号可以达到11000米;建设了全球面积最大、功能最全,包括基础地质、古地磁、微生物、天然气水合物实验室等九大船载实验室;2万多个监测点,能够实时地,对全船态势进行监测和感知。另外我们在钻探、取心、动力定位方式等各个方面,都达到了国际领先甚至国际首次。“梦想”号在16级超强台风下可以安全生存,让我们的作业海域和时间窗口都明显增长;它的钻采系统全球领先,让我们离“打穿莫霍面、进入上地幔”的梦想更进一步。

    航行中的“梦想”号(中船黄埔文冲船舶有限公司供图)

    “打穿莫霍面、进入上地幔”,这是什么意思?原来,地球的结构,由内到外包括地核、地幔和地壳,莫霍面,指的是地壳与地幔的分界面,但是人类活动和科学探索一直局限于地壳表层,因为越往下钻,钻井越深、岩石越硬、温度越高、压力越大,所以尽管有多次尝试,人类从来没有成功打穿过这个界面。然而,莫霍面之下的地幔,占地球体积的五分之四、质量的四分之三,是地球最大的“化学储库”,充满未解之谜。孙珍说,“梦想”号,给人类久攻不下的这一科学探索目标带来了希望。

    孙珍:深海钻探,被誉为深海科技领域的皇冠。当时我们发起国际大洋钻探的时候就是想打穿莫霍面,莫霍面在距离海底6公里左右的深度,看上去不遥远,但是实际上很遥远。深远海的海况经常是比较恶劣的,实施作业难度大,作业投入也非常高,需要很好的保障系统,因此人类“钻穿莫霍面”的梦想已经提出接近60年了,但是实际上只钻透了不到1/3的深度。要想实现它,光用老的思想、老的工艺是不足的,一定要有新型的科考船。

    “梦想”号(中国地质调查局宣传教育中心供图)

    于是,2017年,中国人自己的大洋钻探船“梦想”号立项筹建,2021年11月启动连续建造,此后,“梦想”号基本上以一年迈上一个大台阶的速度,陆续完成主船体贯通下水、动力系统首次试航、具备交付使用条件等关键节点,迎来了今天的顺利交付使用。孙珍表示,实际上,“梦想”号不仅仅是一艘大洋钻探船,还以自身为核心形成一整套深钻体系,在科学和能源资源等各领域发挥重要作用。

    孙珍:我们希望服务国家的重大战略,包括在南海的新区或者中生界海区进行油气勘探,推动天然气水合物试采和产业化,推动深海结核和稀土开发,以及天然氢气的勘探和评价。还希望能够带动装备产业发展,包括船舶的智能制造、海工装备的升级,以及材料科学和信息通信技术方面。深钻是一个非常尖端的科技,必然会面对高温、高压等极端环境,需要推动新材料的研发,让我们能够实现科学目标,在大洋钻探方面承担起大国重任。

    全时全域立体探测观测监测体系(王泽华\摄)

    科学无国界,全球海洋之大,当下没有任何一个国家可以完全独立完成大洋钻探的研究。那么,如何最大限度用好我国首艘大洋钻探船,使“梦想”号真正成为让梦想成真的大国重器?中国科学院院士王成善认为,要通过建立全球共商共建共享的合作机制,发起由中国牵头的新一轮国际大洋钻探大科学计划,凝聚全球科学家的力量,使“梦想”号成为改变人类地球科学进程的利器。

    王成善:建立一种把我们的技术和硬件优势转变成科学优势的全球共商机制,这艘船应该解决全球性的科学问题,能不能建立一个全球的对话联盟,有分歧不要紧,没有共商,就不会有共识,更不用谈到共享。以“梦想”号大洋钻探船能力为核心,建立支撑扬帆远航的、全球认可和积极参与的科学规划、实现全球地球科学家的规划,这样才能使我们的“梦想”号变成一艘真正的革命性工具。

    根据计划,“梦想”号将在未来两年内完成大洋钻探首钻。广州海洋地质调查局局长许振强表示,“梦想”号将瞄准莫霍面钻探等突破性理论变革、深海能源资源安全高效绿色开发利用、海洋防灾减灾等重大前沿科学问题,聚焦服务国家能源资源安全、科技自立自强和海洋强国建设的重大需求,加快关键技术准备,推动原创性、引领性重大成果产出。

    许振强:特别是围绕能源资源勘探与开发工作,包括新区和新层系的油气勘探工作,也包括新型能源资源,可燃冰、天然氢气、无机甲烷,海底战略性矿产资源的一些实验性技术攻关,都会进行探索和实施。11000米钻探是整个科学界一个宏伟的梦想,需要我们不断地探索和努力,一步一步来实现。希望通过“梦想”号这条船,能够推动全球对海洋、对地球的认知,共同合作打造人类命运共同体。

    央视中国之声:我国首艘大洋钻探船“梦想”号入列 它...

    从神秘的深海地质结构到珍贵的能源资源,科学家如何从几千米深的海底中获得这些信息?“梦想”号,这艘全球最先进的大洋钻探船将带领科学家探索地球深部的秘密。“梦想”号肩负多种作业需求,因此设计时便提出“小吨位、多功能、模块化”的理念。为了在同一艘船上同时实现大洋科学钻探、深海油气勘探和“可燃冰”勘查试采等多种功能,“梦想”号建造团队联合国际顶级油气钻机企业研制了全球首台兼具油气勘探和岩心钻取功能的液压举升钻机,国际上首次集成了4种钻探模式和3种取心方式。

    4种钻探模式

    “梦想”号的4种钻探模式分别是传统隔水管模式、“可燃冰”专用测试模式、传统无隔水管模式、无隔水管闭式循环模式。

    传统隔水管模式:这种模式常用于海洋油气的开采。隔水管把海底和钻探船连接起来,可以通过钻井液的循环增加钻井的安全性和效率。简单来说,这种方式能确保钻井过程顺畅且有足够的保护措施,是海洋油气开采的“标配”。

    水合物专用测试模式:天然气水合物是一种新型能源,经实践证明其开采过程安全环保可控。如使用传统隔水管进行试采,不仅显得过于笨重,成本也高。为此,“梦想”号专门设计了一种轻型隔水管系统,能减轻设备负担,降低钻探成本。

    传统无隔水管模式:该模式下,钻杆直接暴露在海水中,并从海底往下钻探,适用于大洋钻探。在钻进海底的时候,需要加入特殊的泥浆(钻井液),起到冷却钻头、润滑钻具和带走钻出的岩屑等作用。虽然没有隔水管保护,但正是因为没有隔水管的负重,钻杆可以达到更大的深度(水深最高可达8000米),适合深海钻探任务。

    无隔水管闭式循环模式:传统无隔水管模式下加入的泥浆一般会直接排到海里,既污染环境又增加成本。“梦想”号钻采系统中配置了专门的泥浆循环管线,通过水下泵将泥浆抽回到船上,通过过滤等处理,这些泥浆就能实现循环利用。这种模式既实践应用了绿色勘查的理念,又可以有效做到保护海洋环境。

    三种取心方式

    “梦想”号的3种取心模式分别是提钻取心、绳索取心、气举反循环取心,可实现不同地层和岩体持续钻进取心。

    提钻取心:这是一种很直接的取心方法,把整根钻杆从钻孔中提出来,从而取出暂存在钻杆最底端的岩心。

    绳索取心:通过一根钢丝绳从钻杆内取出岩心,不需要将整个钻杆拉出钻孔。它就像是一种“取巧”的方式,不但省力,还节省时间。虽然绳索取心有很多限制条件,操作稍显繁琐,但依然是较为适合较深钻深的取心操作。

    气举反循环取心:在常规的钻探中,钻井液从钻杆内壁注入并从孔隙间返回海底,这叫正循环。而反循环则是,钻井液从孔隙进入并从钻杆返回。气举反循环是一种特殊的取心方式,通过往上部钻杆内注入空气,上部钻杆的液体混入空气后的密度变小,而下部液体密度不变,因为上部和下部液体存在的密度差,上部的液体会往上“举”,从而带动下部的钻井液和岩心被“吸”到地面。

    “梦想”号的4种作业模式3种取心方式,就像打开通往地心秘密大门的钥匙,将为我们探索地球深部奥秘问题,寻找深海深地资源提供强大助力。

    神奇钥匙:“梦想”号的钻探模式与取心技巧
    近日,由中国地质科学院地质研究所(以下简称“地质所”)研发的“一种大比例尺剥蚀深度专题填图方法”获得国家发明专利。
    侵入岩、变质岩和金属矿床通常形成于地下几公里至几十公里处,在后期构造及侵蚀作用下逐渐剥露至地表。矿床的保存主要取决于其上覆岩石的剥蚀强度,通过定量计算成矿带内已发现矿床及其它地质体的剥蚀量,可以对成矿带内矿床形成后的改造情况给予综合评价。研究地质体构造抬升和地表剥蚀的时间、过程和性质,可以对区域地质演化给予定量约束。国际上所开展的剥蚀深度(剥蚀量)填图范围都很大,通常是一个岛屿,甚至整个国家,因而形成的都是小比例尺图件,并且不是在标准的地质底图上成图,仅供观察大区域内的大致变化趋势,不具有更多的实用价值,也没有建立区域剥蚀深度填图规范。

     

    针对以上问题,在地质调查项目和国家自然科学基金项目支持下,地质所陈文研究员领衔的同位素热年代学研究团队开展1:5万等大比例尺、带标准地质底图的剥蚀深度专题试点填图探索工作。由于剥蚀深度填图的特殊性,以往的常规地质填图方法已不再适用,其填图方法和图件表达都需要重新构建。研究团队充分调研并总结国际小比例尺热年代学填图的方法和经验,同时借鉴传统区域地质填图和区域化探填图的工作规范及技术路线,研究探索区域地质体剥蚀深度调查方法以及大比例尺区域剥蚀深度专题填图方法和图面表达方式。最终,研究团队不仅顺利完成了多幅专题试点填图工作,还在此基础上总结形成了“大比例尺剥蚀深度填图方法”。该方法已于近期获得国家发明专利授权。

    该方法系统建立了1:5万等大比例尺的区域地质体剥蚀深度填图规则,主要创新点包括:创建研究区域的野外工作点位和工作路线的布点布线规则;创建适用于热年代学研究的野外观察和记录规则;创建野外采样规则;制定适用于热年代学研究的选矿规则;针对岩石经历的不同热演化温度阶段,采用与之温度范围相对应的热年代学研究方法获取基础数据;对Low-T Thermo软件进行改进用于热历史模拟分析和剥蚀量计算,提高了中-高温度段热历史模拟精度;以标准图幅区域地质图作为底图,在制成的图件中,地质体分布、构造、岩性等各项地质要素与相关比例尺的区域地质图完全对应;采用等值线表示剥蚀深度,直观地表达研究区内的剥蚀程度和剥蚀深度变化情况,等。

    “一种大比例尺剥蚀深度专题填图方法”的建立突破了国内外剥蚀深度填图缺乏规范指导的技术难题,填补了大比例尺剥蚀深度专题填图空白。该项专利的获得,不仅代表着地质所的技术和理论创新,还为区域地质调查填图提供了新的思路和技术支持,为深入了解地质演化过程带来了新视角。利用新研发的方法开展区域剥蚀深度填图,精细刻画区域内不同部位剥蚀深度的差异,对指导区域矿产勘查勘探及找矿突破也具有实用价值。

     

     

     
    地质所研发的大比例尺剥蚀深度专题填图方法获得国家...

         12月17日,在国土资源部机关召开了2013年海域天然气水合物勘探成果新闻发布会,宣布在我国珠江口盆地东部海域首次探获了高纯度新类型天然气水合物。

         据悉,2013年6月至9月,我国海洋地质科技人员在广东沿海珠江口盆地东部海域首次钻获高纯度天然气水合物样品,并通过钻探获得可观的控制储量。此次发现的天然气水合物样品具有埋藏浅、厚度大、类型多、纯度高四个主要特点。天然气水合物赋存于水深600-1100米的海底以下220米以内的两个矿层中,上层厚度15米,下层厚度30米,自然产状呈层状、块状、结核状、脉状等多种类型,肉眼可辨。岩芯中天然气水合物含矿率平均为45%—55%;其中天然气水合物样品中甲烷含量最高达到99%。通过实施23口钻探井,控制天然气水合物分布面积55平方公里,将天然气水合物折算成天然气,控制储量1000-1500亿立方米,相当于特大型常规天然气规模。

         我国天然气水合物资源调查与评价工作起步晚、起点低,经历了艰苦的探索历程。1995年起原地质矿产部开始天然气水合物前期研究,1999年在国家发展改革委、财政部等部门的大力支持下,国土资源部正式启动天然气水合物资源调查,整合了国内各方面优势力量,做了大量的基础性、探索性工作。截至目前,国土资源部中国地质调查局在珠江口盆地开展天然气水合物综合调查40个航次,完成高分辨率多道地震测量45800公里、多波束测量36800公里、浅地层剖面测量7100公里、海底地质取样1480个站位、海底热流测量222个站位等调查工作。

         经过十多年的艰苦调查和研究工作,逐步探索出一套适合我国海域特点的天然气水合物资源综合勘查技术体系,自主研发了高分辨率多道地震与海底地震联合目标探测、海底微地貌和热流探测、海底原位孔隙水取样等关键技术,系统总结了天然气水合物控制因素与成藏模式,创建了准被动大陆边缘天然气水合物复式成藏理论。在综合研究成果的支撑下,发现了大量的天然气水合物赋存的地质、地球物理、地球化学及生物等异常标志,圈定了天然气水合物资源远景区、成矿有利区,确定了钻探目标,为我国海域天然气水合物资源勘查与评价提供了有力的理论指导和技术保障。

         2013年,中国地质调查局所属广州海洋地质调查局在珠江口盆地东部海域首次实施三个航段的钻探,共计102天。我国有5个单位26位科技人员部署现场作业、制定取芯计划、检测分析样品等工作。期间克服多次台风袭击等恶劣海况,通过利用世界先进的深潜器、随钻测井、保压取芯、现场测试等技术,实现了600-1100米水深条件下的钻孔精确定位、随钻监控、锁定目标、获取样品。

         第一航段,完成了10个站位10口先导孔的随钻测井,测井进尺2198米,获取了温度、电阻率等综合测井数据。其中4口测井存在明显的天然气水合物异常特征,为后续钻探取芯确定了目标站位与目的层位。

         第二航段,完成了4个站位8口井的取芯任务,获取了多种类型的天然气水合物可视实物样品,确定了天然气水合物矿体的分布范围,获得天然气水合物折算成天然气的控制储量。

         此次发现的最大特点是,在同一矿区具有多种类型、多层位富集的天然气水合物,且矿层厚度大、含矿率高、甲烷纯度高,目前在国际上实属罕见。

         第三航段,完成了3个站位电缆测井、2个孔的全取芯工作,为深入开展天然气水合物成藏机理研究和资源评价提供了丰富的资料。

    我国首次钻获高纯度新类型天然气水合物

    “年轻的时候什么工作都要做一点,现在年轻科技工作者学历很高,在某一个专业领域钻研得很深,但是也应该具有战略性的长远的思维,应该做到‘博观而约取,厚积而薄发’。”

    ——中国科学院院士、著名地质学家

    沈 其 韩

    1950年 

    一名年轻的地质工作者 

    怀抱炽热的爱国情怀 

    投身于 

    新中国找矿事业中 

    辽宁鞍山 

    湖北大冶 

    山西中条山 

    ... 

    他走南闯北、不知疲倦 

    沉浸在为国家寻获矿产的 

    巨大喜悦中 

     

    中国科学院院士、著名地质学家沈其韩

    回首当年

    他激情澎湃:

    “如果一辈子能够跑十几个地区

    帮助建立十个八个矿山

    也就很知足了。”

    1984年,沈其韩在实验室用显微镜观察岩石薄片

    1956年

    他响应“国家需要”

    迎来职业生涯的转变:

    从热火朝天的

    地质找矿一线

    转入

    当时相对冷僻的

    地质科学研究

    1985年,沈其韩(左4)在内蒙古野外进行地质观察

    “我上大学的时候,

    地球化学根本没有学过,

    年代学也不知道,

    都是在工作中边做边学起来的。”

    知不足而后学

    他在

    变质岩石学

    前寒武纪地质学

    等研究领域

    奋发图强

    1991年10 月,沈其韩(左1)在北京密云观察变基性岩脉的特征

    到了1980年

    努力终得回报

    他的研究成果屡次获得

    地质矿产部科技成果奖

    和国家自然科学奖

    得到国际地质学界的

    广泛关注和认可

    2006年7月,沈其韩在黑龙江五大连池火烧山北侧考察

    如今

    这位年逾九旬的老人

    仍在地质科学研究道路上

    不倦跋涉

    他对科学的热爱和求索之心

    仿若大地上最寻常的岩石

    历经风雨

    坚韧如初

    他是中国科学院院士、著名地质学家

    沈 其 韩

     

    破译地球的秘密

    ——记中国科学院院士、地质学家沈其韩

    2019年1月,在2018年度国家科学技术奖励大会上,自然资源部项目《中国最古老大陆的时代和演化》荣获国家自然科学二等奖,这项成果是研究团队三代科学家近30年研究的结晶,获奖团队中就有时年96岁高龄的沈其韩院士。

    在70多年的地质生涯中,沈其韩把所有的精力投入到早前寒武纪地质、变质岩石学和同位素年代学及铁铜矿产等研究中,在基础研究和应用研究方面作出了重要贡献。一年多之前,年逾九旬的沈其韩还坚持每天上午到办公室,翻阅报纸,了解国际国内重大事件,除了矿产新闻外,他格外关心的是土地污染治理和三农问题等。他还请助手把国内外有关寒武纪地质研究的论文打印出来,一篇篇仔细阅读,认真做摘要。正是这种精益求精的钻研精神,让他在90多岁时依然保持着出色的科研能力,再次摘下国家自然科学奖的桂冠,彰显着他为国家科技进步而努力奋斗的初心。

    满腔热情为国找矿

    1922年4月27日,沈其韩出生于江苏淮阴。1941年秋,在堂兄资助下,19岁的沈其韩经上海转浙西,偷渡日伪封锁线,终于在冬天抵达重庆。沿途祖国美丽的山河、破败的城镇、苦难的民众,给沈其韩留下了深刻印象。他渴望国家早一点强大起来。

    1942年夏,沈其韩考入重庆大学地质系。上课时,沈其韩对岩石学非常感兴趣,尤其敬佩教授矿物学的王炳章先生。经过4年学习,沈其韩成为重庆大学那一届地质系仅有的7名毕业生之一。

    1946年6月,沈其韩考入南京的中央地质调查所岩石学研究室,室主任是著名变质岩专家、中国科学院院士程裕淇。前辈地质学家身上那种严谨的工作态度、扎实的知识素养、开阔的学术视野、服务大局的工作意识、炽热的爱国情怀,深深地影响着沈其韩。

    新中国成立后,国家重点发展重工业以尽快实现社会主义工业化,钢铁成为最急需的资源。发展工业,找矿先行,地质工作者们迅速行动了起来。

    1952年,在湖北省黄石市铁山区成立了新中国第一支大型地质勘探队——大冶资源勘探队,后改称为429勘探队。沈其韩作为业务骨干参与组织铁山矿区和领导金山店矿区的后期详勘工作。他们白天到山野测量,夜晚在室内整理资料,很快完成了整个矿区精细的地形图。在两年多的时间里,沈其韩没有回过家,日夜都待在山上。1954年3月,勘探队向地质部提交了《湖北大冶铁矿地质勘探报告》,估计总储量高达亿吨以上。

    从1950年起,从辽宁鞍山铁矿、湖北大冶铁矿到山西中条山铜矿,沈其韩走南闯北,不知疲倦,沉浸在为国家找到矿产资源的巨大喜悦之中。回首当年,年过九旬的沈其韩依然非常激动:“当时地质勘查工作非常辛苦,几乎都是白天黑夜地干,一个地质队、一两千人、三十几台钻机,就想着赶紧找到矿提交报告。一两年时间矿山就建立起来了,让我很有成就感。我当时就想,如果一辈子能够跑十几个地区,帮助建立十个八个矿山,也就很知足了。”

    投身寒武纪地质研究

    不过,沈其韩为国家建立十个八个矿山的愿望很快就被迫放弃了,另一个重要的领域正等待着他。

    沈其韩在山西找矿劲头十足,这个时候,程裕淇院士向他发出召唤,让他回到地质研究所搞岩石学研究。向来服从工作安排的沈其韩内心有些不情愿:“我觉得找矿挺好的,我就留在山西算了。”

    让沈其韩改变主意的只有4个字“国家需要”,国家需要他去找矿,他无怨无悔地奔波在湖北、山西各地。现在,国家需要一些有实际工作经验的人来搞基础研究,为将来的找矿工作做指导,那么,他也会竭尽全力,绝不辜负国家的期许。

    变质岩石约占地壳总体积的27.4%,广泛地分布于早前寒武纪结晶基底及其以后的各种重要的地质构造单元中,绝大多数本来是见不到的,但是由于后来的构造运动,一些变质岩露出地表,带来深部地壳的各种信息。地质学家通过破解这些变质岩,研究地壳演化的历史。变质岩石学是岩石学的重要分支,但是相关研究一直进展缓慢,直到上个世纪初,变质岩研究才有所突破,而中国的变质岩研究当时还是一片空白。

    程裕淇院士敏锐地意识到变质岩研究的重要性——除了能够了解早期地壳的演化、通过原岩恢复推断原岩的形成环境和构造背景外,还有助于利用变质岩来找矿。就这样,1956年秋天,沈其韩跟随程裕淇院士开始了长达60年的早前寒武纪地质、同位素年代学和变质岩区工作方法研究。

    寒武纪是地质划分的一个年代,时间大约是距今5.4亿年至5.1亿年之间。在寒武纪开始后的数百万年时间里,包括现生动物几乎所有类群祖先在内的大量多细胞生物突然出现,这就是令古生物学家和地质学家百思不得其解的“寒武纪生命大爆发”。但凡所有的大爆发,之前一定有一段长期的力量积蓄储备期,地球上所有的矿产资源也正是形成于这个时期。剧烈的构造运动造成地壳抬升,将覆盖在变质岩之上的岩层剥蚀掉,使得变质岩得见天日。因此,沈其韩的研究便以早前寒武纪地层学为对象,试着从古老的变质岩中去推断地球演化的过程,解读地壳深处的信息。

    在地质学家的眼里,一块看起来很普通的石头,或许比等量的黄金还要珍贵。从热火朝天的地质找矿一线转入到相对冷僻的基础研究领域,沈其韩迅速沉下心来,一步一个脚印,踏踏实实地开始工作。

    博观约取获硕果

    “我上大学的时候,地球化学根本没有学过,年代学也不知道,都是后来在工作中边做边学起来的。”知不足而后学,沈其韩格外关注新技术新方法在实际工作中的运用。后来的实践也证明,没有同位素地质年代学,前寒武纪研究寸步难行。通过向国外专家学习,引进国际上最先进的测定同位素的仪器设备,使得中国的寒武纪地质研究在起步较晚的情况下奋起直追,不断收获累累科研硕果,逐渐缩小与国际寒武纪地质研究的差距。

    从1980年开始,沈其韩在地质科学研究上进入盛产期,他在早前寒武纪研究领域取得了一系列重大进展,研究成果屡次获得地质矿产部科技成果奖和国家自然科学奖。中国寒武纪地质研究的突飞猛进也引起了国际地质学界的广泛关注和认可,相关的研讨会和各种科学合作项目也有条不紊地推进起来。

    回忆一生的科研事业,沈其韩认为,年轻的时候什么工作都要做一点,现在年轻科技工作者学历很高,在某一个专业领域钻研得很深,但是也应该具有战略性的长远的思维,应该做到“博观而约取,厚积而薄发”。

    沈其韩说,他亲自经历了变质岩石学和前寒武纪地质学研究从落后到发展的过程,当前地质科学在飞跃发展,变质岩石学和前寒武纪地质学也应紧随时代的脉搏,不断前进。他勉励年轻地质工作者,紧紧抓住学科发展规律和国家需求,坚定信心,在学科的理论思维和实践应用等方面不断创新前行,为国家作出重要贡献。

    从某种意义上来说,地质学家是这颗星球上最智慧的人之一,他们能够从一块岩石标本乃至一粒矿物晶体中看到整个造山带的动力学过程,推测出地球过去46亿年漫长历史中发生的故事,寻找到蕴藏于地球深处的各种丰富的矿产……斗转星移,寒来暑往,沈其韩院士已经在地质科学路上跋涉了70多年,时光把他从一位热血青年雕塑成一位世纪老人,但他对地质科学的热爱和执着追求科学真谛的心却从未改变过,正像这大地上随处可见的一块块岩石,历经风雨,坚韧如初!

    院士沈其韩:破译地球的秘密

    吕庆田作学术报告

    “地球物理”四个字对于吕庆田来说,有一种特别的意义。

    1981年,在老师的建议下,懵懵懂懂的他来到了长春地质学院,开始了应用地球物理专业的学习。1988年硕士毕业后,他被分配到中国地质科学院矿床地质研究所,从一名实习研究员干起。从此,便是大半生无怨无悔地付出。

    寻找深部资源宝藏

    深入地球内部是人类一直以来的梦想。然而,想要了解地球深部,却是异常艰难。厚厚的固体地球介质、复杂的地质条件,挑战着人类的认识的极限。了解地球深部如此艰难,我们为什么还要进行深地探测?

    在吕庆田看来,两大因素促使我们必须探测深部。

    其一,国家资源保障的现实需求。地表或浅层矿产发现的机会越来越小,立足国内,实现资源自给,资源勘查必须要往深走。向深部要资源能源,提高资源储备、缓解资源能源紧缺,是保障国家安全和可持续发展的战略选择。

    其二,认识地球深部运行规律。“金属的富集及矿床的形成、地震的发生、山脉的隆升等,最终还是受地球深部各种物理、化学和动力学过程的控制。目前我们对这一复杂的过程尚不十分清楚。只有通过对重要成矿带、地震多发区进行精细探测,就像‘CT’扫描一样,才能逐渐揭示地球深部的‘庐山真面目’。”吕庆田说。

    在国家重大需求和科学探索双重背景下,近20年来,吕庆田和他的团队以我国东部长江中下游成矿带和西部东准噶尔成矿带为探测对象,在成矿系统理论框架下开展了多尺度地球物理综合探测和研究,在陆内成矿系统的三维结构、深部找矿思路和找矿发现等方面取得重大进展。

    “以往认为,成矿作用大都发生在板块边缘,与板块边缘造山密不可分,如洋—陆俯冲造山、陆—陆碰撞造山,而对于大陆板块内部的成矿作用及深部动力学机制却鲜有了解。”吕庆田和他的团队经过不懈努力,在长江中下游成矿带发现了独特的地壳和上地幔结构特征,发现了大陆内部块体边界控制岩浆—流体活动的反射地震证据,建立了陆内成矿的深部动力学模型。

    在矿集区深部结构和成矿过程方面,他们发现了壳/幔边界基性岩浆底侵的反射地震证据,提出了“多级岩浆系统”结构模型;发现了隐伏在庐枞火山岩之下的两个侏罗纪盆地;精细刻画了庐枞、铜陵等多个矿集区的精细结构和断裂系统空间展布,对认识成矿过程意义重大。

    “我们认为,这些发现可以诠释为什么在长江中下游这个狭窄的带内,形成近百个大中型金属矿床。与板块边缘成矿类似,大陆内部在远程应力的作用下,在组成块体之间也可以发生大陆俯冲,俯冲导致壳幔强烈相互作用,最终沿块体边界形成大陆内部的巨型成矿带。”吕庆田说。

    如何开展深部找矿,这是吕庆田及团队面临的另外一个重大现实问题,目前国内外尚没有现成的经验可以借鉴。他们认为,与地表找矿类似,深部找矿必须先搞清楚地下三维结构,即了解地层、岩浆岩和构造的空间分布。经过反复探索,他和他的团队提出了地质信息约束下的重、磁三维地质建模技术,初步实现矿集区的“透明化”。

    通过研究和探索,吕庆田和项目组提出了基于三维结构、区域成矿模式和示矿信息的“三元”深部找矿方法,并利用这一思路在新疆、长江中下游多处取得深部找矿突破。比如,在新疆伊吾县拉伊克勒克戈壁滩发现了隐伏大型斑岩—矽卡岩矿床,获得333﹢334铜资源量101.5万吨,预测该矿床具有超大型铜矿远景。

    长江中下游成矿带多尺度深部探测试验,形成了一套解剖大型成矿带成矿系统结构的技术解决方案,发展了多种地球物理数据处理与解释技术,为国家“创新2030—地球深部探测”重大项目的实施提供了技术储备。

    创新深部资源探测技术

    如何“看透”地球内部,精准发现深部资源,技术创新最为关键。

    “对深部矿产勘查来说,不仅需要突破精度、灵敏度更高的各种传感器技术,提升野外测量设备的稳定性,还要发展新的数据解释技术,把观测的数据转换为‘透视’地下的图像。”吕庆田说。

    面对我国矿产勘查技术在探测深度、精度和分辨能力等方面与国外差距较大的现状,强烈的使命感、责任感使吕庆田和他带领的研发团队担起了“十二五”国家863计划“深部矿产勘探技术”重大研发任务。

    研发团队克服重重困难,先后突破了高精度微重力传感器技术、铯光泵磁力仪传感器技术、宽带感应式电磁传感器技术等10项关键核心技术,技术指标总体接近或局部超过目前国际先进水平。微重力传感器的突破使我国成为国际上为数不多的可以自主生产高精度重力仪的国家。

    在重磁、电磁、地震、井中勘探仪器和钻探设备方面,他们研制出高精度地面数字重力仪、大功率多功能电磁探测系统、4000米地质岩心钻探成套技术装备等18套急需的勘探地球物理仪器设备,形成了从地面到地下的系列仪器装备。

    在地球物理方法数据处理和解释方面,他们完善了直流电阻率与极化率三维反演方法、重磁三维约束反演方法等20多项地球物理数据处理解释方法,研制出了多参量地球物理数据处理与反演软件系统、金属矿地震处理解释新技术与软件系统2套大型软件系统,形成了多功能三维电磁正反演与可视化交互解释软件系统,金属矿地下物探数据处理解释系统等8个专用软件系统。

    “这一轮的勘查技术研发,使我国在地球物理勘查技术领域极大缩小与国外的差距,大幅度降低对国外勘查设备和解释软件系统的依赖,一定程度上打破了国外在此领域的仪器设备垄断,大幅提高了我国深部资源勘查技术自主研发能力和国际竞争力。”吕庆田说。

    向地球深部进军

    几十年的不懈努力和学术积累,吕庆田及其团队取得了丰硕成果,收获了不少荣誉。先后获得国家科技进步一等奖、二等奖各一项;国土资源科学技术奖一等奖3项,二等奖1项;入选新世纪百千万人才工程国家级人选。他带领的深部资源探测研究团队入选自然资源部高层次科技创新团队。此外,他还为国家培养了一批深部资源探测人才,为深部资源领域的研究和调查作出了突出贡献。

    “向地球深部进军是我们必须解决的战略科技问题”,这是习近平总书记在2016年5月30号“科技三会”上发出的号召。

    “相比于西方国家,我国的深部探测工作起步较晚,在探测技术和实际探测覆盖面积方面与西方国家差距较大,加强地球深部探测,对我国资源能源安全和减灾防灾意义重大。”吕庆田说。

    当前,我国正在酝酿启动“创新2030—地球深部探测”重大项目。未来,我国的地球深部探测将紧密围绕国家资源能源重大需求,瞄准国际地球科学前沿进行布局。

    “入地中国梦”的大幕刚刚拉开,向地球深部进军即将全面启动。吕庆田及团队正在积极准备,迎接未来更大的挑战。

    虽然人类直接钻探深度在不断加深,但与6000多公里的地球半径相比,我们还仅仅只停留在地球的表皮。如何拓展深部空间,认识地球深部运行规律,发现更多的资源,是吕庆田毕生的奋斗方向。

    科技创新人物 吕庆田:探向地球深部

    松辽盆地大陆深部科学钻探工程——松科二井  谷兰丁 摄

    “我宣布,松辽盆地大陆深部科学钻探工程即松科二井超额完成预定目标,胜利完井!”

    5月26日,在黑龙江省安达市松科二井工程现场,自然资源部中国地质调查局副局长李金发的话音刚落,雷鸣般的掌声在高耸的井架下响起。

    在“向地球深部进军”的号召下,松科二井这一亚洲国家组织实施的最深大陆科学钻井,也是国际大陆科学钻探计划(ICDP)实施的最深钻井,在地球探索领域树起了一座新的国际地标。

    国际同行竖起大拇指

    “值此松辽盆地大陆深部科学钻探工程——松科二井完井仪式召开之际,我谨代表国际地质科学联合会,向自然资源部中国地质调查局全体同仁表示衷心的祝贺!向本次工程的参与实施单位及全体工作人员表示诚挚的敬意!”在完井仪式上,国际地科联主席成秋明深情地说。

    成秋明指出,大陆深钻是地球科学里非常前沿和核心的、代表国家水平的工程。这次的项目取得了很多世界第一,从工程设计到施工完全是由中国科学家和工程技术人员自主设计,拥有自主知识产权,很了不起。松科二井工程的成功实施,为地球深部探测和科学实验研究提供了关键技术和装备,拓展了松辽盆地深部页岩气、地热能等清洁能源勘查开发的新空间,同时还引领了全球白垩纪陆相古气候研究,显著提升了中国在地质历史古气候研究领域的国际影响力。

    也正是因此,成秋明还代表国际地质科学联合会表态:国际地质科学联合会将会继续支持中国地球深部探测研究,并积极开展更多合作。

    与成秋明同样表示祝贺与期待的,还有国际大陆科学钻探计划。在仪式现场,国际大陆科学钻探计划运行支持部主任乌利希·哈尔姆宣读了来自总部的贺信。

    贺信将该项目誉为“灯塔”,盛赞其“不仅对中国大陆科学钻探,而且也对世界大陆科学钻探工作具有‘引领’作用”,并将项目的“灯塔”作用上升到“对中国和国际上所有的科学家,在科学上、技术上和国际合作上都是‘灯塔型’样板工程。”

    对项目在钻探工程和科学研究上的成就,贺信称:“松辽钻探项目在多方面取得杰出成就。如:钻探深度7018米,单个岩芯长度达40米,岩芯采取率超过95%。该项目取得的技术成就将长期影响中国和世界钻探工作,并将影响到参与该工作的科学家。”“有关松辽科钻的成果已经在国际重要期刊上发表,达到了科钻预期目标,体现了松科二井对社会的重要贡献,更让中国在国际科学界的作用举足轻重。”

    对项目成就的认可、赞誉,还体现在国际大陆科学钻探计划委员会今后的计划中。贺信表示,“在松科二井执行期间,国际大陆科学钻探计划委员会计划成立松辽深地实验室,这是我们首次长期利用ICDP资助并计划的。”

    更让国际大陆科学钻探计划兴奋的是,透过这一项目,他们看到了科学与工业结合的途径,相信松辽科钻将成为工业和科学成功结合的典范”。

    一个灯塔、一个样板、一个典范,中国地质人以松科二井为依托,在地学领域树起了一座新的国际地标。

    这座新的国际地标有多高呢?请看以三个之最:亚洲国家实施的最深的大陆科学钻井,国际大陆科学钻探计划(ICDP)成立22年来实施的最深钻井,全球最早钻穿距今约6500万年至1.45亿年的白垩纪陆相地层的科学井。

    其实,在此之前,松科二井就引起了国际地学界的关注,松科二井也多次占据国际大陆科学钻探计划(ICDP)组织网站首页中心位置。

    通往白垩纪的时间隧道

    白垩纪,是地球上海陆分布和生物界急剧变化、大西洋迅速开裂和火山活动频繁的时代,植物、动物界许多重大变革的影响,一直持续到现在,而国际地学界对相关问题的激烈争论,也一直持续到现在。

    解决争论的唯一办法,就是穿越到白垩纪,了解当时到底发生了什么。

    穿越显然是不可能,唯一的办法就是在地球上进行科学钻探,打一深孔然后再对岩心进行分析,一步一步去还原当时的真相。因此,松科二井也被国际科学界称为恐龙时代的旅行。

    在5月21日进行的成果鉴定会上,李廷栋、康玉柱、武强、侯增谦、杨经绥等院士及有关专家在深入研究松科二井的成果后认为,松科二井获得了全球最完整最连续白垩纪陆相地层记录、气候变化主要控制因素和气候波动重大事件等三项重要证据,首次实现了对白垩纪最完整最连续陆相地层厘米级高分辨率的精细刻画,重建了白垩纪陆相百万年至十万年尺度气候演化历史,建立了白垩纪陆地古气候演变规律。

    通俗说,通过松科二井这一时间隧道,中国地质科学者基本还原了白垩纪的场景。

    “小行星撞击只是压死骆驼的最后一根稻草。”针对国际科学界目前争论最为激烈的白垩纪物种灭绝事件,中国地质大学(北京)的张来明用在松科二井的最新发现进行了说明:

    这次重建的白垩纪—古近纪界线附近的陆相气候记录表明,在小行星撞击地球之前约30万年,地球上的温度和大气中的二氧化碳浓度都明显升高,而这与德干高原火山喷发的时间高度一致。而根据陆相记录的研究还发现,在德干火山喷发之后、小行星撞击之前,松辽盆地约2/3的物种已经发生了绝灭。

    “这说明,德干火山喷发与小行星撞击的连续二次打击是造成恐龙等物种绝灭的原因。”张来明解释说,德干火山喷发导致剧烈的升温和二氧化碳浓度上升,破坏了生态系统的稳定性,造成了部分物种的绝灭;之后,短时间内小行星的撞击使原本不稳定的生态系统发生崩溃,形成了压垮骆驼的最后一根稻草。

    在为全球宏观气候变化研究提供实验室的同时,松科二井对松辽盆地深部宝藏的开发,同样提供了众多宝贵信息。以能源资源潜力为例,松科二井证实在盆地下存在有利的页岩气层系,发现页岩气气测异常层达43层、累计厚度102米,甲烷占全烃组分平均含量的86%,异常幅度与背景值的平均比值为14.77。同时,还首次发现了具备开发条件的盆地型干热岩地层,在井深4400米~7018米发现温度150℃~240℃高温干热岩体。

    今后,随着后续研究的逐步深入,相信振奋人心的新发现会越来越多。通过松科二井这个时间隧道,中国地质科学工作者为人类还原一个完整的白垩纪,将不再是梦。

    向地球深部进军不停歇

    松科二井虽然完井,但中国地质人探索地球深部奥秘的步伐仍在继续。

    对此,中国地质调查局已作好了规划:深化地球深部探测理论技术研究和成果转化,组织实施好松辽盆地页岩油(气)、深层油气、砂岩型铀矿、干热岩等清洁低碳能源地质科技攻坚战,带动大庆油田接替资源的勘查开发;加快推进《地球深部探测重大项目》的申报,以及“地球深部探测与能源资源安全”国家实验室与“深部地下观测与实验”国家重大基础科学设施的建设工作;研发15000米国产超深钻探装备系列,做好我国超万米大陆科学钻探工程以及大型含油气盆地科学钻探工程的选址和实施工作。

    而这,与中国地质调查局始终站在人类命运共同体的高度,充分发挥中国的体制优势和自身的人才技术优势,积极开展地学领域前沿探索的传统,一脉相承。

    人类只有一个地球。人类要与自然和谐共处,就必须了解地球。而了解地球最有效的、最直接的办法之一,就是实施深部钻探、在典型地区建通往地球深部的时间隧道,去研究地震成因、火山喷发机理、地质灾害预警、地球气候演变、生命演化历史、深部地质结构和能源资源潜力等,为人类更加和谐地与自然相处提供科学的解决方案。

    于是,1968年,美国率先提出并实施了深海钻探计划(DSDP)。1985年,大洋钻探计划(ODP)开始运作。1998年,我国正式加入ODP,成为ODP历史上第一个“参与成员”。2004年,中国加入规模更加宏大、科学目标更具挑战性的综合大洋钻探计划(IODP),成为人类深入认识深海地质演化俱乐部中的一个重要成员。

    大陆钻探计划启动后,1996年2月,德国、美国和中国作为第一批成员,发起了国际大陆科学钻探计划(ICDP)。目前,ICDP已经实施了湖泊、陨石撞击和生物灭绝事件、研究火山和地热、断层带等几十个科学钻探项目。我国已成功申请到“大别—苏鲁”大陆超深钻、中国环境科学钻探青海湖工程、科钻一井和二井工程等多项ICDP项目,在大陆科学钻探领域方面取得令人瞩目的成绩。

    “大别—苏鲁”大陆超深钻是我国首例大陆钻探工程,2001年开工建设,至2005年完成钻探施工任务,是全世界穿过造山带最深部位的科学深钻,被国际地学界誉为超高压变质带大陆动力学的研究宝地。

    2005年7月21日,青海湖环境科学钻探开钻,到9月5日结束,历时47天,分别在青海湖东盆、南盆等5个地点钻取了13支岩芯,共548米, 取得岩芯323米。通过青海湖科学钻探研究,查明了青海湖湖盆形成演化,气候构造变化和青海湖波动的历史,达到了解东亚季风气候和内陆干旱化变迁的研究目的。

    2006年8月18日,在松辽盆地北部中央坳陷区开钻的中国白玺纪大陆科学钻探工程(松科一井)分两孔进行,称为“一井双孔”。2007年10月20日,松科一井顺利完钻,总取心进尺为2577米,心长共计2485米,为白玺纪地球表层系统重大地质事件与温室气候变化的后续研究奠定了坚实基础。

    松科二井于2014年开钻,目标是打穿松辽盆地白垩系,探索松辽盆地深部能源潜力,建立松辽盆地深部地层结构,寻求白垩纪气候变化地质证据,研发深部探测技术。松科二井到目前已完成钻井深度7018米,成为亚洲国家实施的最深科学钻探井。

    这一系列成果对人类的贡献,得到了来自国际地学界的高度赞誉,也提升了我国“向地球深部进军”的能力和水平。

    中国人常说“上天容易入地难”。深部钻探过程中会遭遇很多世界级难题,其中要解决地球的“三高”(高温、高压、高地应力)问题,就必须有好的钻探装备。正是通过以上系列科学钻探工程的实施,中国地质人在为国际地学研究贡献系列成果的同时,还带动了我国万米大陆科学钻探装备和1000米、2000米、3000米、4000米等系列钻探成套装备的研发与进步。

    现在,中国已进入到科学钻探与钻探装备互相促进、互相进步的新时代。而随着科学钻探和钻探装备间的良性互动、螺旋式上升,中国地质人向地球深部进军的能力也在不断提升,为人类提供更多了解地球的信息也必将越来越丰富,对人类命运共同体构建的贡献也必将越来越大。

    中国地质调查局在松科二井完井后形成的规划,就是中国地质人站在新起点、进入新时代的宣言。

    松科二井重大突破与进展一览

    一 创造了深部钻探技术

    四项世界纪录和两项重大突破

    1. 创造了四项世界纪录。

    311毫米大口径连续取心最长——1650米。

    311毫米口径单回次取心最长——30米。

    216毫米口径单回次取心最长——41米。

    152毫米口径单回次取心最长——33米。

    大幅提高了施工效率和岩心采取率(96.6%),缩短了施工周期,降低了成本,确保了全球最完整最连续的白垩纪陆相地层记录的获取和科学目标的实现。

    2. 创新了超深井大口径取心技术体系。

    在世界上首次研发并成功应用大口径一次取心成井和中空井底动力绳索取心等技术,将钻进速度提高了2倍。

    3. 攻克了超高温钻井技术难题。

    研发成功抗高温的水基钻井液、固井等系列技术,创造了国内最高温度(241℃)条件下钻进的新纪录,为解决超万米深部钻探面临的超高温难题做好了技术储备。

    二 发现了松辽盆地深部

    两种清洁能源具有良好的勘探开发前景

    1. 完整揭示了深部页岩气资源潜力。

    在松辽盆地深部凹陷带沙河子组合火石岭组(3350米以深)地层中发现页岩气气测异常43层,累计厚度102米,甲烷占全烃组分平均含量的86%,异常幅度与背景值的平均比值为14.77,证实了松辽盆地深部存在有利的页岩气层系,为实现深部能源勘查向页岩气勘查拓展提供了重要依据。

    2. 首次发现了具备开发条件的盆地型干热岩地层。

    在井深4400米~7018米发现温度150℃~240℃的高温干热岩体和两层含高放射性元素异常地层,热流值为84毫瓦/平方米,展示了松辽盆地具有良好的地热能开发应用潜力。

    三 获得了白垩纪陆地

    古气候演变规律的三项重要证据

    1. 首次实现了对白垩纪最完整最连续陆相地层厘米级高分辨率的精细刻画。

    建立了白垩纪重要地质历史档案,为研究白垩纪古气候演变提供了重要的科学依据。

    2. 首次重建了白垩纪陆相百万年至十万年尺度气候演化历史。

    发现了各个时间尺度陆相气候变化的主要控制因素,为研究地球气候系统在温室气候条件下演变机制找到了新证据。

    3. 发现了白垩纪气候波动重大事件。

    捕捉到大规模火山爆发排放二氧化碳引发陆相气候剧烈波动的重要信息,证实了气候快速变化是导致恐龙灭绝的诱发因素,对研究和预测未来全球气候变化意义重大。

    四 取得了基础地质研究三项重大进展

    1. 建立了地层对比的“金柱子”。

    创建了完整的松辽盆地陆相地层标准剖面——“金柱子”,为开展区域性和全球地层对比研究提供给了重要的陆相“标尺”。

    2. 建立了松辽盆地演化新模式。

    揭示了松辽盆地深部地质构造特征,发现了古大洋板块俯冲、聚合的深部证据,构建了盆地早期基底双向汇聚、后期伸展反转的陆内盆地演化新机制,为松辽盆地成因再认识及深层油气勘探提供了理论指导。

    3. 丰富了白垩纪陆相生油理论。

    首次发现了松辽盆地多次、短期海侵事件的新证据,提出了白垩纪海侵事件是有机质富集和烃源岩形成的重要因素之一的新认识,对松辽盆地深部油气勘探有重要的指导意义。

    中国自然资源报:树起地学领域新地标

        光明日报北京5月13日电(记者袁于飞)作为世界各国在地球科学领域,尤其是地球化学领域合作的新起点,联合国教科文组织全球尺度地球化学国际研究中心12日在河北廊坊的中国地质科学院地球物理地球化学勘查研究所成立。该中心系联合国教科文组织二类中心,突显了我国地球化学科学在国际上的引领作用。

         据介绍,地球化学是研究地球的化学组成、化学作用和化学演化的科学,在解决资源环境问题方面具有独特的作用,目前已成地球科学的支柱学科。截至2015年年底,国际地球科学计划项目共实施355项,其中中国参与135项,占38%。2015年22个在研的国际地球科学计划项目中,中国科学家参与10项,排名居各会员国首位。

     


    光明日报:地球化学国际研究中心建立

    要给珠峰拍摄一套全景高清立体照片,一定得是一位世界级的摄影师。

    图为航空测量队员从飞机上用手机拍摄的珠峰

    你可能想,这位摄影师要先来到珠峰脚下,从下往上拍一组广角照片,以显山之高邈;再在攀登途中拍摄一组近景照片,横看成岭侧成峰;最后顶风冒雪冲顶成功,从上往下拍一组俯瞰照片,一览众山小。

    现在,就有这么一位“摄影师”,不用爬山也可以胜任这项工作。这就是号称“中国地调空军”、隶属于自然资源部中国地质调查局的“航空地质一号”飞机,它能飞到比珠峰更高的高空,运用三组特殊的“镜头”,从空中拍摄一套单幅可达上亿像素的珠峰全景高清照片。

    这就是大名鼎鼎的“航空地质一号”,擅长高山、高原区的航空物探遥感调查。如果您有航空测绘、航空摄影的需求,可联系我们!照片包您满意!

    下面我们就逐一解密这位会飞的摄影师和他的独家摄影镜头。

    挑战极限飞行

    “航空地质一号”飞机是处于国际领先水平的专业测量平台,由地调局航遥中心完成改装设计,飞行海拔高度可达10500米。它曾在西藏羌塘高原执行过测量任务。

    中国地质调查局自然资源航空物探遥感中心副主任孙承志介绍,此次珠峰航空高程测量,“航空地质一号”主要飞行在平流层与对流层交界处,飞行高度为9800米~10250米之间,接近“航空地质一号”的极限高度。“航空地质一号”飞行员于思明说,在高原飞行最大的难点就是突如其来的侧向风,这里山峰高耸、连绵不绝,山与山之间经常会形成风口,致使吹来的风被突然加速,“看不见的风”成为对飞行员技术的最大考验。

    2020珠峰高程测量技术协调组组长、中国测绘科学研究院研究员党亚民参与起草了航空重力测量实施方案。他告诉记者,一开始询问了测绘系统经常做重力测量的飞行员,人家一听说要去这么高的地方飞,直接就拒绝了。“珠峰天气变化太剧烈,飞行还是有一定风险的。”党亚民说,随后他了解到航遥中心的“航空地质一号”飞机为了勘测地下物质,经常要贴近地面飞行,而且是飞得越低越好,对飞行技术的要求也更高。于是难题迎刃而解,“中国地调空军”挑起了空中测量珠峰高程的重担,并且在重力测量的基础上完善了航空遥感实施方案。

    中国地质调查局自然资源航空物探遥感中心副总工程师陈斌计算了此次空中测量的“工作量”。其中,航空重力测量的面积达到了1.25万平方公里,预计将用5个架次完成测量,每个架次平均用时6小时。航空遥感摄影至少需要8个架次,特别是中午1点之后,珠峰地区天气会变得非常恶劣,很难进行摄影。所以,和地面测量人员一样,“航空地质一号”也需要抢抓时间窗口,如果天气条件允许,飞行人员每天早上5点就要在拉萨机场做好准备,随时等待起飞。从拉萨机场到珠峰测区大约需要一小时。

    镜头一:寻找珠峰的“脚底板”

    第一组镜头名叫机载航空重力仪,负责航空重力测量。

    划重点,下图是我国自主研发的航空重力仪DGA01。

    同时,机上还配备了GT-2A型航空重力仪。两台重力仪的测量数据互为备份,保证每架次测量的成功率。

    什么是重力测量呢?简单说,就是测量山峰的海拔零点。就像我们量身高要从脚底量起一样,一座山峰究竟有多高,也要从它的“脚底板”量起。

    那么珠峰的脚底板在哪里呢?这就要用到大地水准面的概念。大地水准面是描述地球形状的一个重要物理参考面,也就是海拔高程系统的起算面。精确求出这个水准面,就相当于找到了珠峰的脚底板。

    孙承志告诉记者,计算珠峰大地水准面,以前是用水准测量的方法,也就是从青岛的水准原点,应用国家一等水准测量规范,一路测到距离珠峰最近的西藏定日。从定日到珠峰大本营,因地形条件限制,观测次数、视距和时间无法满足一等水准测量规范,只能用二等水准规范进行测量。从大本营再往上,只能应用三等水准规范了,测量的精度也相应降低。

    在1975年我国第一次珠峰高程测量中,一名队员在海拔7790米、距珠峰1.9公里处,因戴着手套不便操作,便毅然脱掉右手手套,冒着摄氏零下40度的严寒操作重力仪测得了重力数据,创造了世界重力测量史的奇迹,但同时也付出了4根指头因冻伤坏死的沉重代价。

    精度是测绘的生命,现在,地面队员不需要再冒着冻掉手指头的风险去测量重力了。航空重力测量不受地面条件限制,可以完美解决从定日到珠峰峰顶这“最后一公里”的测量难题,把精度一致性延展到峰顶。

    “水准测量是沿着一条线测过来,测的是一些点位。航空重力测量则是通过连续测线飞行,可以测出一整个面。”孙承志说,航空重力测量可将大地水准面的测量精度较以往提高近40%。

    这款镜头拍出的照片是这样式的:

    图为某地航空重力异常图

    镜头二:亿万像素大写真

    航空遥感测量分别要拍摄两组“照片”。一是利用先进的机载航空相机获得高分辨率的影像数据,二是使用先进的机载激光雷达仪获取高精度的三维地形点云数据。两数据融合形成高分辨率、高精度的三维地形数据,能够逼真、直观地反映测区的地形、地貌特征,这是名副其实的珠峰大写真!

    那么,机载航空相机长啥样?

    这就是目前世界上最新一代的数字航空摄影测量系统:ADS100推扫式数字航摄仪。它具有效率高、数据信息丰富、性能稳定高、集成度高等一系列优势,同时投影变形小、影像拼接量小。

    孙承志介绍,飞机上专门为高空作业改装了摄影窗口,遥感设备需要光学玻璃,要在飞机上开窗,技术要求比较苛刻。相比普通的光学照相,使用这台相机拍出来的照片畸变小,并且可以测定成像位置的坐标。

    那么,这样一张可以用来测绘的照片,像素能达到多少?据说单幅不少于4亿像素!拍摄出来的图像色彩均匀、定位精度高、图像分辨率高。

     

    数字影像 数字地形

    机载激光雷达仪的外观更炫酷:

    这是目前行业内体积最小的大幅面激光测量系统,有最高级别的点密度和采集率,也是目前国际上广泛用于多种测量平台的激光雷达测量系统。

    它拍出来的照片是这样的:

    地表三维模型

    机载激光雷达仪在飞机上发射激光波束,通过地面回波测定从飞机到地面的距离,得到精密的地面数字模型。孙承志说,以前都是靠立体测绘,在两个位置拍摄两张照片,用立体交会的方法绘制一个模型,再在模型上间接采点。飞机则可以用激光直接在地面采点,用来再现地面的三维地形。

    党亚民告诉记者,遥感摄影测量将在自然资源监测方面发挥重要作用,留下第一手的精细资料。“很多人想用无人机完成遥感摄影,但七八级大风在珠峰是家常便饭,无人机根本不可能飞行。”党亚民说,针对珠峰一般会使用卫星遥感影像,但像“航空地质一号”这么近距离地获取精细遥感资料,所获数据将是弥足珍贵的。

    给珠峰拍写真:这个“摄影师”不一般
1 2 3 4 5 6 7 8 9 下一页 尾页