分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到3条相关结果,系统用时0.008秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    探索资源环境和谐发展之路

    邓杰 邓善芝

    资源的综合利用,主要是指在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用;对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用;对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    资源综合利用的重要性

    矿产资源综合利用不仅是解决矿产资源短缺的重要途径,而且是实现矿业经济可持续发展战略目标的现实选择,对有效利用和合理保护自然资源起着积极的推动作用。矿产资源综合利用是矿产开发的一项重要政策,也是合理开发、保护环境、维护生态平衡的一种有效手段。在矿产资源综合利用过程中,倡导低碳经济不仅有利于缓解我国经济发展的资源约束矛盾,调整优化结构和转变经济发展方式,而且对于减少污染排放、改善环境质量具有重要意义。

    1.矿产资源低碳开发

    就我国有色金属工业来说,每年排出废石上亿吨、尾砂7000多万吨,占用大量土地;数亿吨废水只有少部分复用或处理达标后排放。有色金属材料生产过程的许多材料含有一定量的有毒金属,如汞、镉、钍等,产生的废弃物已成为环境污染的重要因素之一。有色金属采选回收率仅为50%~60%;矿产资源综合利用率达70%的矿山仅占7%,综合利用率达50%的矿山不到15%,75%的综合型矿山企业综合利用率不到2%~5%;选矿回水利用率65%~70%;尾矿综合利用率为20%左右;冶炼的资源综合利用率为40%~60%,许多共、伴生矿没有综合回收;工业水重复利用率为72.8%;固体废物资源综合利用率为7%~8%;SO2的利用率约70%左右,致使每年排放大气中的SO2高达50余万吨。因此在有色金属工业的采、选、冶、加工过程中,对尾矿及“三废”进行综合利用显得格外迫切。

    2.再生资源回收利用

    除开展矿产资源的综合利用之外,发展再生资源回收利用也是非常重要。

    发展再生资源回收行业,可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。业内预计,到2020年末,我国再生资源回收行业整体产业链产值将达3万亿元。

    资源综合利用的途径

    综合利用固体废物生产的产品包括:利用煤矸石、铝钒石、硼尾矿粉、锅炉炉渣、冶炼废渣、化工废渣及其他固体废弃物生产建材产品、电瓷产品、肥料、土壤改良剂、净水剂、作物栽培剂;利用制糖废渣、滤泥、废糖蜜、淀粉废渣、造纸污泥等生产造纸原料、建材产品、酒精、饲料、肥料、赖氨酸、柠檬酸、核甘酸、木糖,碳化硅、饲料酵母,及多种有机糖类。

    综合利用废水(液)生产的产品包括:利用化工、纺织、造纸工业废水、制盐液(苦卤)及硼酸废液,生产银、盐、锌、纤维、碱、羊毛脂、多种无机盐类、粘合剂、酒精、香兰素、饲料酵母、肥料、制冷剂、阻燃剂、燃料等;利用酿酒、酒精、制糖、制药、味精、柠檬酸、酵母废液生产饲料、食用醋、酶制剂、肥料、沼气,以及利用糠醛废液生产的醋酸钠;利用石油加工、化工生产中的废硫酸、废碱液、废氨水以及蒸馏或精馏釜残液,生产硫磺、硫酸、硫铵、氟化铵、芒硝、硫化钠、环烷酸、肥料,以及酸、碱、盐等无机化工产品和烃、醇、酚有机酸等有机化工产品。

    再生资源生产的产品包括:回收生产和消费过程中产生的各种废旧金属、废旧轮胎、废旧塑料、废纸、废玻璃、废旧家用电器、废旧电脑及其他废电子产品 ,从中提取金属(包括稀贵金属)非金属和生产的产品;利用废棉、废棉布、废棉纱、废毛、废丝、废麻、废化纤、废旧聚酯瓶和纺织厂、服装厂边角料,生产造纸原料、纤维纱及织物、无纺布、毡、粘合剂、再生聚酯产品;利用废轮胎等废橡胶、废塑料生产的胶粉、再生胶、轮胎、防水材料、橡胶密封圈、塑料制品、建材产品、装饰材料、保温隔热材料;利用杂骨、皮边角料、毛发等生产骨粉、骨油、骨胶、明胶、胶囊、磷酸钙及蛋白饲料、氨基酸、再生革、生物化学制品。

    城市矿产垃圾:放错地方的资源

    据测算,每回收利用1万吨再生资源,可节约自然资源4.12万吨,节约煤1.4万吨,减少6万吨~10万吨垃圾处理量;每利用1万吨废钢铁,可炼钢8500吨,节约铁矿石2万吨,节能0.4万吨标煤,少产生1.2万吨废渣,减少86%的空气污染。

    在“城市矿产”回收体系当中,垃圾分类处理是废弃资源再生回收利用中重要的一个环节。通过分类投放、分类收集,把有用物资,如纸张、塑料、橡胶、玻璃、瓶罐、金属以及废旧家用电器等从垃圾中分离出来回收利用,既提高垃圾资源利用水平,又可减少垃圾处置量。按照一般城市特点,我们将城市可能产生的垃圾进行分类,主要分为:动物尸体、人畜粪便、可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾。

    垃圾分类处理大致分为三个步骤:湿垃圾(有机垃圾)在有机垃圾加工利用厂被加工成有机肥或有机复合肥,用于绿化或农业施肥;干垃圾(无机垃圾)在生活垃圾分拣中心被进一步细化分类为废纸张、废塑料、废玻璃、废金属等可回收利用成分,再由相应的再生利用厂进行再生利用;有害垃圾在有害垃圾分拣处置站分拣,可回收利用物送去回收利用,残渣进行焚烧或安全填埋处理。

    对垃圾进行分类收集,有以下诸多优点:

    一是减少占地。生活垃圾中有些物质不易降解,使土地受到严重侵蚀。垃圾分类,去掉能回收的、不易降解的物质,能减少垃圾数量达60%以上。

    二是减少环境污染。废弃的电池中含有金属汞、镉等有毒的物质,会对人类产生严重的危害;土壤中的废塑料会导致农作物减产;抛弃的废塑料被动物误食,会导致动物死亡。

    三是变废为宝。中国每年使用塑料快餐盒达40亿个,方便面碗5亿~7亿个,一次性筷子数十亿支,这些占生活垃圾的8%~15%。1吨废塑料可回炼600公斤柴油。回收1500吨废纸可生产1200吨纸。1吨易拉罐熔化后,能炼结成1吨很好的铝块,可减少开采20吨铝矿。生产垃圾中有30%~40%可以回收利用,应珍惜这个本小利大的资源。

    石墨,缘何脱颖而出?

    曾小波 徐明

    2008年,英国曼彻斯特大学两位学者因发明石墨烯材料获得诺贝尔奖,在全球引发“石墨热”;欧盟宣布石墨烯入选“未来新兴旗舰技术项目”,并设立专项研发计划;日本将石墨作为重要战略性矿产资源进行储备;美国将石墨列为高新技术产业的关键矿物原料,实行立法保护。2015年10月,习近平总书记考察访问英国莫彻斯特大学石墨烯重点实验室;2015年10月,华为与曼彻斯特大学石墨烯研究所签订石墨烯合作战略协议;2016年,《全国矿产资源规划》将晶质石墨列为我国战略性非金属矿产资源。

    石墨烯晶体结构模型

    石墨到底是一种什么样的资源,为什么会在众多矿产资源中“脱颖而出”?在中国经济面临新常态、产业转型升级的关键时期,晶质石墨资源开发及高科技利用将会带来怎样的机遇与挑战?

    一、晶质石墨是什么

    石墨,别称“石涅、石黑、石螺、石黛、画眉石”,是C元素的结晶矿物之一,素有“黑金子”的美称,呈钢灰色、黑灰色,具半金属光泽,有滑感,易污手。

    石墨分为天然石墨和人造石墨,天然石墨可分为晶质石墨和隐晶质石墨。晶质石墨特别是大鳞片晶质石墨是高端石墨产品的重要原料,工业价值较大。

    中国石墨矿产分布及生产加工基地示意图

    二、晶质石墨的战略地位

    1.晶质石墨的性质

    晶质石墨具有金属和非金属两种特性,同时是碳结晶矿物,具有优异的导电、导热、自润滑、耐高低温、高化学稳定性、密封、抗辐射及可塑性型强等特点,使其在光学、微电子、热力学等方面具有独特的优异性能。

    2.晶质石墨的主要产品

    耐火材料:鳞片石墨大量应用于冶金工业中的石墨坩埚和镁碳砖生产等。

    高纯石墨:高纯石墨材料要求C≥99.9% ,用于核能、半导体等高新技术产业的材料,则要求C≥99.99 %。

    铸造工业用石墨:用石墨作铸模涂料,增加铸件的光滑度,减少铸件的裂纹和孔隙。对石墨原料的要求一般粒度0.074mm,含碳70%~80%。

    柔性石墨:具有较高的化学稳定性、耐高低温、耐腐蚀、耐辐射、导电、导热、安全无毒,且具有良好的柔韧性、自粘性和润滑性,广泛应用于石油、化工、冶金等领域。

    胶体石墨:拉丝用石墨乳粒度小于10μm,含碳98%~99%;模锻用石墨乳呈鳞片状,含碳要求在80%~99%以上,粒度+0.15μm。

    锂离子电池负极材料:目前成熟应用的主要是碳石墨材料,是电子、新能源汽车等新兴产业的关键性材料。

    各向同性石墨材料:是核能、半导体、电火花加工等高新技术产业发展急需的高端石墨产品,大量用于单晶硅、多晶硅等半导体材料的制造设备。

    电气工业用石墨:利用石墨制作电极、电刷、碳棒、碳管、阳极板、石墨垫圈等。对石墨原料的要求为粒度43μm,含碳94%~97%。

    石墨烯:是目前发现的最薄最轻、硬度最高、韧性最强、导热性和导电性最好的纳米材料,被誉为“21世纪的新材料之王”。

    3.晶质石墨的战略地位

    晶质石墨是多种工业必需的关键性原料:在航空航天方面,用于制造远程导弹或者航天火箭推进器的材料、宇宙航行设备的零部件等;在国防军工方面,用于制造新型潜艇的轴承,生产国防用高纯石墨、火药、石墨炸弹、隐形飞机和导弹的鼻锥等;在化工方面,用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、泵等设备,用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业;在电子方面,用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层、电磁屏蔽的导电塑料等;在新能源汽车方面,可用于锂离子电池负极材料;在核能工业,高密度的高纯石墨和氟化石墨,用作核反应堆中子减速剂和防原子辐射的外壳;在光伏产业,石墨烯是一种较好的储氢材料,用于制作大比电容的超级电容,提高锂电池的充放电效率,石墨烯也是太阳能电池较好的备选材料。

    晶质石墨将带动新能源、新材料等领域的技术革命。石墨烯将带来诸多工业革命性的技术进步,是未来科技竞争的核心。计算机及互联网领域的技术革命:石墨烯芯片的主频可达1000GHz,是普通晶硅电脑芯片的数百倍;通信领域的技术革命:石墨烯制成的天线以1000GHz的频率正常工作,远超目前常规的天线;新能源工业技术进步:石墨烯制成的超级电容器,充电时间只需1 毫秒,新能源汽车电池有望充电10分钟,连续开行1000公里;国防军工:石墨烯强度比钢强200倍,是现有测试材料中轻度最强的,这将带来武器工业的技术革命。

    4.晶质石墨的需求

    未来,传统领域石墨需求保持稳定,新兴产业石墨需求将快速增长,需求增长集中在晶质石墨。据中国地质调查局预测,2020年晶质石墨需求将达到95万吨,新兴产业需求占比将超过45%,其中,新能源和新能源汽车领域需求约23万吨,核电领域需求约14万吨,高端制造和电子信息等领域需求10万吨以上。预测到2030年,晶质石墨需求将达到135万吨,新兴产业需求占比将进一步提高。

    三、晶质石墨产业发展机遇与挑战

    1.我国石墨资源丰富,资源保障程度高。

    据美国地质调查局(USGS)统计,2017年,全球石墨储量2.7亿吨,80%集中分布于土耳其、巴西和中国。矿石种类上,晶质石墨主要分布在中国、乌克兰、斯里兰卡、马达加斯加、巴西等国;隐晶质石墨矿床主要分布于土耳其、印度、韩国、墨西哥、奥地利、中国等地。多数国家只产出某一类型石墨,中国是少数几个石墨资源种类齐全的国家之一。

    中国石墨资源丰富,总保有量长期位居世界前列,其中晶质石墨资源量约2.6 亿吨。晶质石墨以大、中型矿居多,占矿产地总数的70%,全国晶质石墨保有矿物储量约88%集中分布于大型矿中。目前,我国已形成六大石墨生产加工基地,产量占全国的80%以上,其中晶质石墨主要产地有黑龙江鸡西、黑龙江萝北、山东平度、内蒙古兴和等;隐晶质石墨主要产地有湖南郴州、吉林磐石等。

    2.晶质石墨深加工技术相对落后,尚未成为资源强国。

    长期以来,我国晶质石墨深加工技术相对落后,大量出口低附加值产品,高端深加工产品主要依赖进口,开发利用粗放。

    石墨产品一般分为高纯石墨(固定碳含量>99.9%)、高碳石墨(94%~99%)、中碳石墨(80%~93%)和低碳石墨(50%~79%)四大类,国内企业主要生产低碳、中碳石墨产品,高碳和高纯石墨产品较少。球化石墨、柔性石墨和氟化石墨等深加工产品占比有限,深加工技术相对落后。出口的石墨产品80%为初加工产品,同类产品进出口价格相差悬殊,如球化石墨进口价格是出口价格的两倍以上。

    石墨矿石中含有大量的杂质矿物,晶质石墨矿石的品位较低,一般为3%~15%,但可浮性很好。在选矿过程中,需采用多段磨矿多段选别,通过筛分或水力旋流器分级,及时将已解离的大鳞片石墨分离出来,避免受到反复磨损。

    我国中小型采选企业数量多,生产规模小而散,技术设备落后,采富弃贫、采易弃难等现象突出,晶质石墨利用率仅为40%,资源浪费严重。

    四、结语

    晶质石墨不仅应用于耐火材料、电极电刷、铅笔、铸造、密封、润滑等传统工业领域,更是高端装备制造、新能源、新材料等战略性新兴产业及核电领域的关键资源,被誉为“21世纪支撑高新技术发展的战略资源”,素有“黑金”美誉。随着技术发展和应用领域的不断拓展,晶质石墨资源的战略地位越来越受到重视。

    我国是世界石墨资源大国,第一大石墨生产国、出口国和消费国,但长期以来石墨加工技术落后,大量出口低附加值产品, 高端深加工产品主要依赖进口,资源优势未能转化为技术和经济优势。未来,随着我国石墨资源战略地位凸显,科学利用和保护天然石墨资源,开发深加工技术和发展高端产品,将成为石墨产业发展的必然趋势。

     

    绿色引领 科学高效利用资源

    近些年,深海矿产资源勘查开发引起了世界各国的高度重视,海底技术进步、原材料价格上涨和价格大幅波动造成的原材料供应风险,已成为推动各国开展海洋矿产资源商业化开发的三大驱动力。近日,《地质调查动态》撰文对深海采矿现状、面临的主要挑战进行了深入探讨,并对深海采矿的前景进行展望,本期摘编其精华内容。

    ●海底矿床勘查目前正在加速进行,不断有国家或公司要求签订新的合同,其中在公海地区进行的勘查项目需经国际海底管理局批准。

    ●虽然开采海底矿产的技术取得重大进展,但还远远不够,亟待开展技术创新,采用降低成本的绿色技术是未来深海采矿的必由之路。

    ●深海采矿将成为本世纪人类满足自身发展需求的战略之举,但其前景受到技术、经济、地缘政治、国际法律法规等多重因素制约。

     

    动因

    唤醒沉睡海底的矿产宝藏

     

    传统意义上的“深海”,是指大陆架以外的海洋部分,通常水深在200米以上。深海资源一般指公海以及国家专属经济区(EEZ)以外的海洋资源部分。深海资源可分为矿产资源和生物资源两类。矿产资源主要分为多金属结核、富钴铁锰结壳和海底块状硫化物(SMS)三种类型。

    这些富集在深海的金属或非金属资源的副产品,很多都是现代高科技、绿色技术或新兴技术必不可少的原材料。例如:碲用于光伏太阳能发电,钴用于混合动力汽车和电动汽车电池,铋用于核反应堆的液体铅-铋冷却剂,铌用于高科技高温合金等。

    过去15年来,深海矿产资源勘查开发引起了世界各国的高度重视。有的国家以国有企业或专业科研院所为主进军深海,有的则是通过国家层面的立法为民间投资深海创造便利条件。至于全球层面的深海资源勘查开发治理平台也不断涌现,并日臻完善。从根本动因上来看,海底技术进步、原材料价格上涨和价格大幅波动造成的原材料供应风险,已成为推动各国开展海洋矿产资源商业化开发的三大驱动力。

    开发深海矿产资源的意义在于,它不仅可以满足国家产业发展对战略性矿产供应安全的需求,还能促进洋底填图及相关技术的发展,促进海底采矿相关服务和装备的研发,提升对深海资源的认识,维护国家战略利益。21世纪以来,世界各国对深海矿产资源的兴趣与日俱增,竞争日趋激烈。据荷兰资源专业中心数据,2010年美国在深海采矿方面的创新力排在第一位,欧洲排名第二,中国居第三位,其后依次为日本、韩国。

    此外,相较于陆地采矿,深海采矿的优势较为显著。例如:陆地采矿会在环境中留下大量“足迹”:需要修路,建造房屋和基础设施,挖掘露天采矿场矿坑,影响河道,并产生数百万吨的废石。而海底采矿不需要修路,没有海底矿石运输系统或建筑物,几乎不需要建任何海底基础设施。铁-锰结壳和结核基本上都是暴露在海床之上呈平铺状态。SMS矿床厚度可达几十米,但矿床上几乎或完全没有覆盖物。开采陆地矿床需要剥离覆盖层,挖掘出来的废石量在总挖掘量中的占比可达75%之高。而深海采矿的平台是船,可以很方便地从老矿点转移到新矿点,选择规模虽小但品位高的矿床进行开采。除矿石品位高外,海底采矿的另一个优点是可以在一处采矿场回收3种或更多种金属。3种主要类型的深海矿床(结壳、结核和SMS)都具有这样的优点。陆地采矿影响土著居民或原住民生活的问题正日益受到关注,而深海采矿不会引发这样的问题。

     

     

    挑战

    深海矿产开采存在法律空白

     

    深海采矿将是本世纪人类满足自身发展需求的战略之举,其前景受到技术、经济、地缘政治、国际法律法规等多重因素的制约。

    对深海矿产资源认知不够,勘查开发监管存在风险。行业内和研究学者们基本都知道深海矿床在哪里,但是对于资源的集中度、规模大小却知之甚少。这对于需要据此开展成本效益评估的单个项目来说,矿床品位及规模的不确定性成为制约其开发的主要因素。例如:加拿大鹦鹉螺矿业公司圈定的索尔瓦拉1号矿床,是当前世界上最先进的深海采矿项目,但其资源仅够开采两年。其结果是,现在还不能确定,该公司为开矿而进行的巨大投资是否具有经济效益,因为仅仅建造一艘船的费用就高达10亿欧元。

    深海采矿主要的缺陷和风险在于“社会环境运营许可”。由于深海采矿通常位于国家管辖区外,关于勘查活动的国际监管框架的制定进程缓慢。这就导致企业参与无章可循,使得投资者望而却步。环境组织和科学家们也声称,当前对于深海采矿给生态系统造成的环境破坏风险知之甚少。

    国际法律框架不完善,开采条款未出台。大部分深海资源都位于国家管辖区以外的国际水域,法律框架复杂。对于深海采矿引发的新问题,国际法律框架层面还存在着诸多的不确定性和空白。规制海洋活动最重要的国际法是联合国海洋法公约(UNCLOS),其在1982年通过,1994年开始实施,目前世界上有166个国家已经签约成为会员国,但也有例外,如美国。

    为了管理和协调深海矿床相关事宜,1994年在UNCLOS下成立了自治国际组织——国际海底管理局(ISA)。所有公约签署成员国自动成为ISA的成员。截至目前,ISA分别于2000年、2010年和2012年通过了勘查结核、硫化物、结壳的条款,但是关于开采的条款还在制定当中。

    结核和SMS勘查开发技术较为成熟,结壳挑战性大。深海采矿通常包括几项关键技术。首先是要有现代化的装备齐全的船。目前,已有好几艘勘查船在运营,它们通常属于国家研究机构和地质调查局。开展巡航研究是很昂贵的事情,一艘船的运营成本约5万~10万欧元/天。另一项关键技术是可用于深海采矿作业的遥控机器人(ROV)。SMS在输送至海面之前,要用ROV进行开采。散落于海底淤泥中的锰结核,可通过ROV真空将其从海底吸出来。锰结壳可通过在洋底作业的ROV进行剥离并磨碎。ROV可将这些混合物运送至提升系统,管运至海面的船上。通常,一套深海采矿系统包括4个子系统:采掘系统、提升系统、海面平台和处理系统。

    对于深海采矿技术,行业内似乎对商业化开采很有信心,认为以当前的技术水平足以满足需求。这些技术源自油气钻探,钻进深度通常可达2000米以上。然而,开采不同类型的深海矿产,其技术要求不尽相同。现有的或目前正在建立的第一代深海勘查开采技术只适用于铁-锰结核和SMS,不适用于铁-锰结壳。勘查和开采铁锰结壳需要克服两个主要的技术难题,一个是勘查和描述矿山特征,另一个是开采。勘查工具必须是深海拖曳式或可以装载在ROV上,并且可以在现场测量结壳的厚度以计算储量。最佳途径可能是开发一种多光谱地震探测工具和伽马辐射探测器,但必须解决伽马射线信号在海水中衰减的问题。与铁锰结壳相比,结壳基岩的种类繁多,伽马射线探测器在区别结壳基岩物理性能方面效果最好。开采方面的难题是,采矿工具必须能把铁-锰结壳与结壳基岩分离开,从而做到只开采结壳,不开采基岩,因为基岩开采会大大稀释矿石的品位。困难在于,结壳是牢固地附着在基岩之上的。分离结壳与结壳基岩的工作必须在水下1500m~2500m处的不规则且往往是粗糙的海床上进行,而且结壳以下的各种结壳基岩的韧性又各不相同。攻克这一难关需要进行高水平的技术创新。

    资源价格和资本成本是制约深海采矿的两个主要外在因素。深海采矿主要受到包括资源价格和资本成本在内的外部因素影响。对于采矿本身,用于造船和开发必要技术的初始投资成本是巨大的。不是所有项目都在商业上可行,但是走向深海在很多情况下却是一个战略性问题。采矿业一直是一个高成本产业,将深海采矿成本与陆域采矿进行对比很重要。对于陆域采矿,总成本包括环保成本、固定基础设施成本和劳动力成本,相较而言,深海采矿对投资者颇具吸引力。

    据欧盟方面测算,深海勘查一天的成本超过10万美元,大部分勘查航次的预算在5000万~2亿美元之间。对开采而言,一天的运营成本高达好几亿欧元,这还取决于矿床及其位置。最大的成本是船、钻探及船员的费用。从经济角度来看,很多方面都取决于上述外在因素,主要包括某种资源在一定时期的市场价格以及相较于陆域采矿的成本控制。

    深海采矿的环境影响可能会很大,要提前开展风险评估。所有扰动地球表面的活动,无论是陆上的还是深海的,都会扰动甚至摧毁动植物栖息地。因此,必须制定最环保的工作计划,并使所有地球表面的活动都按计划开展。与陆域采矿相比,深海采矿具有环境影响小的优势。然而,至今业界对于深海采矿会造成哪些环境问题尚知之甚少,目前全球只有一座海底矿山——索尔瓦拉1号矿,拥有此矿的加拿大鹦鹉螺矿业公司提交了一份开采此矿的环境影响报告,这是当前现实中唯一的陈述海底采矿环境影响的报告。考虑到矿床类型和开采工具等方面的因素,海底采矿的环境影响可能会很大。因此,基于不同尺度原地实验的风险评估是深海采矿实施前必不可少的工作环节。

    研究人员通过实施一些国际科学计划研究了开采铁-锰结核可能会造成的影响,这些国际计划以广泛的野外考察以及理论和实验室研究为基础。在采矿车辆经过的地方,动植物栖息地显然会遭到破坏,海底水层中还会产生沉积物卷流,卷流的范围有多大则不可预知。国际海底管理局2008年开展的一个项目得出这样的结论:难以预料开采海底结核会对生物多样性产生什么样的威胁,以及会带来多大的物种衰落风险,因为我们对海洋物种数量和地理分布情况的了解十分有限。存在潜在毒性的金属可能会在短时期内从孔隙水中释放出来,或在结核碎屑解吸作用下产生,特别是当采矿作业降低了表面沉积物中的氧含量时,这种情况会发生。

    从深海采出的矿石将被运送到陆上的选矿厂。一旦矿石被运到现有或新建的选矿厂加工处理,也会引发与现有陆上选矿厂同样的环境问题。但新建选矿厂可能会更高效并采用先进的绿色技术。船上的选矿工作可能将仅限于矿石脱水,把水回灌到水下采矿场。如果是开采结壳,可能会在船上进行浮选,以去除结壳基岩。

     

     

    现状

    各国加速“淘金”探明深海富矿区

     

    其实,科学家早在100多年前就知道深海里有矿产。然而,对深海矿床成因、分布和资源潜力的研究却始于最近几十年。20世纪70年代,科学家首次对东北太平洋克拉里昂-克利伯顿断裂带(CCZ)铁-锰结核进行了详细研究。当时有人预言,对CCZ海区铁-锰结核的开采将于20世纪70年代末至80年代初开始,但这一预言没有成为现实。1977年,科学家又在太平洋加拉帕戈斯海脊发现了热液系统。此后不久,研究人员又于1979年在东太平洋隆起发现了“黑烟囱系统”。20世纪80年代早期,对海底铁-锰结壳的研究引人注目,因为从铁-锰结壳中开采钴的前景被看好。然而,由于全球市场金属价格在20世纪90年代前后直至21世纪初持续低迷,开采海底矿产的积极性受到打击,开采计划被搁置。但针对海底矿床的研究与开发工作一直没有中断。进入21世纪以后,随着全球金属价格的上涨,深海矿产资源的勘查开发再次引起广泛关注。

    结壳通常沉淀在海底山岭、山脊和高原上,水深400m~7000m,厚度最大和含金属最多的结壳位于水下800m~2500m处,采矿作业最佳水深1500m~2500m。西北太平洋底海山的年代为侏罗纪,是全球海洋中最古老的海山,其结壳最厚,稀有金属的含量通常也最高。因此,西北太平洋中部赤道海区被认为是勘查海底结壳的主要地带,即通常所称的“中太平洋主结壳带(PCZ)”。

    对于结核而言,太平洋尤其是东北太平洋的克拉里昂-克利伯顿断裂带(CCZ),秘鲁盆地,以及南太平洋的彭林-萨摩亚盆地是发现结核最多的海域。印度洋盆地中部也发现了一处大型结核带,西南大西洋的阿根廷盆地和北冰洋等海域内可能也有铁-锰结核带,但这些海域的勘查程度非常低。CCZ海区最具经济吸引力,在这一海区内,已经或正在等待与国际海底管理局签署勘查合同的勘查区块有13处。矿业公司之所以对CCZ海区感兴趣,是因为此海区有大量铁-锰结核且镍和铜的富集度高。

    总体来看,截至2013年,已签署海底勘查合同的占地面积约为1843350km2,其中约一半勘查项目是沿海国家在其各自的专属经济区(EEZ)内进行的,其余勘查项目是在国家管辖区外的公海地区进行的,在公海地区进行的勘查项目需经国际海底管理局(ISA)批准。SMS矿床勘查项目的面积约占海底勘查总面积的45%,大多数都位于西南太平洋国家的EEZ范围内,公海地区SMS矿床勘查项目的占地面积仅有5万km2。在占据其余55%海底勘查面积的项目中,大多数为铁-锰结核勘查项目,这部分项目全部在公海范围内进行。此外,还有两个占地面积很小的磷灰岩勘查项目,一个在新西兰海域,另一个在纳米比亚海域;还有一个面积非常小的多金属泥勘查项目,此项目在红海海域进行。这3个小项目以及一个位于西南太平洋的SMS项目已被批准签署采矿合同。2012年7月,ISA理事会和大会通过了勘查海底铁-锰结壳的法规,此后不久便收到了申请在西太平洋进行勘查并签订合同的两份工作计划,勘查合同的占地面积9000km2。

    中国、法国、德国、印度、日本、韩国、俄罗斯以及一个名为“洋际金属”的多国集团(成员国有:保加利亚、古巴、捷克共和国、波兰、俄罗斯和斯洛伐克共和国)签署了勘查海底铁-锰结核的合同,每块勘查区的面积约为7.5万km2;中国、法国、德国、韩国和俄罗斯等国已经或即将签署勘查SMS矿床的合同,每块勘查区的面积约为1万km2;中国、日本和俄罗斯已经制定或预计将制定勘查海底铁-锰结壳的工作计划,每块勘查区的面积约为3000km2。此外,有4家公司已经或即将签订勘查海底铁-锰结核的合同,其中3块勘查区的面积为7.5万 km2,1块为5.862万km2。海底矿床勘查工作目前正在加速进行,不断有国家或公司要求签订新的合同。

     

    前景

    铺就“产学研用”深海采矿之路

     

    至今我们并不十分清楚全球海洋中铁-锰结壳、结核和SMS矿床的资源潜力到底有多大。相对而言,对CCZ海区和中印度洋盆地结核矿床的特性描述最为清楚。必须用评价陆地矿床的方法评价海洋矿床,从而发现海洋矿床作为许多种稀有、战略性和紧缺性重要矿产来源的重要性。对比评估工作应包括对每一种重要矿产整个生命周期的评价,以及对矿床开采环境影响的评价。

    从工程技术的角度看,必须取得几方面的重要突破才能使结壳开采具有可行性。与结壳开采相比,结核开采技术较为简单,因此已进入可开发阶段。阻碍铁-锰结壳勘查的最大难点是,需要在原地实时测量结壳的厚度,开采矿石的最大障碍则是把铁-锰结壳与结壳基岩有效地分离开。减少或消除对铁-锰结壳和结壳基岩物理性质测量结果的偏差有助于解决这一技术问题。需要对种类繁多的样品,尤其是磷酸盐化的厚层结壳进行分析。一个更困难的问题是,需要在原地测量浸透海水的样品。这些测量开展以下工作:认识从海水中捕获金属的机理;对比结壳和结壳基岩以开发勘查技术;描述结壳强度和结壳对各种采矿方法的承受程度。

    虽然开采海底矿产的技术正取得重大进展,但还远远不够,亟待开展技术创新,采用降低成本的绿色技术是未来深海采矿的必由之路。使用简单的酸浸法就可以浸出结壳和结核中的全部主要和稀有金属,因此,应该研发化学和生物化学选矿工艺,比如使用特定的金属结合药剂,以便能够选择性地回收想要回收的金属。在回收了想要的金属后,剩下的矿渣可以送入另一个提取流程,回收其他种类的金属。从矿渣中回收这类金属往往不具经济可行性,因此,回收这类金属的前提是国家有经济鼓励政策或战略需要。

    对于一个国家而言,要么是通过国家科学研究机构或地质调查机构加强深海矿床的勘查、开发研究及技术储备,要么是通过立法不断创造并完善有利于深海采矿的优良环境,吸引社会投资进军深海。深海矿产资源勘查开发将是一个事关民族发展、国家兴盛的重要领域,需要政府加强政策引导,强化监管与服务,铺就一条“产学研用”的深海采矿创新之路。

    深海采矿时代渐行渐近

    说起氦气,人们对它的认识大多来源于中学的化学课。殊不知,氦,作为熔点和沸点最低的已知元素,在军工、航天、核工业、深海潜水及民用高科技等领域具有广泛用途,是关系国家安全和高新技术产业发展的一种重要战略性稀有气体资源。

    据统计,全球的氦气资源长期供不应求,年需求量约为2亿立方米,但年产量仅有1.7亿立方米。我国目前氦气年需求量约为2200万立方米,但勘查开发程度极低,资源情况不明,仅四川自贡威远气田进行了小规模提氦利用。我国氦气供应长期依赖进口,资源安全形势十分严峻。

    可喜的是,自然资源部中国地质调查局在渭河盆地组织开展的氦气资源调查工作发现,渭河盆地不仅有水溶氦,还存在便于利用的游离态富氦天然气藏,有望构建我国氦气资源基地。

    我国对氦气资源的研究程度低,资源家底不清

    氦气开始进入人们的视线,始于1868年。那一年,法国天文学家彼埃尔·让桑(Pierre Janssen)和英国天文学家约瑟夫·洛基尔(Joseph Lockyer)几乎同时分别独立发现太阳光谱里有一条陌生的明亮黄线,其后,洛基尔将其命名为氦。

    氦是一种无色、无味、不燃烧也不助燃的稀有惰性气体。由于其特殊的物理、化学性质,尤其是其化学惰性和沸点极低的特征,使得氦气成为低温学领域的无价之宝。比如:氦的低溶解度、低沸点以及化学惰性,使其清洗和密封火箭和宇宙飞船的液体氢燃料系统十分有效。在电子工业中,氦气在半导体、液晶面板和光纤线制造中起着重要作用,可实现零部件的快速冷却,也可在电焊、硅晶片生产中用作保护气。在现代分析测试检测仪器中,氦气在气—液和气—固色谱分析中是最常用的载体气。在超低温冷却方面,氦广泛应用于核反应堆的冷却介质和清洗剂,在超导冷却方面,应用于核磁共振设备、超导量子干涉器、粒子加速器、磁悬浮列车、电能的存储等,其中最大的消费群体是医院的核磁共振设备。

    地球上的氦气含量极为稀少,最主要的来源不是空气而是天然气。富氦烃类天然气中最高可含7.5%的氦,是空气中的1.5万倍。可是,这种含高氦的天然气矿藏并不多,这是因为天然气中的氦气是铀之类的放射元素衰变的产物。一般而言,只有在天然气矿附近有铀富集时,氦气才能在天然气中汇集。

    根据美国地质调查局的数据,目前全球的氦气资源量估计达519×108立方米,储量仅74.25×108立方米。美国是世界上氦资源最丰富的国家,虽然已大规模开采60多年,但氦气资源量仍占世界总资源量的40%以上。根据美国地质调查局2016年的调查报告,美国、卡塔尔、阿尔及利亚和俄罗斯共计拥有世界88%的氦资源,中国的资源量仅为11×108立方米。中国西部大型叠合盆地及东部郯庐断裂带已发现广泛的含氦天然气显示,但研究程度低,资源家底不清。到目前为止,只有四川省自贡的威远气田曾提到氦利用,其中的氦含量为0.2%左右,而且现在已经基本枯竭。

    提出氦气弱源成藏理念,论证了渭河盆地富氦天然气成藏条件

    近年来,中国地质调查局组织开展了《渭河盆地氦气资源远景调查》项目,由中国地质调查局西安地调中心牵头,渭河能源公司(陕西金奥能源公司)、陕西省地质调查院、陕西地矿总公司第二综合物探大队、西北大学、长安大学、西安石油大学、中石油东方地球物理公司等单位参加完成。项目组在广泛调研国内外氦气资源研究进展的基础上,系统研究了渭河盆地基础地质、氦气成藏机理、成藏条件及资源前景,取得了一系列新进展、新成果。

    渭河盆地位于秦岭造山带与鄂尔多斯盆地之间。在渭河地区广泛分布燕山期富铀花岗岩,其分布面积达近万平方千米。在现今渭河盆地基底的深部10千米~20千米,沿深大断裂带分布有10个隐伏(花岗岩)岩体。这些富铀花岗岩是盆地壳源氦气的主要源岩,通过铀、钍衰变源源不断地向盆地输送壳源氦气。

    地壳中铀、钍元素的丰度低、半衰期长,因此壳源氦生气强度极低,为典型的弱源气。按照油气地质理论,壳源氦不存在集中的生气高峰,生气速率极低,难以发生突破“压力封存箱”的大规模集中排气。但现实是,确有富氦天然气藏存在,并被工业利用。而常规的油气理论难以解释氦气成藏机制。项目组通过在渭河盆地开展氦气调查工作,认为“有效氦源岩、高效运移通道(断裂、不整合)、载体气藏(适度,“载体气”又是“稀释气”)是氦气成藏的基本条件”;提出了“成岩温压与变质温压下氦行为差异与氦气成藏及古老克拉通基底蕴藏的巨量氦因克拉通破坏的构造作用而释放、运移到浅层聚集成藏”的理念”;初步建立了氦气成藏模式。

    项目组认为,壳源氦气相对于常规油气为典型的弱源气,但由于地质体的巨大和地质时间的漫长,壳源氦气生成总量是巨大的。氦气常以甲烷或二氧化碳气藏中的伴生气产出,因其稀有性,工业品位0.1%即可成为矿藏,且成藏与地下水关系密切。综合分析认为,氦气在深部氦源岩处能溶解于水而运出,运移至浅部遇到天然气藏时脱溶成藏,并在气藏附近水体形成溶解氦低浓度漏斗,使水溶氦不断向气藏附近迁移而进入气藏,大大提高了氦气的运聚系数。而气藏在盖层处又因低分压难溶于水、不易扩散,而有利于保存。这一分析,从理论上认识了氦气弱源成藏机理,明确了氦气在氦源岩处“运得出”、遇到气藏“脱得出”,在气藏中“保得住”的高运聚系数富集机制,解答了氦气为何能克服溶解与消耗、提高运聚系数形成富氦天然气藏的疑惑,为氦气资源勘查提供了理论依据。

    渭河盆地是否具有天然气前景一直是众多学者关注的问题之一,核心是是否存在烃源岩。前人认为,盆地深部不存在晚古生代煤系地层。但项目组根据区域地质背景、地热井气样分析及地球物质测量成果,特别是地震测量成果,论证了渭河盆地前新生代基底局部残留晚古生代煤系地层,为渭河盆地天然气勘探带来了希望。由于氦气不能单独成藏,只有在甲烷等载体气藏中聚集、积累,才能形成富氦天然气藏,从而为氦载体气成藏提供物质基础。

    渭河盆地不仅存在水溶气资源,也存在富氦天然气藏

    自然界气体赋存状态有游离态、溶解态、吸附态及水合态,不同赋存状态氦气资源的工业利用前景和经济性具有天壤之别。项目组对已有资料进行分析研究发现,渭河盆地不仅存在水溶气资源,也存在游离态氦及伴生气资源,即富氦天然气藏。

    资料显示,渭河盆地地下水资源丰富,有渭北岩溶溶隙裂隙水、秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水。其中,渭北岩溶溶隙裂隙水中未见氦气显示,秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水均有氦气显示。除渭北岩溶溶隙裂隙水外,盆地4000米以浅地热水总静储量达14781.2×108立方米。剔除固市断凹(渭南生物气区)张家坡组的储量数据后的总静储量达14200.57×108立方米。根据气水比1∶10和氦气含量1.5%计算,盆地内4000米以浅的水溶氦气资源量达21.3×108立方米。若按供热季单井日产水1000立方米,年生产100天计,250口地热井每年就可提供2.5×104立方米伴生氦气资源综合利用,就量而言已经达到半个威远气田。但水溶气的性质决定了其处于量大却难用的处境。

    众所周知,目前还没有发现独立的氦气藏,而工业利用的氦,是与载体气(烃类或二氧化碳、氮气)一起以游离态赋存于地层圈闭中,形成富氦天然气。那么,渭河盆地是否存在富氦天然气藏或游离态氦,成为目前氦气资源前景评价的关键。可喜的是,现有调查资料初步表明,渭河盆地氦源岩和高效运移通道(断裂)发育,具有载体气成藏形成条件,特别是伴生于甲烷气中的富氦天然气,是目前勘探工作的重点。

    通过近年的研究,项目组探索提出了“地质指方向,地震、重力、电法探结构、识断裂(高效运移通道)、找圈闭,磁法识别磁性岩体(氦源岩),化探异常圈定目标区,气测录井标定富集层段”的氦气调查技术方法。应用这一调查方法,通过物探、化探工作,项目组基本查明了富氦气区地层层序和构造格架,重点刻画了隐伏花岗岩体(氦源岩)、断裂发育特征。渭河盆地(鄂尔多斯周缘盆地)与目前广受关注的坦桑尼亚富氦区具有相似的地质背景,均为古老克拉通上的新生代裂谷盆地。渭河盆地不仅有长期稳定的古老基底可作为氦源,同时具有大量富铀花岗岩作为氦源岩,较坦桑尼亚富氦区具有更好的氦源条件。同时,花岗岩即是重要的氦源岩,也可以成为储集岩。

    根据调查成果,项目组初步圈定了华州—潼关、户县—蓝田和武功—咸阳等3处远景区。

    我国具有氦气资源前景,亟需加大工作力度

    研究认为,我国(特别是西北地区含油气盆地)氦气资源成藏基本条件良好,分布广泛,层位众多,具有资源潜力,但研究程度低(作为资源研究更少),家底不清。渭河、塔里木、柴达木、银额等盆地局部地区具有资源前景。在柴达木盆地北缘检测出壳源氦气含量为0.21%~0.72%;发现马北、东坪(花岗岩基岩气藏)等气田氦气资源前景良好。认识到塔里木盆地巴麦隆起及周缘具有良好氦气前景。

    尽管渭河盆地地热井发现了氦气资源赋存的良好信息,但项目组指出,由于缺乏专门的氦气评价钻探工作,目前还无法评价其工业价值,无法对深部可能含气层进行验证和产能测试,急需在远景区开展网度地震勘探,寻找有利圈闭,为钻探提供目标;通过钻探工作发现或验证目标层段的含气性;开展地热井氦资源专项调查,探索现有地热井条件下伴生气资源的有效利用;针对氦气资源的勘查技术手段基本空白,探索有针对性的地球物理探测方法、有效的测井解释模型、钻探和气藏测试工艺等。此外,由于氦气多以伴生资源形式产出,氦气的提取、提浓、提纯工艺需要继续探索完善,急需形成多种资源综合开发利用技术,以提高多种低丰度伴生矿产的经济价值。

    同时,加强国家公益性队伍对氦气资源调查工作的组织引领,联合油气企业开展主要天然气田氦气资源调查评价,是全国氦气资源调查尽快取得突破的快捷有效途径;建议修订石油天然气储量规范,在氦气成藏远景区开展的油气勘探中进行氦气兼探工作,具有综合利用价值时,氦气需与天然气同时提交储量。

    氦的应用

    ①核潜艇气冷核反应堆与深潜呼吸气

    ②火箭及航天飞机燃料加压剂

    ③核电站气冷核反应堆

    ④航空合金弧焊保护气

    ⑤半导体硅晶片制造保护气

    ⑥光纤制造保护气

    ⑦核磁共振成像仪超导冷却剂

    ⑧潜水呼吸混合气

    点亮新希望