分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到23条相关结果,系统用时0.01秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    在新一轮找矿突破战略行动中,中国地质科学院(以下简称“地科院”)充分发挥其在地球物理探测技术领域的技术积淀与创新优势,以三维激电探测技术为利刃,在全国多个重点成矿区带取得显著找矿成果,为保障国家能源资源安全提供了坚实力量。

    近年来,地科院科研团队在三维激电探测技术研究方面取得丰硕成果。获国内外多项专利授权,涵盖三维激电测量装置、数据采集与处理方法等多个关键环节;成功登记一系列软件著作权,如三维激电数据处理软件等,极大地提升三维激电探测数据的处理效率与解释精度;同时,发表多篇高水平学术论文,深入剖析三维激电方法的理论基础、数据处理方法及地质解释模型,为该技术的广泛应用提供了坚实的理论支撑。

    团队获得的三维激电方法技术发明专利证书 

    (左:南非发明专利;中:国内发明专利;右:美国发明专利) 

     

    团队取得的三维激电方法技术软件著作权 

    团队发表的三维激电方法技术部分相关文章

    此外,地科院在硬件设备储备上同样优势显著。目前,已配备超过 150 台全波形分布式三维激电接收机,是全国该型号设备保有量最大的机构。这一庞大的设备储备,为开展大规模、高精度的三维激电探测工作提供了坚实的硬件支撑,有力支持深地探测重点实验室各项目任务,从容应对不同区域、不同规模的勘查需求,为技术持续应用和创新提供了强力保障。

    凭借先进的三维激电探测技术,目前地科院项目团队已承接新疆、宁夏、内蒙古和黑龙江等多地的金属矿地球物理探测勘查工作,项目总额超过400万元。在新疆某重点成矿带开展勘查中,通过三维激电探测,精准圈定了具有重要找矿潜力的异常区域;在某铜多金属矿勘查项目中,依据三维激电数据构建的地下地质模型,清晰揭示了深部矿体的空间分布形态与赋存规律。经对比钻探验证,成功发现了地下隐伏的脉状金矿体,显著提升了该地区的资源储量规模与找矿潜力。

    某金矿三维激电探测反演综合图

    在宁夏,聚焦中卫北山地区金属矿勘查,团队利用三维激电探测技术,有效识别出矿区回填物覆盖层下部物探异常,为后续地质调查与找矿工作指明了方向,大大提高了找矿工作的针对性与成功率;在内蒙古,团队深入大兴安岭北段等重点区域开展勘查作业,借助三维激电探测技术准确获取深部地质体的电性信息,成功圈定多个与铜钼矿相关的异常靶区;在黑龙江,团队针对黑河三道湾子金矿开展了详细的地球物理探测工作,通过三维激电探测,对主体构造与深部岩体分布形态进行大体了解,有待对极化率信息及关键示矿信息的地质意义及信息提取进行深入研究。在此基础上,团队还成功预测多个潜在矿体分布区域,为进一步扩大矿区资源储量提供了有力依据。

     

      

    黑龙江三道湾子金矿三维激电反演解释图(上)和综合剖面图(下)

    地科院三维激电探测技术在新一轮找矿突破战略行动中的卓越表现,不仅展示了地球物理技术在深部资源勘查中的强大威力,也为我国矿产资源勘查工作提供了全新的技术思路与方法范式。未来,地科院将继续加大在地球物理探测技术领域的研发投入,不断优化三维激电探测技术体系,为推动我国找矿突破战略行动持续深入开展、实现深部找矿重大突破贡献更多智慧与力量。

     

    地科院三维激电探测技术赋能新一轮找矿突破战略行动

    历经20余载,我国已实现管辖海域1:100万海洋区域地质调查全覆盖,并正在加快推进1:25万海洋区域地质调查——精细探查海洋地质家底。

    三点定位现场

    海洋兴则国兴,海洋强则国强。习近平总书记强调,建设海洋强国,必须进一步关心海洋、认识海洋、经略海洋,加快海洋科技创新步伐。

    如今,认识海洋又迈出坚实一步。5月28日,在山东青岛召开的第一届海洋区域地质调查大会上,全面反映我国管辖海域地质资源环境全貌的1∶100万海洋区域地质调查系统性成果正式面向社会发布。这套覆盖我国约300万平方千米管辖海域、集综合性和原创性于一体的系列成果,不仅填补了我国管辖海域海洋区域地质国情调查的空白,而且有效提升了我国在国际海洋地学领域的话语权。

    足迹遍布中国海,1∶100万海洋区调实现管辖海域全覆盖

    海洋区域地质调查,是海洋地质调查工作的“开路先锋”,1∶100万比例尺是其最基本的精度。

    我国海洋区域地质调查工作起步晚、起点低。随着1999年国土资源大调查专项的启动,我国开展1∶100万海洋区域地质调查试点,自此拉开了对管辖海域海洋区域地质调查的序幕。

    “按照国际标准分幅,可将我国300万平方千米的管辖海域分为20个1∶100万标准图幅。”中国地质调查局海洋基础地质调查工程首席专家、青岛海洋地质研究所副总工程师张勇介绍,1999年启动1∶100万南通幅示范图幅调查工作,采用先进的地质地球物理调查设备、测试手段和分析仪器,获取了大量海上地质地球物理实测数据和室内分析数据及综合研究成果。

    更重要的是,通过示范图幅,探索了统一的外业调查、资料处理、样品测试分析、成果图件编制和报告编写的标准,形成了《1∶100万海洋区域地质调查规范》,为后续全面展开图幅调查奠定了坚实基础。

    从2006年到2015年的10年间,我国管辖海域1∶100万区域地质调查全面展开。中国地质调查局组织60余家单位、千余名海洋地质工作者,调集调查船40余艘、飞机10余架、调查设备700余套,足迹遍布中国海。

    多波束、地震、重力、磁力、地质取样、海底浅地层钻探、航空物探等先进调查手段齐发力,浅—中—深部一体化调查。基于采集获取的海量基础地质数据,项目团队对海底地形地貌、地球化学场、地球物理场、断裂构造及岩浆活动、深部地壳结构、环境地质因素以及矿产资源等开展了进一步研究,编制了20个国际标准分幅的地质图、构造图、地形图、地貌图、环境地质因素图和矿产图等基础性图件120幅,地球物理系列图、地球化学系列图等专业性图件300余幅,形成约2000万字的海洋区调报告。

    成果总结再提升,全面反映我国管辖海域基础地质国情信息

    走进深蓝,认识海洋。海洋区域地质调查获取的海量实测地质数据中,蕴藏着认识海洋世界的资源、环境、生态“密码”。

    在20个国际标准分幅1∶100万海洋区域地质调查全部完成后,调查团队开始了对调查获取的海量海洋地质、地球物理、地球化学、遥感等资料的集成研究,使之系统化、规律化、理论化,并最终形成首套基于实测资料、全面反映我国管辖海域地质国情信息的系列成果,包括中国管辖海域第一代1∶100万海洋区域地质系列图件、第一个1∶100万海洋区域地质数据库和第一部1∶100万海洋区域地质报告。在本届海洋区域地质调查大会上,这些成果正式向社会发布。

    张勇介绍,基于1∶100万海洋区域地质调查工作的开展,取得了一系列原创性科学认识。比如:创新提出的“东亚洋—陆汇聚带多圈层作用”和“南海弧后扩张与左旋剪切”理论模式,重塑了东亚大陆边缘构造格局;建立了中国边缘海构造单元划分新方案,统一了中国海域中—新生代地层格架,完善了中国海域地貌分类体系。这些新认识推动了西太平洋边缘海重大基础科学问题的研究。

    1∶100万海洋区域地质调查,还为新一轮找矿突破战略行动提供了基础资料和找矿靶区。据了解,这次调查圈定8个深水油气远景区、5个深层油气远景区、40个天然气水合物资源远景区;新发现10处铁锰结核(壳)站位,通过岩矿分析发现极富稀土元素;发现多种类型的海砂资源,为海砂勘查提供了重要的基础地质数据支撑。

    “中国管辖海域1∶100万区域地质调查新发现并命名780个地理实体,388个获国务院批准,在海洋自然资源管理等方面发挥了重要作用;编制了10余套国家重大发展战略区自然资源与环境图集,为环渤海经济带、粤港澳大湾区、海南自贸港等区域协同发展提供了支撑服务。”张勇介绍,作为一切海洋地质工作的基础,海洋区域地质调查将为支撑能源资源安全保障、服务生态文明建设与自然资源管理等提供更多重要的基础资料。

    相较于陆地,由于有海水的覆盖,在海上开展调查和进行探测的难度更大,需要更加先进的调查技术手段。通过1∶100万海洋区域地质调查的实施,形成15项海洋地质调查技术规范,初步构建起“星空地海井”调查技术体系,调查能力整体达到国际先进水平。“尤其是在海陆过渡地带,我们应用了航空物探调查,取得了显著成效。”张勇说。

    在1∶100万海洋区调工作推进的同时,项目团队还在重点海域完成了35个国际标准图幅的1∶25万海洋区调,约占我国管辖海域面积的15.2%,并探索启动了1∶5万海洋区调试点,拉开了管辖海域大比例尺调查序幕。

    立足时代求变革,推动海洋区域地质调查高质量发展

    区域地质调查是地质调查事业的立业之本和永恒主题,工作部署必须保持长期性、系统性和稳定性,通过持续调查和逐轮更新,不断提升对地球系统和资源环境国情的认知水平。

    新时代在召唤。当前,海洋已成为世界各国竞相博弈、国际社会广泛关注的战略新空间,竞争的核心是革命性、颠覆性的科技创新能力,竞争的路径从水面到水下、从浅海到深海、从近海到大洋、从大尺度到多尺度乃至微尺度、从区域到地球系统、从机械化到智能化和网络化快速拓展。新一轮科技革命深刻影响地质调查发展方向和工作方式,要求海洋区域地质调查以地球系统科学为指导,实现调查研究“范式革命”,尤其是聚焦中国边缘海形成演化及其资源环境效应这一主题主线,形成创新性的边缘海多圈层相互作用理论,推动我国海洋科学技术水平的提升。

    而目前我国中大比例尺海洋区域地质调查程度依然较低,制约了对海洋的开发利用。加快海洋强国建设,需要海洋区域地质调查加快脚步。为此,2023年中国地质调查局工作会议明确,海洋区域地质调查要聚焦南海、东海等重点海域,至2025年1∶25万海洋区域地质调查覆盖率达28%,2030年达50%。

    在第一届海洋区域地质调查大会上,中国地质调查局再次发出“全力推动海洋区域地质调查高质量发展”的号令:

    ——优化工作布局。以“陆块聚散与资源环境效应”为主线,以“中国边缘海形成与演化”为核心,在重要盆地区、权益攸关区、岛礁建设区重点布局,在重要经济区、重大工程区、生态保护区等优先布局开展1∶25万、1∶5万海洋区域地质调查及专题填图。

    ——回归基础本源。以解决重大海洋基础地质问题为目标,查清重点海域基础地质特征,提升地质构造、地层沉积、岩石矿物、地形地貌等基础地质认知,深化成矿、成藏、致灾、生态等地质背景、地质过程、控制因素等认识。

    ——强化陆海统筹。以实现陆海构造单元、地层格架、圈层作用等重大地质问题衔接为目标,加强海岸带地质调查,创新海陆过渡带航空物探等先进调查技术方法,充分利用智能化、无人化设备,解决陆海一体化调查研究难题。

    ——加强预研究。改变以往的“网格式填图”,转变为以解决关键基础地质问题和重点需求为核心,在重点目标和关键区域,开展更有针对性和更加精细的调查研究,做到有的放矢。

    号角声声催征人,牢记使命在担当。新时代,向海而兴、向海图强。我国海洋区域地质调查历经20余载从无到有、由小及大,如今站在转型升级的新起点再次扬帆启程,持续推进服务、理论、动力、结构、质量、效率“六大变革”,不断提高调查的广度、深度、精度、速度,为推动我国从海洋大国迈向海洋强国提供坚实地质力量,让浩瀚海洋更好地造福于人民。

     
    精细探查海洋地质家底

    2008年5月,四川汶川特大地震的余震尚未平息,中国地质科学院地质研究所大陆动力学研究室主任李海兵已带领团队站在了地震破裂带的起始点——映秀镇。每当青藏高原及邻区发生强震,李海兵总是第一时间奔赴野外现场,记录震区的每一条陡坎、每一道裂痕。“地震破裂是如何发生的?未来发展趋势是什么?后续有什么危险?只有回答好这些问题,读懂大地的语言,才能真正为百姓宜居撑起安全保障之伞。”这成为他三十年科研生涯的最佳注脚。

    探索地震活动密码

    了解李海兵的人都知道,他有着与生俱来的科研天赋:越是复杂和未知的地质现象,越能点燃他求知的火焰。从中国地质大学(武汉)毕业后,他加入中国地质科学院地质研究所,师从著名地质学家许志琴院士,开启了与青藏高原的不解之缘。祁连山的褶皱、东昆仑的断裂、喀喇昆仑的岩层,都成为他解读地球演化的密码本。进入21世纪,青藏高原发生多次强震。2001年11月14日,东昆仑8.1级大地震发生,李海兵第一次被大地震的破坏深深震撼。“几十秒内,大地被撕裂数百公里;不同断裂为何能同时破裂?”这些疑问如烙印般刻在他心里,也让他将研究方向锁定在青藏高原地震机制与迁移规律上。从此,哪里有强震,哪里就有他的身影。从东昆仑到新疆乌什,从四川汶川到青海玉树,他踏遍青藏高原及邻区13次强震现场,冒着余震、滑坡、泥石流等危险第一时间冲进震区,与时间赛跑,抢抓第一手数据。“印象最深的还是汶川地震,当时考察组每个人心里都憋着一股劲:一定要揭开地震真相,绝不能让类似的悲剧再发生。”回忆起当时的情形,李海兵至今历历在目。作为科考队长的他,带领团队沿着300多公里长的龙门山断裂带由南西向北东前行,白天靠着两条腿跋山涉水、翻越滑坡体,时不时还要躲避从高处滚落的巨石,不放过任何一处可能的地震活动遗迹;晚上则在帐篷内加班加点整理分析资料,裹着睡袋打个盹儿就又开始新一天的工作。最终,经过连续一个多月的考察和分析,获得了大量宝贵的原始资料,及时形成对发震机制的认识,为汶川地震断裂带科学钻探的实施奠定了坚实基础。想要真正认识和了解地震的形成机理、力学过程,不能仅靠观察地表破裂,还要读懂地球深部的语言,通过钻探了解地下深部地震残留下的温度信息和物质信息等,向地下进军。汶川地震后,国家重大科技专项“汶川地震断裂带科学钻探”工程正式启动,李海兵出任总地质师。从此,钻探现场成了他的第二个“家”——在钻探实施的8年中,他大部分时间留在现场关注钻探情况和岩心特征,甚至在钻探现场度过了4个春节。

    高原上的地质人生

    “地质工作的主战场永远在野外。”这句朴实的话语,是李海兵三十余年科研生涯的真实写照。从青葱岁月到知天命之年,他的足迹踏遍青藏高原每一处地质奇观,被同行称为“高原上的拼命三郎”。上世纪90年代,中法第二轮国际合作项目“东昆仑岩石圈缩短机制”开始实施,它不仅承载着解析地球演化密码的科学重任,更是中国地质学走向国际舞台的重要契机。作为项目野外地质考察工作的主力,平均每天奔波十几个小时。在一次野外考察返程时,原本仅没过膝盖的河水因冰川融水暴涨至半人高。面对冰冷的湍急水流,他将珍贵的岩石标本紧贴胸前,头顶着防水包裹的考察笔记,毅然踏入刺骨的激流。忆及往事,他坦言:“当时心里只有一个念头:护送样品和记录本要紧!”2003年深秋,海拔5000多米的阿里无人区见证了一场惊心动魄的生死考验——连续四个月的高强度科考工作让李海兵轰然倒下,急性肺水肿将他推入生死边缘。医生们经过几周的接力抢救,才将他从鬼门关拉了回来,却也不可避免地留下了肺部纤维化的创伤印记。主治医师指着CT片上的斑驳阴影发出最后通牒,禁止他再上高原。但次年春天,这个“不听话”的病人再次整装出发,身影融入了青藏高原连绵的山脉中。像这样的“冒险故事”在李海兵三十多年的野外工作中还有很多,有些甚至他自己都忘了,团队成员却记忆犹新:“李海兵老师在玉树地震调查时陷进沼泽泥潭,差点就没过胸。”“跟着李老师,我们还见过野外的棕熊。”“在西藏羌塘无人区开展综合调查时,李老师和我们一起徒步越岭、踏冰涉水,遇到暴风雪了还要鼓励大家。”透过这些记忆碎片,一个矢志不渝、把论文写在祖国大地上的地质人形象愈发清晰。

    科研报国筑安澜

    三十载寒暑更迭,李海兵带领团队在青藏高原构造地质研究领域取得了一系列具有国际影响力的创新性成果。他带领团队揭示了阿尔金、东昆仑、鲜水河、龙门山等青藏高原主要断裂带的几何展布、断裂组合和地震危险性,加深了地震机制关键科学问题的认识,大大提升了对青藏高原强震活动性规律的认识。凝聚他无数心血的“汶川地震断裂带科学钻探”工程像一枚打入地底深处的探针,时刻传递着大地的脉动。这口科钻井取得了许多标志性成果,李海兵对此如数家珍:“我们第一次记录到大地震后断裂快速愈合信息。就像人体伤口结痂再生,断裂带愈合后才能重新积累能量,为下一次地震孕育创造条件。”“通过长期监测,发现了世界上最低的断层有效摩擦系数(≤0.02),改变了‘断层摩擦系数通常为0.6-0.8’的传统认知。这表明自然界断层滑动存在特殊的弱化机制,使断层在特定条件下几乎‘失去’摩擦阻力。”……这些成果不仅深化了对地震物理过程的理解,也为防震减灾提供了新的理论基础。如今,李海兵及其团队已经在地震滑移机制和破裂过程等方面取得重大突破性进展,完善了地震断裂理论。确定了龙门山断裂带易发生大地震的粘滑型断裂和不易发生大地震的蠕滑型断裂。厘定了高原大型断裂带(阿尔金断裂西段、东昆仑断裂西段与中段、鲜水河断裂带、龙门山断裂带等)活动性及其未来强震危险性,评估了未来强震危险区并得到地震实例的验证,为中长期地震预测提供了重要经验。作为一名新时代地质工作者,李海兵紧密围绕国家重大需求开展研究,开展国家重大工程重要区段1∶5万专题地质调查填图工作,基本摸清了区内不良地质体的规模、分布范围及展布规律,精准服务和支撑了国家重大工程规划和建设。时代的浪潮奔涌向前,从不辜负每一位奋勇拼搏的追光者。2025年4月28日,庆祝中华全国总工会成立100周年暨全国劳动模范和先进工作者表彰大会隆重举行,共有1670名全国劳动模范和756名全国先进工作者受到表彰,李海兵榜上有名。“这份奖励将激励我永葆初心,继续前行。”刚刚捧回荣誉,李海兵就已经计划起了下一步的工作。“将重点放在鲜水河断裂带的地震机制研究与综合监测体系建设上,构建龙门山-鲜水河断裂带四维综合观测系统,形成全球首个三维空间与时间维度融合的四维观测体系,为探索地震预测可能性提供新型科学范式。”在青藏高原的晨曦中,李海兵又一次整装出发。三十载科研征程,刻下的是皱纹,不变的是初心。他身后,是祖国大地的脉动;他面前,是永无止境的地质探索。

    供图:中国地质科学院地质研究所

     
    大地解码者:一位地质科学家的三十载坚守 —— 记全...

    近日,中国地质调查局长沙自然资源综合调查中心(简称“长沙中心”)承担的东部地区战略性矿产靶区查证技术支撑项目在湖北大冶和湖南永州的钻探施工现场传来捷报,历时40余天,实施的ZK2001、ZK502两个地质岩心钻孔分别钻至900.2米和810米,顺利终孔。

     机台施工

    钻探工作于2025年1月中下旬开始,长沙中心与中国地质调查局武汉地质调查中心精诚合作、密切配合,共同实施鄂东南地区铜铁金多金属战略性矿产调查评价项目、湘西南零陵-洞口地区锰锑多金属战略性矿产调查评价项目。其中,ZK2001、ZK502两个钻孔钻探施工任务由长沙中心负责。时值年关岁尾,时间紧、任务重,长沙中心高度重视、迅速行动,精心挑选骨干力量,组建党员突击队,不讲条件、不提困难,在凛冽寒风与年关思乡的双重考验下,义无反顾奔赴野外施工一线。

     现场配置泥浆

     机台施工现场

     炭质泥岩地层岩心

     硅质灰岩地层岩心

    鄂东南工作区钻孔长孔段失返性漏失、永州零陵工作区硅质灰岩地层坚硬致密导致机械钻速低、钻头寿命短,炭质泥岩地层水敏性强,极易引发缩径、塌孔和钻孔报废率较高。面对重重困难,项目组技术骨干大胆创新,深入探索研究,通过采用自行申报的专利“一种用于失返性漏失井的取心钻具及方法”克服采矿疏干区近钻头失返性漏失难题;采用自行优化配方低固相泥页岩抑制性防塌钻井液克服炭质、炭泥质水敏性松散地层;通过优选改进钻头金刚石品级和底唇面类型,有效提高钻进效率,钻遇强硅质硬岩层钻速由0.8m/h提升至2.9m/h,钻头寿命由60m提升至280m。实施的两个钻孔均钻获多段矿层,见矿性较好,为后续区域复杂地层施工提供了工程范式,为巩固拓展铜铁金和锰锑资源基地提供了有力支撑,有效保障国家能源资源安全。 

     
    攻坚克难!长沙中心打响2025年钻探找矿“第一枪”

    能源资源安全保障事关国计民生。今年全国两会上,多位代表委员重点关注这一话题,从探、产、供、储、运、销、贸等多个角度为能源资源安全保障献计献策。

    关于推进增储上产、促进矿业转型发展,来自地矿行业、企业和地方的代表委员们操碎了心,从勘查开发利用全流程寻找矿产增量。许波代表建议,加大找矿的支持力度,建立经济主体平等勘探的风险机制、风险承担和利益共享机制。吴城委员建议,加快构建国家地质大数据平台,整合遥感、物探、化探、钻探等多元信息,打造多模态地质数据库;支持勘探算法研发,建立人工智能找矿模型库,深度挖掘区域成矿规律,推进地质勘探新范式的创新发展。黄水波代表建议,对锑等出口管制的国家战略材料予以饱和性价格收储,建立战略储备资源库,并加大找矿力度,加强补链延链。陈伟俊代表建议,推动新疆油气增储上产、矿产资源勘探等规划落地实施;在战略找矿等方面给予特殊支持。薛斌代表建议,从国家层面,对新疆生产建设兵团参与油气矿产资源开发、提升煤制天然气产能等方面加大政策支持力度。张定超代表建议,加大力度支持贵州找矿、采矿关键技术攻关,推动优质矿产资源配给优强企业,提升资源就地转化率、延长产业链条,构建具有贵州特色的现代化产业体系,将资源优势转化为产业优势、经济优势。邱江代表建议,在云南布局建设国家战略性稀贵金属产业基地和稀贵金属材料产业创新中心,推动相关高校、科研机构与云南共同开展技术攻关,更好推动我国战略性稀贵金属产业创新发展。吴万华代表建议,国家发展改革委将金昌市作为国家重点镍铜战略腹地延伸区,支持金昌和金川公司建设全国重要战略性资源开发地。吴群刚代表建议,将攀枝花红格南矿开发项目列入国家重大项目清单。孟繁英代表建议,在分配全国稀土总量控制指标时向白云鄂博矿倾斜。范付中代表建议,支持三门峡建设国家超纯石英新质原材料产业基地。汪霞代表建议,支持个旧建设锡资源战略物资储备基地、再生有色金属资源跨境交易基地。王忠昆代表建议,支持鞍山推进矿产业高质量发展,将鞍山确定为矿产业高质量发展示范基地。刘会英代表建议,提升锂电产业循环利用水平,出台专项支持政策,对锂电池再生利用给予补贴和扶持。

    煤炭是保障能源安全的压舱石,在能源安全保障体系中占据基础性地位。武强委员建议,加大对大型煤炭矿区新资源勘探的资金和技术投入,鼓励企业开展技术创新,提高煤炭开采效率,同时呼吁政府出台相关优惠政策,引导社会资本参与产能接续项目。童明全代表建议,国家成立煤炭产业转型发展基金,优先考虑煤炭资源型地区及煤炭转型企业可持续发展,促进煤企转型。杨会军代表建议,对开采煤矿给予政策补贴,对环保治理给予政策支持,控制煤炭进口总量。游弋代表建议,完善煤炭进口动态调节机制,适度控制煤炭进口节奏。

    非常规油气是增储上产的后备力量,有很大潜力,需要给予政策支持,持续用力加强研究、做好示范。金之钧代表建议,请自然资源部等在矿业权审批等方面给予内蒙古深层煤层气示范区建设更多支持。

    关于矿业的产业划分,再次被提起。王运敏代表建议,把勘探、开采统一为矿业,列为国民经济第一产业;在国家发展改革委下设国家矿产资源局;加大对矿产资源开发利用的科技投入。

    关于矿业用地政策,自然资源主管部门近年来出台了系列举措,仍需不断完善。奇飞云代表建议,对于保障发展新质生产力的必要矿种,建议参照国家战略性矿种管理,并按照矿产资源法有关规定,拓宽用地来源,保障合理采矿用地需求。

    运输畅通是能源资源安全保障的中间环节,同样不可忽视。巩学峰代表建议,鼓励引导地方先行建立省级天然气管网平台,在条件成熟后融入国家管网;请国家发展改革委加快推动天然气国家管网与省网协同发展。关东代表建议,进一步加大能源基础设施投资,提升能源安全保障能力;推动智能化管道建设,提升行业技术水平。马洪海代表建议,鉴于中卫作为国家“东进西出”主要通道、天然气枢纽以及疆煤东运中转站等特殊区位重要性,将中卫列入国家综合货运枢纽补链强链城市。

    聚焦两会|全国两会代表委员热议能源资源安全保障

    数字地表基质调查系统近日正式上线运行,初步实现了地表基质调查主流信息化,综合调查效率提高近30%。为加快推进地质调查数字化转型升级,落实中国地质调查局党组关于“打造基于云计算、大数据、人工智能的地质调查新范式”的部署要求,支撑星空地海井“三测”数据获取处理,从2020年起,由中国地质调查局自然资源综合调查指挥中心地质调查主流程信息化团队牵头,联合中国地质调查局廊坊自然资源综合调查中心信息化团队研发数字地表基质调查系统。经过持续迭代升级,该系统现已正式上线运行,初步实现了地表基质调查主流信息化,有效支撑了4个地表基质调查二级项目22个三级项目全流程应用。该系统采用“一云三端”技术架构,“移动端”“桌面端”“WEB端”各司其职,功能覆盖地表基质调查的野外数据采集-内业处理-图件编制-数据建库等主流程业务,实现了项目的整体管控和协同操作、调查数据的动态汇聚、调查成果的辅助成图等,同时集成便捷的智能工具,为数据处理、质量检查和成果集成等工作提供了极大便利,综合调查效率提高近30%。

    图1 数据动态汇聚成果

    图2  野外数据采集现场

    数字地表基质调查系统上线 有效提高综合调查效率

    9月6日至9日,第二届数据驱动与地学发展全国学术研讨会在京召开。中国地质调查局地学文献中心(以下简称“地学文献中心”)受邀参会交流并作专题报告。

    本次会议主题为“大数据人工智能与地球系统科学”,旨在推动地学大数据与人工智能的深度融合,促进地球系统研究的变革,探讨大数据与人工智能如何支撑可持续发展。长期以来,地学文献中心围绕地质知识智能化工作开展深入研究并取得阶段性成果,受到同行关注。地学文献中心正高级工程师周峰在“地学大数据知识共享与服务科学”专题分享了“地质知识智能化服务系统建设进展”研究成果,高级工程师张静在“大数据人工智能与新一轮找矿突破”专题介绍了“大模型在找矿文献知识图谱中的应用”。此次交流成果基于局地质知识智慧服务技术创新中心在知识服务领域多年积累,是地学文献和信息技术融合支撑基础性、公益性地质工作的实际应用,展现了地学文献中心在知识领域的创新能力,进一步提升了学术影响力,增进了同行交流互鉴。

    下一步,地学文献中心将进一步加强在地学数字化、信息化和智能化理论研究和应用领域的创新能力,为地球科学研究范式创新贡献新力量。

    第二届数据驱动与地学发展全国学术研讨会大会合影

    专题报告1——地质知识智能化服务系统建设进展

    专题报告2——大模型在找矿文献知识图谱中的应用

     
    地学文献中心参加第二届数据驱动与地学发展全国学术...

    贝岭镇幅野外调查现场。广东省佛山地质局供图 

    “要用科技创新改造、支撑和引领地质调查”“牢固树立调查过程就是研究过程的理念”“只有科学家才能负责填图,填图质量由科学家终身信誉保障”……

    瞄准能源资源调查,强化对生态文明建设和自然资源管理的支撑服务,2019年召开的第三次全国区域地质调查工作会议,提出了从填图理念到技术标准、从工作布局到组织方式、从评价标准到成果服务的六大改革措施。历经5年实践,我国区域地质调查改革取得一系列新进展、新成果。

    站在新起点,日前召开的第四次全国区域地质调查工作会议明确提出,进一步全面深化区域地质调查改革任务,大力提升区域地质调查工作程度、调查精度和工作广度,力争到2035年实现从区调大国到区调强国的历史性跃升。

    为什么“改”:

    经济社会发展对地质工作提出新要求,需要区域地质调查率先改革探索

    区域地质调查工作是地质工作的先行,是地质科技创新的源泉。

    1910年,我国第一幅地质图《直隶地质图》的发表,拉开了中国区域地质调查事业百年发展的序幕。历经一个多世纪,在几代区调工作者的共同努力下,我国区域地质调查工作不仅形成了全国宏观地质构造格架认识,有力保障了国家矿产资源安全,而且有效服务了重大工程建设和国家重要战略规划实施,取得了一批具有重大影响力的原创性引领性基础地质研究成果,为新中国从站起来到富起来作出了彪炳史册的贡献。

    步入新时代,国家对地质工作提出了新要求,地质工作面临的形势发生了广泛而深刻的变化。作为地质工作基础和先行的区域地质调查,改革发展势在必行。

    首先,国家对地质工作的需求,需要区域地质调查先行改革发展,将能源资源安全保障工作摆在优先、突出的位置,并做好对生态文明建设和自然资源管理的支撑服务。这就要求区调工作从一般性调查向多圈层交互作用的调查研究融合转变,工作不仅聚焦在重点成矿区带,同时也要加强重要经济区、重点海域、重大地质问题区(含重大工程区)调查,开展更加精细的调查研究。

    其次,其自身发展也亟待加快转型升级步伐。尽管我国陆域中比例尺和海域小比例尺区域地质调查已基本实现全覆盖,但调查精度有待进一步提高,服务方向也有待从单纯服务找矿向破解制约资源环境“卡脖子”的基础地质问题转变。

    与此同时,随着科学技术的发展与进步,地球系统科学理念以及大数据、云计算等技术深刻影响着区域地质调查工作的工作方式、方法。现代“星空地”立体调查技术体系的构建,为区域地质调查从以人工地表观测为主向多技术、多方法综合调查转变提供了技术支撑。大数据、区块链、物联网、云计算等的快速发展和应用,令区域地质调查从数字填图向智能化填图转变成为可能。

    站在新的历史起点,2019年召开的第三次全国区域地质调查工作会议,吹响了区域地质调查工作改革发展的冲锋号。中国地质调查局聚焦加快工作布局调整、技术标准体系推广、人才队伍和业务平台建设、一体化产品公开服务、数据更新体系建设、新管理机制落地,推进地质调查与科学研究一体化,着力提升区调破解重大资源环境问题的能力。

    “改”得怎么样:

    着眼破解重大资源环境问题,创新区域地质调查工作方式、方法

    改革激发活力,改革释放潜力。

    5年来,中国地质调查局聚焦新时代党和国家需求,着眼破解重大资源环境问题,解放思想、开拓创新、攻坚克难,推动区域地质调查改革取得了一系列新进展、新成效:区域地质调查改革一揽子举措落地实施,推动区域地质调查工作程度广度精度持续提升,基础地质研究取得多项创新成果,技术标准改革稳步推进,“线上+线下”成果服务更加高效便捷,以创新能力、质量、实效、贡献为导向的区域地质调查人才评价体系初步构建。

    科技在进步、方法在更新,区域地质调查的对象及要素也大大拓展。其技术标准和工作规范迫切需要调整与更新完善。

    中国地质调查局基础调查部统一部署,通过填图试点、方法体系构建和规范的修订与制定,于2019年、2021年先后完成《区域地质调查技术要求(1∶50000)》和《覆盖区区域地质调查技术要求(1∶50000)》及系列方法指南的制定,经过应用和完善后,形成了《区域地质调查规范(1∶50000)》和《覆盖区区域地质调查规范(1∶50000)》。这两个行业标准已由自然资源部发布,于2024年10月1日正式实施。至此,我国新一代区域地质调查规范和技术方法体系基本形成,结束了长达近30年没有更新区域地质调查规范、缺少调查和填图方法体系的局面。

    新发布的《区域地质调查规范(1∶50000)》和《覆盖区区域地质调查规范(1∶50000)》,从顶层设计开始,较好地解决了长期以来我国区域地质调查面临的理念、思路和方法等问题,首次构建了从基岩区到覆盖区一整套的区域地质调查规范,填补了覆盖区区域地质调查规范和技术要求的空白,初步形成重点成矿区带、能源盆地、重要经济区与新型城镇等不同地区技术指南,对推动我国的区调工作从山区走向平原、从单一服务资源型转向综合服务资源、环境及生态型起到重要作用。同时,在破除以往的“点—线—面”网格式填图工作量的硬性要求外,新规范还注重解决实际问题,科学规范工作量;强调地质实体的圈定,真实反映地质体特征,并建立归纳、提炼的填图单元(如侵入岩的岩套),以提升研究和认识程度。

    另外,新规范提出专题地质填图理念、思路和方法,即以解决特定问题或满足社会特定需求为目的、区域地质调查(填图)与科学和应用研究融为一体的、多学科相结合的地质调查与填图,推动科研与地质调查的融合。

    地质图是区调工作最重要的产品,也是推进区调改革向深向实的重要抓手。近年来,中国地质调查局聚焦需求、解决问题、创新表达、科学家填图等区调改革新理念,持续推进优秀图幅评选,不仅对区调改革起到重要的示范引领作用,同时也增强了填图人员的自信。

    2024年全国区域地质调查优秀图幅共评选出2幅特优图幅、13幅优秀图幅。

    其中,特优图幅广东贝岭镇幅由广东省佛山地质局完成。中国地质调查局地质填图科学家、广东省佛山地质局副总工程师邓飞介绍,该图幅紧扣区域地质调查的目标任务和基本原则,突出地质实体的填绘,详细表达了岩性岩相及各类蚀变,结合断层发育的数值模拟结果对断裂构造进行了分级表达,客观科学地展现了多个构造层的物质组成和变形特征。为探索区域地质调查的范式变革,团队还利用图幅岩矿鉴定成果,开发了粒度智能分析软件并投入使用。在查明成矿地质背景的基础上,图幅新发现稀有稀土矿(化)点24处,并首次在东南沿海火山岩带发现火山黏土型锂矿。依托填图成果设立的锂矿资源调查评价项目,已结合钻探控制含矿层分布范围和厚度,打造了区域地质调查成果快速转化支撑找矿的成功范例。

    中国地质调查局武汉地质调查中心完成的湖北总路咀幅,也获评特优图幅。中国地质调查局地质填图科学家、武汉地质调查中心正高级工程师田洋表示,在区域地质调查改革发展的新征程上,调查工作与科学研究结合得更紧密了,图幅表达的内容也更加丰富了。总路咀幅填图,瞄准扬子陆块早期陆壳生长与演化这一前沿科学问题,新发现10余处太古宙花岗质岩石,完善了地层—岩浆—构造事件格架,重塑了大别山早前寒武纪基底演化格局,同时为深化认识大别地区战略性矿产区域成矿规律提供了基底信息。

    充分利用地球物理、地球化学、遥感及钻探等技术方法,成为当前区域地质调查工作的发展方向。此次被评为优秀图幅的查哈阳农场四队幅,工作区位于大兴安岭及松嫩盆地西缘盆山结合带。中国地质调查局哈尔滨自然资源综合调查中心通过创新建立“剥离”覆盖层基底地质填图技术方法体系,有效解决了东北浅覆盖区地质填图和采样难题。

    得益于深度学习算法应用和中央处理器(GPU)算力不断提升,智能地质填图探索已取得一系列突破。

    中国地质调查局自然资源综合调查指挥中心调查信息化室主任李丰丹在第四次全国区域地质调查工作会议上介绍,目前已形成了面向地质填图全过程、基于深度学习的填图对象识别以及人工智能地质图生成技术方法,能够应用于预研究、野外调查、综合研究等工作阶段,有利于提高填图精度、研究程度和工作效率,也有助于提高填图科学性,在解决重大问题过程中发挥作用。取得的示范成果,展现出人工智能在未来地质填图中的应用潜力。

    下一步怎么“改”:

    以陆块聚散与资源环境效应为主线,推进新一轮国家地质填图

    改革只有进行时,没有完成时。

    党的二十届三中全会对进一步全面深化改革、推进中国式现代化作出战略部署,擘画了进一步全面深化改革的宏伟蓝图。对标新形势、新要求和新使命,进一步全面深化区域地质调查面临新的机遇和挑战。

    2023年,新一轮找矿突破战略行动推进大会明确要求,“基础地质调查是找矿突破战略行动第一阶段必须要做好的基础性工作”“要尽快加强基础地质调查工作,填补我国矿产基础地质工作程度总体偏低的短板”。正视关键矿产供给保障的区调短板,加强重点成矿区带和能源盆地区域地质调查,守住国家能源资源安全底线,无疑是区调工作的重中之重。

    与此同时,陆域,我国地质构造复杂,地质灾害频发,风险隐患底数仍未查清,资源、环境、生态、空间、灾害等多要素关键地质问题相互交织,急需加强以地球多圈层演化协同研究为主的地质填图工作;海域,1∶25万海洋区调覆盖率与全面建设现代化海洋强国的要求相差甚远,急需进一步提升海洋区调的精度与广度。

    为彻底扭转工作程度总体偏低和精度不高的被动局面,第四次全国区域地质调查工作会议就进一步全面深化改革作出部署,下一阶段围绕标准更高、精度更细、效率更快、质量更优的工作要求,以陆块聚散与资源环境效应为主线,重点谋划推进新一轮国家地质填图,全力推进“一个计划”,协同构建“一个机制”,全面建设“四个体系”。

    中国地质调查局基础调查部相关负责人介绍,聚焦战略性矿产安全、能源转型、区域协调发展、海洋强国建设和原始理论创新五大服务领域,新一轮国家地质填图将重点开展重点成矿区带填图、能源盆地填图、重要经济区与新型城镇填图、重点海域填图和重大地质问题区填图,形成“五区”填图格局,系统解决制约全国资源与环境的关键基础地质问题。同时,布局陆域大地电磁、地球化学、地应力观测“三网”建设,以及地球物理、地球化学专项调查,进一步深化深部地质作用对成山、成盆、成藏、成矿、致灾等地质演化过程的认识;加快建设全国数字地质图“一张图”服务系统平台,为全社会提供优质产品服务。

    第四次全国区域地质调查工作会议强调,构建从中央到地方权责清晰、运行顺畅、优势互补、充满活力的央地合作、统筹部署、协同创新、成果共享的新机制。中国地质调查局要以快速提高国家区域地质调查工作程度为己任,推动与地方、企业和高校的需求对接、项目对接,推动形成全国区域地质调查“一盘棋”工作格局。各地要担起提升本地区区域地质调查工作程度的责任,将区调工作与促进地方经济社会发展紧密结合。央地合作开展新技术、新方法联合攻关、试点示范与推广应用,央地企共同推进数字成矿区带、数字盆地建设等,及时将各方调查成果汇入国家数字地质图平台。

    第四次全国区域地质调查工作会议还提出,加快打造国际化现代化技术方法和标准体系、用户友好的优质服务产品体系、高标准严要求的高水平管理体系和高素质高水平的人才队伍体系;强化预研究、预填图,做到野外路线填图带着问题填、有针对性地填,提高野外填图效率和填图质量。

    锚定现代化,改革再深化。

    夯实“百年区调”根基,中国的区域地质调查事业再次踏上新的征程,用下一个阶段的改革发展成果,擦亮这块“百年老店”的金字招牌。

    夯实地质工作之基——我国区域地质调查改革发展纪略

    2024年10月16日,在2024(第二十六届)中国国际矿业大会“一带一路”地学合作与矿业投资论坛上,自然资源部中国地质调查局国际矿业研究中心发布了《全球矿业发展报告2024》。报告综合分析了新周期下全球矿业发展态势,是我国研究机构持续服务全球矿业可持续发展的系列研究成果之一。

    报告显示,新周期下全球经济艰难前行,地缘政治和金融政策渗入全球制造业格局演变,产业链供应链风险上升。全球固体矿产勘查投入约127.6亿美元,同比下降1.8%。全球矿业项目融资下降但并购金额增加。

    供需方面,全球能源资源新增储量、产量、消费量持续调整。其中,化石能源整体供需双升。大宗矿产供需分化明显,钢铁供需双降,供应过剩程度增加;铜供给增速高于需求增速,供需缺口大幅缩小;铝供给增速高于需求增速,供过于求。战略性新兴矿产产量快速增长,锂、钴、镍均供过于求,贸易量下降明显。贵金属黄金需求冲高后回落,白银供增需降,铂金供需双降。

    市场价格方面,国际矿产品价格总体震荡下行。能源矿产品均价下降,大宗固体矿产价格震荡加剧,电池级碳酸锂年内价格跌幅超八成。矿业公司股价震荡下行。主要油气公司股价下滑,净利润下降明显;主要固体矿产公司股价先抑后扬,净利润下降超二成,但总体仍保持高位;战略性新兴矿产公司股价大幅下降,利润同比下降超六成。黄金业务公司净利润和市值持续上涨。全球50强矿业公司总市值相对稳定但结构变化大。全球锂电产业链整体需求放缓,全球氢能项目规模持续扩大,但实际部署不及预期。ESG标准嵌入头部企业架构并融入未来发展战略。

    报告指出,2023年全球主要国家和地区持续更新战略性矿产政策,通过达成关键矿产政府间战略合作或贸易协议、出台发展关键矿产及供应链的法律法规及政策、推进矿业项目与基础设施协同等方式,促进矿产产业链本土化和矿业可持续发展。新一轮科技革命和产业变革深入发展,矿业开发技术装备成为国际矿业合作博弈中关键变量。AI找矿探索变革矿产勘查范式,矿业发展新质生产力未来可期。全球勘查开发、资源回收利用等技术装备加速发展,呈高效化、智能化、高精度、低碳化等态势。低品位难选矿技术向绿色化、自动化方向发展。大型化、多力场、自动化与多学科交叉是低品位矿产资源选矿设备研发重点。

    报告预计,新质生产力赋予矿业高质量发展新动能。卫星遥感、大数据、物联网等先进技术将持续催生AI找矿、智能矿山等新产业,数据资产定价将引领全球矿业新基建,促进矿产资源综合利用水平提升和城市矿产利用。在人类命运共同体理念指引下,矿产原产地产业链延伸不可逆转,制造业大国和基建大国凸显竞争优势,将为全球矿业合作持续贡献产业力量。各国应加强关键矿产领域协作,共同维护产业链供应链稳定畅通,引导推动矿业节约集约和绿色发展,为世界经济增长贡献力量。

    The industrial and supply chain of the mining industry adjusts, the global mining development begins a new cycle

    The International Mining Research Center of China Geological Survey, Ministry of Natural Resources has released the “Global Mining Development Report 2024” at “Belt and Road” Geoscience Cooperation and Mining Investment Forum of the 26th China Mining Conference and Exhibition on October 16th, 2024. The report comprehensively analyzed the global mining development trend under the new cycle, which is one of the contributions to sustainable development of global mining from Chinese research institutions.

    According to the report, the global economy faced growth challenges since 2023. Geopolitical and financial policies have influenced the evolution of the global manufacturing landscape, leading to increased risks in industry and supply chains. The global exploration investment for major solid minerals amounted to USD12.76 billion, down 1.8% year-on-year. The mining financing has reduced, but Mergers and acquisitions amount has increased.

    The production, consumption, and trade of Global energy and resources have continued to grow, with adjustments in supply and demand structures. The overall supply and demand for global fossil fuels have both risen. The supply and demand for bulk solid minerals are clearly differentiated: The supply and demand for steel have both fallen, leading to increased oversupply; copper supply grows faster than demand, causing a significant expansion of the supply-demand gap; aluminum supply also outpaces demand, resulting in oversupply. The production of strategic emerging minerals is rapidly increasing, with lithium, cobalt, and nickel all facing oversupply, leading to a noticeable decline in trade volumes. Precious metals gold demand once peaked and then fell back; silver has seen an increase in supply and a decrease in demand; platinum has experienced a decrease in both supply and demand.

    In 2023, international mineral product prices generally experienced a downward trend. The energy mineral product prices decline overall. The bulk solid minerals showed increased price volatility. Battery-grade lithium carbonate prices dropped by over 80% during the year. The stock prices of mining companies also had a volatile decline. Major oil and gas companies saw their stock prices decrease, with a significant drop in net profits. Stocks prices for major solid mineral companies initially fell but later recovered, with net profits declining by more than 20%, although overall profits remained high. Strategic emerging mineral companies experienced sharp declines in stock prices, with net profits dropping by more than 60% year-over-year. Gold companies saw continued increases in net profits and market value. The total market value of world’s top 50mining companies has remained relatively stable, yet structural changes have been significant. The global lithium battery industrial chain saw a slowdown in overall demand. Global hydrogen energy projects continued expanding in scale, but actual deployment fell short of expectations.

    The report noted that countries continuously updated strategic mineral policies. They implemented various incentive and intervention measures, including forming strategic intergovernmental cooperation or trade agreements on critical minerals, enacting laws and policies to develop critical mineral resources and supply chains, and promoting the coordination of mining projects with infrastructure development. As the new round of technological and industrial revolutions continues advancing, mining technology and equipment have become critical variables in international mining cooperation and competition. Artificial intelligence (AI) is driving a paradigm shift in mineral exploration, offering promising prospects for new quality productive forces in the mining industry. The rapid development of technical equipment for global exploration, R&D, resource recycling and utilization, and other aspects is leading to more efficient, intelligent, high-precision, and low-carbon solutions. Low-grade and hard-to-process ore beneficiation technologies are evolving toward greener and more automated processes, with the development of large-scale, multi-field, automated, and interdisciplinary beneficiation equipment being a key focus for low-grade mineral resources.

    Looking to the future, new quality productive forces are driving high-quality development in mining. Advanced technologies such as satellite remote sensing, big data, and the Internet of Things will continue fostering new industries like AI-driver mineral exploration and intelligent mining. The valuation of data assets is expected to lead the way in new global mining infrastructure, enhancing the comprehensive utilization of mineral resources and urban mining, which will provide new momentum for the industry’s development. Guided by the concept of building a community with a shared future for mankind, we will see a inevitable extension of industrial chains in mineral-producing regions, with manufacturing and infrastructure powerhouses highlighting competitive advantages. These countries will continue contributing to global mining cooperation. Countries should strengthen collaboration in critical mineral sectors to jointly maintain stable and smooth industrial and supply chains, and to guide and promote resource-saving, intensive, and green development in mining, thereby contributing to global economic growth.

     

     
    《全球矿业发展报告2024》显示 全球矿业产业链格局调...

    数据、云计算、人工智能等先进信息技术的地质调查新范式...

    4月16日,在联合国教科文组织国际岩溶研究中心"岩溶与气候变化"国际培训班开幕式上,国际岩溶研究中心发布全球岩溶科技创新合作倡议,此倡议对于在全球范围内推动广泛合作共享,共绘岩溶科技创新未来蓝图具有重要意义。联合国教科文组织驻华代表夏泽翰、斯洛文尼亚共和国驻华大使苏岚、自然资源部国际合作司副司长范黎、中国科学技术交流中心主任高翔、国际岩溶研究中心主任彭轩明出席开幕式并致辞,来自克罗地亚驻华使馆参赞Bisera Fabrio女士等20个国家的40多名驻华使节以及专家学者出席开幕式。

    本次培训班开幕式暨中国-斯洛文尼亚(中国-中东欧国家)岩溶科技创新合作半月行开幕式,被列入中关村论坛主要活动之一,是"中国-中东欧国家同'新'结"(China-CEEC InnoShare)2024年首场活动。活动主题为"共享、共进、共应对;共商、共行、共发展",期望通过合作解决共同面临的气候变化背景下岩溶区资源环境问题。

    夏泽翰、苏岚在致辞中强调,此次活动对于加强全球岩溶生态环境的保护与利用及探索岩溶碳汇技术研发新路径具有重要作用,对于促进各国科技界互知互信,共同应对时代挑战也具有建设性意义;希望更好地实践以"和平合作、开放包容、互学互鉴、互利共赢"为核心的丝路精神,落实共商共建共享原则,通过共同努力,以岩溶地质领域国际合作交流为抓手,助力联合国2030可持续发展目标实现。

    范黎指出,推动地球科学进步,促进气候变化背景下岩溶区可持续发展需要各国科学家的共同努力;此次活动能够为中国—中东欧国家合作机制巩固与发展提供积极助力,希望通过多双边合作及各类国际平台,为各国或地区可持续发展提供地质科技支撑力量。

    高翔表示,加强岩溶碳循环及其环境效应研究,既能助力全球岩溶生态环境保护,也能为人类合作应对气候变化、实现碳减排、碳中和提供创新路径,起到一举两得、事半功倍的效果,希望各国岩溶科技工作者加强协同攻关与国际合作,不断开创人类生态文明新境界、共同开启全球岩溶区治理新进程。

    彭轩明提到,在自然资源部中国地质调查局的支持下,国际岩溶研究中心主持实施了"'一带一路'重点区岩溶地质调查与编图"等多个国际地质调查项目,正在实施的全球岩溶监测站网建设、岩溶关键带对比研究在相关参与国的支持下取得积极进展,促成了中国-斯洛文尼亚岩溶地质"一带一路"联合实验室顺利获批;希望将中-斯洛文尼亚岩溶地质合作打造成中国与中东欧国家及其他"一带一路"典型岩溶国家之间的合作范式,共同推进全球域岩溶科技的创新与发展。

    开幕式上,国际岩溶研究中心发布《全球岩溶科技创新合作倡议书》,希望通过岩溶关键带与气候变化研究、岩溶水资源开发与保护、岩溶地质灾害预警与防治、岩溶地质遗迹保护以及岩溶生态系统生物多样性保护领域的合作研究,共同实现岩溶科技创新发展,共同推进2030可持续发展目标的实现。来自斯洛文尼亚、克罗地亚、斯洛伐克、塞尔维亚、土耳其、印度尼西亚和中国的学者共同签署倡议书。

    国际岩溶研究中心、中国-斯洛文尼亚岩溶地质"一带一路"联合实验室分别向外籍专家颁发聘书,希望通过推动国际合作团队建设,培养岩溶地质科技中青年人才,带动岩溶科技创新合作发展。中国科学技术交流中心就国际杰青计划进行推介。国际地质灾害与减灾协会主席汪发武教授,奥地利科学院外籍通讯院士、国际地球化学学会会士程海教授,分别围绕气候变化下的岩溶区防灾减灾、岩溶记录与气候变化做主旨报告。来自斯洛文尼亚、克罗地亚、塞尔维亚、斯洛伐克、土耳其等国家岩溶领域的知名学者围绕各自科研重点、最新成果及创新合作需求做学术报告。

    此次国际培训班为期14天,将在北京、武汉、桂林开展培训。室内培训以岩溶水文地质研究、岩溶水生生态系统、岩溶地质灾害预警与防治、岩溶地质遗迹多样性保护为主要内容;结合水环境治理、岩溶水资源监测、岩溶地质遗迹保护等野外实习,将系统全面介绍气候变化背景下的岩溶科技创新工作成果。

    全球岩溶科技创新合作倡议发布

    3月11日,第十八次李四光地质科学奖科研奖获得者、中国地质科学院矿产资源研究所(以下简称“资源所”)原副总地质师肖克炎研究员新申报的战略矿产项目“战略性矿产资源大数据综合信息预测与找矿勘查示范”通过评审。在过去的40年间,从数学地质到数字化矿产预测,从信息化大数据分析再到如今的智能化资源勘查,肖克炎始终围绕国家需求、紧盯科技前沿刻苦钻研,奋战在中国地质行业数字化、智能化研究的前沿,成为这一进程的缩影和地质科学工作者的榜样。

    肖克炎研究员获李四光地质科学奖科研奖

    理想:将“计算机+矿产预测”作为“一生的事业”

    1980年,16岁的肖克炎考入湘潭矿业学院地质系煤田地质与勘探专业。如果不出意外,他的人生轨迹也会像他的许多大学同学那样,毕业进入煤炭行业,一生从事煤田地质方面的研究和实践。

    不过,20世纪80年代初,改革开放的浪潮席卷中国大地,对“科学技术现代化”的渴望蓬勃生长。那时的湖南,一件大事正在发生。1983年12月22日,中国第一台每秒钟运算一亿次以上的“银河”巨型计算机,在位于长沙的国防科技大学计算机研究所问世。“银河”对青年肖克炎的影响是巨大的,从小头脑活跃、热爱数学的肖克炎看到了计算机在煤田矿产资源领域的巨大应用前景。

    1983年年底,他为自己的实习论文圈定了两个方向——矿产资源趋势分析、计算机应用。学校没有计算机怎么办?在学校的支持下,肖克炎在核工业二三〇研究所(原长沙铀矿地质研究所)借了一台进口巨型计算机,它几乎占据了整个屋子。有了这个“宝贝”,肖克炎花费一个星期时间,对湖南湘中盆地煤田沉积谷地的矿产资源进行了5次趋势分析,圆满完成了实习论文。

    这次成功尝试,点燃了他以数学研究地质的兴趣和志向。当然,那时的他,还不知道未来计算机技术将飞速发展,更不知道自己将以此为起点,与“计算机+矿产”打一辈子的交道。

    1984年,肖克炎考取长春地质学院数学地质专业硕士研究生,师从著名数学地质专家王世称教授,并继续攻读该专业的博士学位。

    数学地质是用数学分析及建模的手段,对地质问题进行规律性的研究。然而,把复杂的地质现象进行定量化研究实非易事,不仅需要把矿床成因、地球探测信息技术、计算机等多学科的知识进行交叉、融合,更需要具有宏观的科学视野和创造性的数理推算能力。在学习和实践中,肖克炎不断探索多元统计分析方法的应用、金铜异常区复合模型的建立以及综合信息矿产预测等领域,像海绵吸水一样,在课堂授课、实习项目和国内外资料中汲取知识和经验,并最终将自己的专业方向确定为矿产预测。这也是他坚定不移的选择,为他未来的研究奠定了坚实的基础。

    在长春地质学院学习期间,肖克炎展现出了非凡的勤奋和才华。他发表了数十篇论文,远超学校规定的数量。期间,他还参与了由王世称教授主持的《综合信息矿产预测理论与方法体系》项目,并获得了国家科学技术进步奖二等奖。

    1991年年底,肖克炎博士毕业后不久,中国地质大学开始招收博士后。在博士后流动站和长春地质学院之间,为了自己的梦想,他选择了前者,来到武汉,成为中国地质大学“矿产普查与勘探”博士后。师从我国著名数学地质学家、原地大总校校长赵鹏大教授,进一步深化对数学地质的研究和应用。1993年博士后出站,已晋升为副研究员的肖克炎,来到资源所成矿远景区划研究室(简称“区划室”)工作。

    直到现在,肖克炎都很庆幸自己的“运气”,不仅能师从于数学地质领域有着“南赵北王”之称的两位泰斗,还能在中国矿产资源顶级科研院所找到专业最对口的工作岗位。当然,这份幸运并不是偶然的,而是他坚守初心、不懈努力的结果。 

    肖克炎研究员野外工作

    使命:“成矿区划”→“潜力评价”→“深部预测”

    踏上工作岗位,正直20世纪90年代,全国地质工作陷入低谷期,而肖克炎的“好运”却并未离他而去。

    肖克炎刚刚来到资源所,就赶上了一个大项目——全国第二轮成矿区划工作,并在其中从事成矿远景区划计算机化及GIS应用研究。巧合的是,肖克炎本科和硕士期间,也曾参与过全国第一轮成矿远景区划的部分工作。

    这个项目由时任中国地质地科院院长和地质矿产部总工程师的陈毓川组织领导。此时,经过数十年的找矿,不少地区已转入隐伏矿床、盲矿床预测寻找和评价阶段,找矿难度大,必须筛选出具有较好成矿远景的重点区域,形成“以点带面、点面结合”的找矿突破。同时,当时的地质科技与成矿理论较之改革开放前有了明显的进步,急需使用新理论、新技术综合研究最新的资料,指导找矿。

    陈毓川找到肖克炎,阐述了中国成矿体系和第二轮成矿区划工作的目标,以及应用计算机技术对区域成矿规律进行研究的设想。他强调,一定要注重开展全国和区域性物化资料综合研究,进行矿产预测和评价;要瞄准世界先进水平加快发展勘查技术,加快现代计算机技术的数据处理和成图技术研究,实现“地矿工作信息化”。

    肖克炎始终认为,陈毓川院士是自己重要的伯乐和导师。通过陈毓川指导与项目实践,肖克炎的学术视野愈发开阔明朗,牢牢把成矿系列理论作为计算机技术应用的基础和出发点,成为他所坚守的、不同于其他矿产资源数字化、智能化研究团队的鲜明特点。

    在第二轮成矿区划工作中,肖克炎作为主要骨干,带领团队逐步建立了以成矿系列理论为指导、以GIS计算机技术为支撑的综合信息矿产预测方法体系,开展了不同比例尺矿产资源方法学比较研究,提出了预测底图编图综合解释模型,完善了综合信息找矿评价模型的研究内容方法,编制了首张中国矿产成矿系列图和跨世纪找矿工作部署图,建立了全国成矿远景区划数据库。

    时间紧、任务重。有时候,“活儿”要得急,肖克炎经常要加班到下半夜。好在,辛勤的汗水换来了扎实的成绩:第二轮成矿区划成果“中国成矿体系和区域成矿评价”,在2004年获得国家科学技术进步奖二等奖,肖克炎是主要完成人之一。

    大项目催生大人才。1996年,肖克炎被破格晋升为研究员,1997年开始担任资源所成矿远景区划室总工,2000年,被任命为区划室主任。2006年,原国土资源部部署全国矿产资源潜力评价国情调查工作。这次,作为学科带头人的肖克炎,毫无悬念地成为其中“全国重要矿产总量预测”项目的总负责。

    从2006年到2013年,肖克炎上满了“发条”,瞄准“总量预测”目标任务,创立了矿床模型综合地质信息矿产预测方法;研发出地质专家系统预测与综合信息预测的预测模型,总结了以计算机信息技术为手段,运用矿床模型地质参数法进行资源潜力估算的预测工作方法流程;首次提出区域预测综合信息编图的综合解释模型、矿产预测类型、矿产预测方法类型、最小预测区等概念,创新发展了矿床模型地质参数资源量估算方法;建立了全国矿产资源潜力预测评价成果数据库,为国家资源决策提供了权威国情数据。

    肖克炎研究员在野外与国际知名专家共同野外查证

    矿产资源潜力评价预测成果促进了地质工作顺应时代的发展:广泛应用于我国“十三五”各类矿产勘查规划部署,厘定了我国26个重要找矿部署区带,优选110余处国家重要整装勘查区和矿集区;支撑国家找矿突破战略行动和矿业企业的矿产勘查,推动新发现多处大中型矿产地,实现找矿工作重大突破。即使是现在,其成果仍在发挥着重要作用。

    近年来,矿产勘查逐渐向深部转移,肖克炎智能勘查技术的研发目标也“由浅入深”,在科技部深地资源勘查开采专项“深部资源预测系统技术研究与示范”项目的支持下,围绕深部资源预测需求,系统开展了深部矿产资源预测理论研究、关键技术、平台系统研究,突破了成矿空间三维结构重建机制、深部矿化定位机制及深部预测途径等关键技术瓶颈,首次建立了找矿模型—三维建模—定量预测三元大数据深部矿产资源预测理论方法,自主研制了一套具有自主知识产权的深部综合信息预测评价平台系统,创新研发了深部成矿构造、地球物理、地球化学和地质异常的时空结构解析方法与深层次信息提取新技术,解决了矿集区深部成矿空间三维结构重建、成矿地质异常空间重构以及矿化空间定位等技术难题,推动了我国深部找矿、三维预测领域的技术进步。 

    深部找矿勘查示范基地

    一个个走在科技创新“风口浪尖”的大项目,有效地支撑服务了国家矿产资源安全保障和资源管理,引领了我国矿产资源潜力定量评价与预测科学进步。它们不仅赢得了近十个国家和省部级奖项,也为肖克炎带来了诸多荣誉:俄罗斯科学院与工程院外籍院士、享受国务院政府特殊津贴,以及部百名跨世纪科技人才、原国土资源部先进个人、自然资源部科技创新人才、湘江学者、楚天学者、珠峰人才等称号,而2023年获得的第十八次李四光地质科学奖科研奖,更是对他在地质科研方面突出贡献的充分肯定。

    与此同时,肖克炎不仅在个人学术研究上取得了显著成就,更在团队建设方面展现出卓越的领导力。

    在全国矿产资源潜力评价和国家重点研发计划等项目的实施过程中,他建立了一支集成矿规律、潜力评价、数学建模、软件工具研发等全链条、多层次的高水平科研团队,形成了全国领先的大数据智能找矿“理论—方法—系统平台”完全自主知识产权的开创性成果。

    在他的指导下,团队突破学科壁垒,出色完成了全国25种重要矿产资源2千米以浅资源量预测研究,圈定了各类找矿靶区4万余处、成矿远景区2000余处、重要矿集区240余处,并科学估算了不同深度预测资源量。在山东莱州—招远金矿整装勘查区、四川会理—会东矿集区、湖南—贵州锰矿整装勘查区、贵州贞丰—普安金矿整装勘查区、甘肃玛曲—合作金矿整装勘查区、西藏冈底斯成矿带等地,开展了深部(3000 米以浅)三维预测评价及找矿预测示范,取得了多项找矿突破。由此,肖克炎科研团队在国际SCI期刊上发表了论文106篇,获得发明专利24项,软件著作权27项,6人获得省部级及以上荣誉称号;培养了博士后5人、博士50余人、硕士100余人,为相关行业、企业输送了大量高素质人才。同时,举办各类培训班40余次,培训了行业、企业技术骨干近千人,他本人还在商务部举办的“一带一路”非洲预测方法培训班中多次授课,近千名国外地质专家聆听相关课程。这些工作和成果在学术界产生了广泛的影响,为矿产预测定量化发展作出了重要贡献。

    未来:发展人工智能预测技术是“创新的高地”

    所谓矿产预测,就是在现代地质成矿理论指导下,对预测区的地质、地球物理、地球化学、重砂和遥感等各种成矿信息进行提取解译,并使用先进的多元统计方法和计算机技术进行综合,从而确定成矿有利地段和靶区,并最终估算其矿床数和资源量。

    在如今的矿产预测领域,很少有人不知道MRAS(矿产资源综合信息评价系统)和MinExplorer(探矿者软件)。这套由肖克炎带领团队在全国矿产资源潜力评价项目实施期间自主开发并拥有全部核心技术与知识产权的矿产资源预测评价系统平台,打破了国外在此领域的技术壁垒,填补了我国矿产预测信息化领域的空白,已被全国32省(区、市)的上千家地质调查单位全面应用。 

    探矿者软件(MRAS3.0)赠送仪式

    科学的探索从来都是循序渐进、厚积薄发。

    早在1996年,肖克炎申请承担的“基于GIS平台矿产资源评价辅助决策系统”,在国内首次提出将传统矿产资源评价与现代地学信息技术相结合的研究思路并研制了MRAS软件系统;2002年,肖克炎承担国家863项目“地学空间信息三维可视化系统”,通过基于GIS的资源评价分布式网格计算,开始了对“探矿者”软件核心技术的研发与积累;2006年~2013年,“探矿者”在全国危机矿山找矿专项中推广应用,形成了矿床勘探3DEM储量估算系统;之后,“探矿者”升级为v3.0版本,实现了对三维数字矿床模型及深部矿产资源的立体预测评价。

    MRAS打通了矿产资源评价的GIS工作流程,实现了多源信息变量自动赋值及预测单元自动划分,彻底地改变了以往在预测单元选择、变量研究过程中进行矿产资源统计预测的费时费力的工作环境;而探矿者软件,则是一套适合地质矿产勘查、三维可视化智能分析、三维预测评价系统,其自主研发的三维矿产勘查评价智能地质制图、三维地质建模、三维可视化等底层核心技术,实现了从二维平面预测向三维空间立体预测转化,也使传统统计预测要几个月完成的工作,缩短到几天就可以完成。

    这些,都颠覆性地提升了地质工作中矿产预测的工作模式、准确度以及经济性。

    探矿者地质矿产勘查软件系统(MRAS v3.0)

    30多年对矿产预测数字技术的研发与应用,让肖克炎深深地体会到了“大数据驱动”已成为新的科学范式,而对前沿科学极为敏感的他则清晰地意识到,发展新一代人工智能预测技术是当前资源评价领域创新高地,地质找矿工作智能化已是“奔腾的江河”,必然势不可挡、必然汹涌向前。

    如今,在“人工智能+”找矿的大趋势中,肖克炎又针对战略性矿产资源开始了新的研究探索——通过战略矿产项目“战略性矿产资源大数据综合信息预测与找矿勘查示范”,针对锂、钴、镍等11个战略性关键矿产资源,创新大数据预测评价基本理论、方法流程、预测模型及成果表达等,研发智能地质预测模型和大数据精准预测技术,创新资源评价知识驱动和数据驱动双引擎,突破智能地质模型预测计算机关键技术,形成新一代智能战略性矿产评价软件系统,解决资源评价软件卡脖子难题。

    又是一场硬仗。在今后的4年中,肖克炎将带领项目团队,完成战略性矿产超常富集机理及成矿模型研究、战略性矿产大数据综合信息提取与智能预测方法技术研究、战略性矿产数字矿床模型及预测评价系统平台研发、战略性矿产重点成矿区带资源潜力定量评价、战略性矿产重点矿集区三维预测与找矿勘查示范等课题,继续推进矿产资源大数据智能预测评价水平,为国家提供更多的找矿新靶区,尽快找大矿、找好矿、找急需的矿提供重要支撑。

    熟悉肖克炎的人都知道,他有着地质人的豪迈大气,也有着数学家的精细严谨,既有身为学者的“勇攀高峰、敢为人先”,又有作为教师的“春风化雨、玉汝于成”。30多年来,被同事、学生称为“拼命三郎”的他,始终把李四光等地质先辈的科学家精神视为榜样和指引,以服务国家需求为己任,勇于创新、勤于实践,全身心地投入到了“推动矿产预测理论技术进步”的事业中,而未来,面对国家对能源矿产资源的全新需求和日新月异数字技术的不断召唤,他以科技创新驱动大数据智能预测方法研发的步伐也将更加坚定。

     

    深耕资源评价智能化——记第十八次李四光地质科学奖...