分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到3条相关结果,系统用时0.008秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    “锂”从山中来,仗剑走天涯

     邓伟 李成秀 冀成庆 徐莺 周雄

    1.“锂”的家族群

    1)锂(Li)

    锂的克拉克值为30ppm,是较分散而又广泛分布的元素,主要在岩浆结晶作用的晚期阶段富集在伟晶岩中;花岗岩中含量最高,其次是碱性岩。矿床中经常与铍、铷、铯、钽等有益元素共生。

    目前,已知含锂的矿物有150多种,呈独立矿物形式的有30多种,主要工业锂矿物有锂辉石、锂云母、透锂长石、磷锂铝石、铁锂云母等。川西稀有金属矿集区中的锂资源基本以锂辉石形式产出。

    锂辉石,化学成分LiAl[Si2O6]。一般Li2O含量7%左右;晶体呈柱状、板状、针状,颜色可呈无色、灰白、淡紫、淡绿、淡黄、宝石绿色;条痕白色;摩式硬度6.5-7;比重3.03-3.22。

    含锂矿物特征

    2)铍(Be)

    铍的克拉克值为6ppm,为显著的亲石元素。在花岗岩及霞石正长岩中的含量较高,在岩浆分异过程中富集于岩浆残液中,经常固结集中在岩石圈最上部,在地壳深部含量减少。

    世界上已发现的铍矿物和含铍矿物有60多种,常见的矿物约有40多种,主要的工业矿物有绿柱石、硅铍石(似晶石)、羟硅铍石、金绿宝石(铍尖晶石)和日光榴石。

    绿柱石,化学成分Be3Al2[Si6O18],一般BeO含量13%左右;晶体一般呈柱状,呈绿色、黄色、浅蓝色、红色;条痕白色;玻璃光泽或树脂光泽;性脆;硬度7.5-8;比重2.65-2.91。

    含铍矿物

    3)铌(Nb)和钽(Ta)

    铌和钽的原子构造类似,因此,两者在物理化学性质、地球化学性质及矿物学性质方面都很相近。铌、钽经常共生,在岩石和绝大多数矿物中铌和钽的含量此消彼长。在成因上与碱性岩有关的矿物中铌相对富集,与花岗岩有关的矿物中钽相对富集。

    铌在地壳中的丰度为3.2ppm,钽的丰度为2.4ppm。由于铌、钽的地球化学迁移行为不同,铌开始早、收敛晚,钽主要富集于晚期。所以铌矿物种类多,分布广;而钽的变种少,分布不广。目前,已知的铌、钽矿物和含铌、钽矿物有130多种,常见的有30多种。如铌铁矿-钽铁矿、钽铁矿、铋铁矿、褐钇铌矿、易解石、铌易解石、铌铁金红石、烧绿石、锰钽矿、重钽铁矿、黄钇钽矿、细晶石等。铌钽矿物基本呈黑-棕红色,半金属光泽、油脂光泽,少数为金刚光泽;比重大,因此可用重选方式得以富集;化学成分极为复杂。

    含铌钽矿物

    4)铷(Rb)和铯(Cs)

    铷在地壳中的丰度为90ppm。目前没有发现铷的独立矿物,呈分散状态,常以类质同象混入物出现在含钾矿物中。工业来源主要从富含铷的锂、铍、钾的矿物中提取。如锂云母中含Rb2O3%、微斜长石(天河石)中含Rb2O0.3%、铯榴石中含微量铷等。

    铯在地壳中的含量为20ppm。含铯的矿物有10多种,但铯的主要来源还是稀有金属伟晶岩中的铯榴石和锂云母。除此之外,铯还分散在其他矿物中,如绿柱石、黑云母、天河石和堇青石等。

    含铷铯矿物

    铯榴石,化学式Cs[AlSi2O6] nH2O。一般含Cs2O30%左右,晶体往往呈立方体、粒状及致密块状,无解理;颜色为无色、白色,有时带灰、粉红、浅紫等色颜色;性脆,硬度6.5-7;比重2.67-3.03。

    2.“锂”从哪里来

    1)传统矿山

    在您印象中矿山是什么样的?答案也许是偏远、荒凉、破旧的厂房,艰苦的条件,又或许是漫天尘土、泥浆满地、污水四溢,像这样又或许是那样……

    2)绿色矿山

    随着时代的发展和绿色矿山建设的推进,如今的矿山早已不再是从前的样子。先进的设备、一流的技术、现代化的厂房,一座座“花园式”的矿山正拔地而起。清洁生产,循环用水,大家再也不用担心环境污染了!

    3)“石头”变“电池”

    石头是如何变为电池的呢?锂辉石矿经过采矿进入选矿厂,选矿厂采用物理方法分选出含锂矿物,含锂矿物经过冶金处理成为碳酸锂产品,再由产业部门深加工,最终脱胎换骨成为电池。

    3.崭新“锂”程

    1) 锂之应用——走入寻常百姓家,健康美好新生活

    随着科技的快速迭代升级,锂在日常生活中的应用越来越常见。含丁基锂的橡胶轮胎更加耐用,寿命比原来提高了4倍以上,让驾车出行更加安心;锂动力电池驱动的新能源汽车逐渐进入普通家庭,成为城市代步、环保出行的首选之一;锂电池和其他锂产品在娱乐设备上也得到广泛应用,为我们的休闲娱乐生活开启了无限可能性;锂的应用在家中随处可见,它为我们提供了便捷舒适的智能生活。

    厨房里,添加了锂的电磁炉面板等玻璃制品,可以使其变得更轻、更结实、更耐溶。锂盐可为蔬果进行“健康护理”,防止西红柿腐烂和小麦锈穗病,让人们吃得放心、吃得安心。锂在医学保健方面也有新的应用,不仅可以强身健体,还能防治疾病,是人体健康的“守护者”。国外研究发现,锂与阿尔茨海默病存在关联,一款为中老年市场打造的天然矿泉水“锂水”就此诞生。而锂的用途还在不断拓展中,从交通工具到健康护理,锂的应用遍布我们生活的每个角落,改写了每一个人的生活方式。

    新世纪崭新的“锂”程指日可待。

    2) 铍之应用——让医疗成像、诊断和激光医学走到科技前端的金属材料

    铍,是仅次于锂的轻金属,主要是以铍铜合金和铍金属的形式广泛应用于航空、医学等领域,是新兴产业发展必需的战略性矿产资源。目前,世界上只有美国、中国、俄罗斯等国具有工业规模的从铍矿石开采、提取冶金,到铍金属及合金加工的完整铍工业体系。

    ①提高X射线成像效果

    因为铍金属既可以稳定地处理高温阻抗,又可以实现对X射线的高度透明,铍箔在医疗和科研X射线设备当中已经使用了很长时间。铍箔作为窗口来穿透聚焦的X射线,同时可以保持X射线发生管那一侧的真空环境。

    ②使低辐射成为可能

    铍箔仍是CT扫描和乳腺X射线成像等高分辨率医学成像设备中必不可少的材料。在新一代乳腺癌X射线成像设备中使用低辐射扫描可以得到更精细的肿瘤分辨率,使许多早期可治疗阶段的乳腺癌被及时发现,治愈乳腺癌成为可能。

    ③改善X射线光管强度和稳定性

    作为成像技术的前端科技,铍持续为满足X射线光管高强度、稳定性、抗高温、X射线穿透率等性能要求。

    ④光学激光器的小型化

    使用氧化铍的医学激光器可以帮助眼科医生为数百万患者恢复或改善视力。具有高导热、高强度、介电性能的氧化铍是唯一能控制微小高功率气体激光器的材料。

    ⑤简化外科手术

    铜铍连接器将精确的电信号传送到精密手术器械和最新的非侵入性外科技术的监测装置当中。这种技术减少了对病人的创伤和感染风险,同时加快了愈合和恢复的过程。

    ⑥分析血液

    铍还用于分析HIV和其他疾病的血液分析设备部件当中,给医生和病人提供所需的精确性和可靠性数据。

    3) 铌之新应用——冉冉升起的电子材料之星

    铌行业全球市场集中度非常高,目前全球最大的铌矿企业是巴西矿冶公司(CBMN),占据全球市场80%-85%的产量,主要从事铌产品的开发、工业化和商业化运营,是世界上唯一一家可以生产全系列铌产品(包括标准铌铁、特殊牌号铌铁、真空铌铁、真空镍铌、铌金属和五氧化二铌)的企业,对铌价格的走势具有较强的影响力,控制着全球铌产品扩产计划的进度。

    具有超导性能的元素不少,铌是其中临界温度最高的一种。而用铌制造的合金,临界温度高达绝对温度十八点五到二十一度,是目前最重要的超导材料之一。

    2019年,材料领域国际顶级期刊《自然材料》发表了复旦大学修发贤团队的最新研究论文《外尔半金属砷化铌纳米带中的超高电导率》。文章显示制备出二维体系中具有目前已知最高导电率的外尔半金属材料——砷化铌纳米带,电导率是铜薄膜的100倍,石墨烯的1000倍。此次制备出的材料砷化铌纳米带的电导率是铜薄膜的100倍,石墨烯的1000倍。业内表示,导电材料是电子工业的基础,现在最主要的材料是铜,已经大规模运用于晶体管的互连导线。

    4)钽之新应用——人体“亲金属”的神奇医学材料

    钽作为一种金属材料,具有优异的力学性能和抗疲劳特性,因此被广泛应用于医学领域,尤其是在骨科领域。它可以替代人体骨组织,起到承重作用,目前已在临床取得显著疗效。钽金属材料在与人体组织结合时,具有强度、生物相容性和稳定性等优点。因此,它比传统金属材料的人工置入物更具有优势,在医学领域的发展前景十分广泛。

    研究和临床应用表明,多孔钽金属具有比金属钛和钛合金更好的骨融合和骨传导性能,运用钽金属材料制作的仿生骨骨组织长入良好,骨性生物固定优良。未来,利用3D打印高致密度和高力学性能钽金属核心技术,将为我国在高端骨科植入物、医疗器械和难熔金属工业部件发展领域做出积极的贡献。

    不仅如此,将钽金属与其他金属材料结合应用在临床医学中也取得了十分重要的突破。很多金属材料因其独特的性能可用于医学领域,但是由于缺乏生物相容性,不能将其优点很好地应用在临床。为此,科研人员想到将耐腐蚀性强且稳定的钽金属涂覆在这些金属材料的表面,使那些有独特性能但原先忌于低生物相容性而不能用于临床的金属材料重新用于临床,并取得显著疗效。

    5)铷之应用——超视距精确授时,极佳光电传感器件制造

    全球独立铷矿床非常少,下游应用供应链受限,已成为全球对该元素发展的约束要素。铷是自然界一种最大光电效应的稀有分散元素,其合成材料在智能制造中逐渐开始发力。

    铷因其极佳的光电效应,在光电管、红外辐射仪表、太阳能光电池等器件制造方面均实现了重大革命性变革。据外媒报道,太阳能电池在通往最高效率的道路上正在不断改进中。德国国家可再生能源实验室研究人员开发了一种新的太阳能电池,为了改善用于吸收可见光的钙钛矿与用于吸收红外线的铜、铟、镓和硒的混合物两层之间的接触,研究小组在它们之间添加了一层铷原子,团队让电池的峰值效率达到24.16%。

    铷基设备材料精准计时功能助力集群医用设备同步获取精确时间信号。近年来,基于星载铷钟开发的网络同步时间服务器在国内卫生部门得到良好的推广,为医院提供标准的网络时间统计信息服务,也为局部辐射区域近万台网络客户端提供精度小于5毫秒的时间同步服务器,较大程度地改善了全区医疗机构网络系统,包括:医护人员的办公PC及医疗设备、走廊、大堂子钟系统等授时操作的统一性,充分实现了大数量集群精确医疗设备同步作业中时间的精准性保障。

    铷基量子传感器有望用于诊断房颤。心房颤动(AF)是一种导致心率异常的疾病,发作时心脏中传导的电生理信号易出现紊乱行为。目前,常规用于检测房颤的心电图受到灵敏度、时间等诸多限制。据一项发表于《应用物理学快报》的研究,科学家利用原子磁强计,通过基于铷的量子传感器接受信号,成功对导电率与生物组织相近的溶液进行电磁感应成像,可测出高导电性的区域。这项技术实现了非屏蔽环境下的小体积成像,且灵敏度较传统技术提高了50倍,为房颤的快速临床诊断带来了希望。

    固体废弃物如何变身宝藏?

    邓杰 邓善芝

    几个世纪以来,人类社会的快速发展基于对自然资源的使用与消耗。尤其是第三次工业革命以后,生物科技与产业革命的迅速发展,使人们对能源和矿石的需求量激增。同时,为满足迅速增长的社会需求,各行各业纷纷扩能扩产。2012年,国际民间组织“全球足迹网络”(GFN)及英国智库“新经济基金会”提出“地球生态超载日”的概念。“地球生态超载日”是指地球当天进入了本年度生态赤字状态,已用完了地球本年度可再生的自然资源总量。据测算,约从1970年起,人类对自然的索取开始超越地球生态的临界点。从过去数十年来看,几乎每隔10年这一天的到来就会提前1个月。

    资源过度开采和废弃物的无节制排放,造成越来越严重的生态环境问题。人类用碧海蓝天换来了现代社会的方便快捷和科技的快速发展。随着人们经济水平的提高以及对自身健康的重视,环境的重要性被越来越多的人认识。如何在保障人类需求的前提下,尽可能保护和改善环境,寻求资源环境和谐发展的解决方案,成为时下人们关注的重点。为节约资源、提高现有资源的利用率,资源综合利用的概念逐渐被人们所熟知。

    在资源开发利用及使用消费过程中,不可避免会产生伴生矿石、围岩及选矿尾矿等,比如钨矿中伴生的铜、铅、锌等含有稀有分散元素的矿物,氧化矿中的碳酸盐和硅酸盐类脉石、有机物生产中产生的废水、生活中的废旧金属和电池等,这些生产和生活废弃物中含有大量的有价金属、有机及无机盐类矿物质资源,将其直接排放到环境中,不仅会造成大量的宝贵资源白白流失,还会影响耕地质量、污染空气和水源,破坏生态环境。在资源开发利用和消费过程中,针对这些伴生矿物资源和生产生活中的废弃物开展回收利用,使其重新资源化,从而最大限度地实现现有资源的高效利用,可以称之为资源的综合利用。

    如何实现资源的综合利用?现阶段,资源的综合利用主要从三方面开展:

    一、在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用。

    煤炭被人们誉为“黑色的金子”“工业的粮食”,它是18世纪以来人类世界使用的主要能源之一。煤矸石是与煤伴生的一种含煤高岭土,过去采煤过程中产生的大量煤矸石一直被作为大宗固体废弃物堆放在煤矿周围。正如犹太经典《塔木德》中所说:“世上没有废物,只是放错了地方。”煤的伴生矿——煤矸石也是如此。煤矸石综合利用的途径很多,除了传统的利用途径,如回填煤矿采空区、铺路、土壤改良、做建筑材料和发电等。最新研究表明,煤矸石还可以作为下游精细加工业的原料。如,煤矸石经处理后可以作为橡胶填料,获得与炭黑相当的补强效果;还可以制备聚硅酸铝铁,用于处理造纸综合废水等;此外,煤矸石可以用于陶瓷、耐火材料、橡胶工业、涂料、塑料、4A分子筛、铝硅铁合金等十多个行业。

    二、对生产过程中产生的废渣、废水(液)、废气、余热余压等进行回收和合理利用。

    除矿石中的伴生资源外,矿石资源生产加工过程中还会产生大量的废弃物资源。以铜矿尾矿为例,研究表明,铜尾矿中除了可以回收有价金属元素铜之外,还可以回收非金属组分石榴子石、硅灰石等,并将剩余部分作为植物培养基等原料进行利用,实现铜尾矿的减量化和资源化。部分有色金属尾矿的主要成分为SiO2,且包含大量钙、镁等元素的氧化物,和市场上普遍运用的建筑材料的化学组成非常相似。尾矿用作建筑材料时加工方式比较简洁,能够有效解决成本和能耗问题。

    三、对社会生产和消费过程中产生的各种废物进行回收和再生利用。

    除开展矿山资源的综合利用之外,再生资源回收利用也是开展资源综合利用的重要方面。发展再生资源回收行业可以节省采矿、冶炼、电解等工艺环节,大量减少污染排放和能源消耗,也是降低资源对外依存度、推动我国生态文明建设的必由之路。中国是全球公认的制造业大国,然而近些年随着人口红利日益消失,以及环保成本的不断抬升,我国资源的对外依存度逐渐走高。在此背景下,大力发展再生资源回收利用产业,具有积极重要的战略性意义。

    现阶段,资源环境和谐发展之路仍然崎岖且漫长,人类需要开展更多的探索与实践。相信在不久的未来,资源综合利用方法和途径会越来越多,资源环境和谐发展之路必将越来越顺利。

    带你了解这朵“云”——地质云

    戴新宇

    “地质云1.0”闪亮登场,魅力初现

    “地质云”是自然资源部中国地质调查局主持研发的一套综合性地质信息服务系统,集地质调查、管理、共享、服务四大功能于一身,面向社会公众、地质调查技术人员、地学科研机构、政府部门提供丰富的各类地质信息服务。经过“地质云”研究开发团队艰辛付出,2017年11月6日,“地质云1.0”闪亮登场,迈出了“地质云”建设三步走的第一步。

    “地质云1.0”刚上线运行,就受到地质调查科技工作者的青睐,局系统内外正式用户达4000多人,日均访问量突破6000次,在地质调查管理和应急事件服务上体现出精准、快捷的特点。例如,在2017年11月18日西藏林芝市米林县发生6.9级地震后,“地质云”首次启动了应急服务工作机制,在2小时内线下完成震区地质图数据制作,仅用10小时就为应急救灾在线提供了震区区域地质图、国家地质资料馆藏涉及震区的地质资料,以及林芝地区卫星遥感影像图、震中300公里范围地质钻孔、林芝专题地质文献库等系列地质信息产品。毫无疑问,“地质云1.0”实现了地质调查数据共享破冰,为75个国家核心地质数据库的互联共享和2382个信息产品提供社会化服务。

    “地质云2.0”华丽转身,飒爽英姿

    在2018年10月18日召开的中国国际矿业大会上,“地质云2.0”宣布正式上线,完成“地质云1.0”云上数据资源和系统功能的全面升级,完成手机版地质云APP国家地质大数据共享服务平台研发,通过数据资源整合和信息系统集成,全面提升地质调查数据采集、汇聚、处理、分析、共享与服务能力,为新时代地质调查工作转型升级提供核心动力,及时、有效地满足政府部门、行业用户、社会公众等各类用户对地质信息的多元需求,以信息化带动地质调查现代化。

    “地质云3.0”鲲鹏展翅,大展宏图

    “地质云”建设三步走设想2020年上线运行“地质云3.0”。为此,地质云研发团队的科研人员做足了功课,全力以赴助推云平台、大数据、智能化“三位一体”建设应用迈上新台阶,为新时代地质调查工作转型升级提供核心动力支撑,建成分布式地质大数据中心,并在以下九个方面提供全方位综合地质服务:

    一是升级完善“在线化”调查系统、研发升级重要专业应用系统,初步实现在线化调查,构建立体式地质信息感知体系。二是显著扩大中大比例尺实体数据共享资源,精准开发地质信息系列产品,提供地质信息专题服务,提升“地质云”服务门户访问便捷性,加快构建地质信息共建共享云生态,基本实现在线化服务,显著扩大地质信息线上共享服务规模。三是升级地质调查业务管理系统,完善地质调查业务管理大数据辅助决策系统,强化在线化管理,支撑地质调查业务管理高效运行。四是推行地质调查在线化办公,支撑远程办公、便捷办公。五是通过攻关实现智能区调矿调、智能识别、智能管理、智能数据搜索引擎等智能地质调查技术突破,示范构建智能化工作模式。六是建立完善地球科学“一张图”大数据体系,更新维护国家核心地质数据库。七是采取优化地质调查网络、规范化运维“地质云”节点体系、加强网络安全建设等措施,建实地质调查基础设施与网络安全体系,保障安全稳定运行。八是完善地质调查信息化制度标准体系,支撑自然资源信息化建设。九是加强信息化人才队伍建设与国际合作,提升中国地质调查局在国内外的影响力。

    这就是中国地质调查局功能强大的地质云(Geocloud)!神奇的地质云(Geocloud)!

     

     

    用好这些珍贵的矿产资源

    新华社深圳5月21日电 题:深圳突进源头创新 发起“原点冲击”

    新华社记者周科、刘宏宇

    2016年4月12日拍摄的深圳前海。新华社记者 毛思倩 摄

    全球招才引智、设立诺奖实验室、发力中外合办高校、打造大科学装置群……系列举措让深圳再度成为瞩目的焦点。

    从学习到创新,从跟跑到并跑、领跑,深圳迅速崛起,成为全球重要的科技节点城市,但基础研究和源头创新不足,也成了制约“巨人”成长的“阿喀琉斯之踵”。

    站立在改革开放40年的历史节点,深圳不断发起“原点冲击”,全力打造科研新起点、技术新起点、产业新起点。

    这是2017年9月6日拍摄的深圳华强北赛格电子市场。新华社记者 毛思倩 摄

    全球“寻人之旅” 夯实创新根本

    我国第一台自主知识产权3.0T高场超导磁共振成像仪,诞生于深圳南山区一所面积2000余平方米的实验室。

    这是深圳引进的第一所诺奖实验室,以2003年诺贝尔奖医学奖获得者、磁共振成像技术之父——保罗·劳特伯命名成立。

    人才是第一资源,也是核心竞争力。

    作为创新之都的深圳,最缺的是“金字塔尖”的技术和产业。为此,深圳开启全球范围的“寻人之旅”。

    深圳,不断向全球伸出橄榄枝,加大海外引才力度。

    保罗·劳特伯之后,诺贝尔物理学奖得主中村修二、诺贝尔化学奖得主阿里耶·瓦谢尔来了,诺贝尔化学奖得主布莱恩·科比尔卡、诺贝尔生理学或医学奖得主巴里·马歇尔也来了。截至目前,已有近10家诺奖得主科研机构在深圳陆续挂牌成立。

    每一个顶尖学者背后,都是一个团队。深圳举措频频,包括诺奖得主在内的尖端人才纷纷汇聚深圳。

    截至2018年3月,深圳累计确认“孔雀计划”海外高层次人才3264人,外籍人才1.6万在深圳工作。

    深圳,也积极在科技资源高地搭建交流平台。

    在美国,在欧洲,在以色列,深圳都在布局海外创新孵化器。2017年5月,深圳市美国旧金山海外创新中心、英国伦敦海外创新中心、法国伊夫林海外创新中心等首批7家深圳市海外创新中心正式授牌。

    “未来,深圳还将建设更多海外创新中心,努力在全球范围集聚配置创新资源,在更高层次上参与全球科技合作竞争。”深圳科创委政策法规处处长潘伟旗说。

    格拉布斯实验室负责人张绪穆说:“深圳,不仅有强大供应链和工厂支持,还有越来越厚重的知识沉淀。”

    “人才效应”与市场协同作用,近年苹果、微软、高通、英特尔、三星等跨国公司纷纷在深圳设立研发机构、技术转移机构和科技服务机构。

    “国际尖端人才,可以补深圳源头创新之短板,夯实创新之根本。”深圳市政府发展研究中心主任吴思康说。

    2017年7月13日,工作人员在位于深圳的中国国家基因库操作基因测序仪测序。新华社记者 毛思倩 摄

    建设大科学装置工程 寻求0到1的突破

    在寸土寸金的深圳大学城,位于国家超级计算深圳中心南部的一块空地虚席以待,这里未来将建设E级超级计算机。

    顺应全球新一轮科技革命潮流和趋势,深圳上马了一批大科学装置工程。

    “‘十三五’期间,深圳计划投资40亿元,打造E级计算机。”国家超级计算深圳中心主任刘明伟说,E级计算机将使中心的计算能力提升1000倍,每秒可进行百亿亿次数学运算。

    刘明伟介绍,E级计算机将成为粤港澳大湾区重要的大型科学装置,为湾区基础科学研究、云计算、大数据和人工智能提供强有力支持,同时也为大湾区的科技创新提供有力支撑。

    “新一轮科技周期需要大工程的支撑。”中国科学院计算所研究员胡伟武说。

    随着国家超级计算深圳中心、大亚湾中微子实验室和国家基因库的建成使用,深圳的基础研究能力有了很大突破。

    深圳夯实基础的努力不止于此。2014年前后,深圳掀起了一轮合作办学的高潮。香港中文大学在深圳设立分校,从2014年起正式招生,短短两年多时间,香港中文大学(深圳)就发展成在校人数达2000人的现代化大学。

    一个学院保守估计投入要几亿、上十亿元。目前,深圳已有深圳北理莫斯科大学、清华-伯克利深圳学院、天津大学-佐治亚理工深圳学院等十余所高等院校。

    “大科学装置,科研院所,可能没有即期产出、效用,但那将是我们前进的基点。”华大基因董事长汪建说,前沿科学实现0到1的突破就是因为有大平台,只有大平台才能真正诞生大科学。

    在光启东莞生态园的研发基地,集广域互联网信息传输和光学监控于一体的“云端号”准备升空(2016年7月7日摄)。新华社记者 毛思倩 摄

    新型研发机构 激发前所未有的活力

    从艰难的起步创建,到立于全球超材料技术领域前沿,2010年成立的光启高等理工研究院仅仅用了几年时间。与此同时,其所属光启技术股份有限公司也迅速发展成为深圳科技领域的“独角兽”企业。

    光启高等理工研究院院长刘若鹏说,光启的成功离不开其作为“新型科研机构”所取得的突破,它将科学发现、技术发明和产业发展结合起来,有效地缝合了经济、科技“两张皮”,构建了全新的产业链条。

    新型科研机构像企非企,似事业非事业的科研单位,也就是有人形象比喻的“四不像”。

    深圳提出大力夯实基础研究、技术攻关、成果产业化全过程创新产业链。在企业与人才、大科学装置、高等院校之间,“四不像”是重要的连接器。

    目前,深圳已有类似科研机构数十家。

    作为其中的代表,中科院深圳先进技术研究院在源头创新方面成绩斐然:世界首创超声脑调控方法及验证系统;首次合成纳米人工红细胞,开发肿瘤检测诊疗一体的可视化精准医疗;成功实施亚洲首例多功能神经假肢手术;研制国际首台柔软材料爬行机器人……

    中科院深圳先进技术研究院党委书记杨建华认为,产生“聚变效应”的原因在于,作为新型科研机构,产学研资“四位一体”创新机制和集聚一流人才是关键所在。

    今年一季度,全社会研发投入达216.7亿元,增长15.1%,占GDP比重4.16%;新增各级各类创新载体51家,累计达1800多家;国家高新技术企业达11230家,占全国总数的8.2%。

    改革创新,活力迸发。“随着源头创新动能的不断增强,深圳站在了新一轮科技突破的起点上。”深圳市发改委主任聂新平说。

    深圳突进源头创新 发起“原点冲击”

    湖北仙桃野外调查

    经处理后的酸性矿山废水可用于浇灌蔬菜

    清明时节,花红柳绿,草长莺飞。与春色相伴而来的,是我国在生态文明建设过程中一个又一个令人欣喜的进展。近日,得知自然资源部中国地质调查局实验测试中心(国家地质实验测试中心)研发的一个用于去除酸性矿山废水中重金属的新装置荣获国家发明专利,记者走访了该中心主任齐亚彬,进一步了解这支老牌“生态地质”科研队伍的最新走向。

    生态修复将成为地质科学研究和服务的一个重要战场

    话题从这个能净化酸性矿山废水的新型技术装备谈起。

    “酸性矿山废水酸度大,富硫酸根离子和大量的重金属离子,不仅会造成矿区周围水体严重污染,还会破坏土壤的团粒结构,使土地板结,农作物枯黄,并通过食物链危害人体健康。若采用一般工业废水的治理方法,往往投资大,成本高,实用性差,难以回收有价金属,致使水资源不能充分利用。”齐亚彬介绍说。为此,实验测试中心的科研团队在长期研究和实验的基础上,根据酸性矿山废水的污染特点,配合矿物材料、微生物去除重金属的新技术,发明设计了一种对酸性矿山废水重金属污染治理的工艺流程装置,使处理后的酸性矿山废水重金属离子能够达到国家污水综合排放标准。该处理工艺流程具有廉价、高效、管理简单、无二次污染的特点,为金属矿山及相关生产企业提供了一种既经济又实用的酸性矿山废水治理方法。“如今,我们已在江西德兴铜矿初步建立了酸性矿山废水示范工程,小试重金属去除率超90%,而且处理一吨水才0.5元钱。下一步,力争使处理后的酸性矿山废水中锰降低80%以上,进一步降低处理成本,并形成一整套酸性矿山废水修复技术方案。”

    而这,只是国家地质实验测试中心在生态地质工作领域众多科研成果中的一例。

    齐亚彬告诉记者,中心在生态环境修复方面有着20余年的经验。随着各地对生态环境的重视,对土壤、水体生态修复领域的需求不断增加,中心这方面的业务也与日俱增,获得了一系列科研成果。比如:中心近年来在江西省赣州市龙南县稀土矿区实施土壤生态修复示范工程,就确定了稀土矿区污染土壤改良配方,标定了稀土矿区环境条件和营养组分,并成功实现稀土矿区修复后经济作物的种植,其镉、汞、砷、铅含量远低于有关标准限值。

    “生态修复将成为地质科学研究和服务社会的一个重要战场。今年的全国两会,更让我们坚定了做好生态地质这篇大文章的决心。”齐亚彬表示,“今年政府工作报告专门谈到了加强污染防治和生态建设,大力推动绿色发展。特别提出了要加强生态系统保护修复,推进山水林田湖草生态保护修复工程试点。这也是测试中心发挥技术优势、服务生态文明、实现转型升级的重大机遇!我们将加快生态修复技术研发与示范应用,不断提升生态修复的显示度。”

    为自然资源调查评价、规划利用与保护提供实验测试技术方法支撑

    自然资源部的成立,体现了我国将“山水林田湖草”视为生命共同体,统一规划、管理、保护的自然观和生态观。如今,以地球系统科学为核心、以“山水林田湖草”视为生命共同体为对象的调查、确权、监察、管理、修复、科学研究等工作全面推进。在这样的背景下,国家地质实验测试中心科学研判形势,精准对接需求,形成了自身转型发展的思路与对策。

    “新型战略性资源的分析检测、山水林田湖草湿的分析检测乃至评价监测,都是我们转型升级、大力发展的方向。”2018年,中心明确了今后的六大任务,其中最重要的一项就是:为自然资源调查评价、规划利用与保护提供实验测试技术及方法支撑。”

    齐亚彬告诉记者,中心在生态地球化学领域所具有的优势,尤其是近年来水土有机污染物分析技术方法体系的进一步完善,使中心支撑生态资源环境地质调查的能力持续增强。2018年,中心建立了地下水中40种抗生素自动化识别、确证与定量分析方法,有效提高了地下水资源质量调查与监控的效率;建立了地下水中低环多环芳烃及其衍生物与短链氯化石蜡、多环芳烃衍生物及其母体、硝基苯类化合物等高效环保的系列分析方法,解决了新型持久性有机污染物检测难题;完成了雄安新区1100平方千米土壤有机组分现状调查,初步形成土壤有机地球化学调查技术方法,为雄安新区建设的土地规划、安全利用提供了技术支撑。今年,中心仍将强力聚焦提升支撑服务自然资源工作和新时代“大地质”工作的能力,加快推进技术方法创新和提升技术研发能力。

    下一步,中心还将开展北京及周边地区2000平方公里的生态地质调查,探索地质环境因素与人体健康的响应关系,建立国土空间适宜性评价指标体系,初步构建国土空间生态质量监测与预警平台;开展云南安宁天宁磷矿、太庙地磷矿等3个矿区生态地球化学调查,初步建立磷矿石中磷、钾、钙等20余种元素的快速分析方法及示范应用,支撑安宁磷矿集中区矿产资源利用;开展雄安新区土壤有机污染现状调查,全面表征雄安新区土壤生态环境质量,为雄安新区土地安全利用提供科学依据;开展赣南南部地区矿山环境综合地质调查和评价,形成矿山生态保护和修复相关建议报告等。

    同时,组织研制土壤形态、有机污染物及无机成分等19种标准物质、制定2个系列2项技术标准,进一步完善地质实验测试标准体系。

    牵住创新“牛鼻子”,做大科技成果转化“新蛋糕”

    齐亚彬说,创新是大背景、大环境、大气候。习近平总书记在讲话中曾指出,科技创新是核心,抓住了科技创新就抓住了牵动我国发展全局的“牛鼻子”。当前,国家创新驱动战略正在如火如荼地推进实施,中心也要加快创新,多出创新性成果,发挥引领作用。

    技术方法的创新,是中心拓展服务领域、提升整体作战能力的核心。

    以新型能源资源分析技术方法为例,中心正在开展页岩气含气量和组分联测等新技术新设备的野外现场应用,实现页岩气野外测试技术能力新突破;开展天然气水合物现场测试技术方法研究与能力建设,优化完善天然气水合物产出气、产出水、周边环境介质组分的现场快速测试方法;开展新型锂—钾分析仪在盐湖卤水及环境水系的现场测试能力建设,从而实现在4000米以上高海拔地区可分析硫酸盐型、碳酸盐型、卤化物型三种不同盐湖卤水中锂、钾等元素的快速分析,在我国西部地区搭建野外现场分析实验平台,形成野外快速分析能力。

    工作方法和成果表达的创新,是地质实验测试工作转型升级的途径。

    当前,中心正全力推进信息化建设,推进测试工作更好地融入“地质云”,开展科技成果的数字化管理和共享服务体系建设,推进集野外数据采集、实验室数据共享为一体的数据采集、处理、挖掘和分发服务大数据中心和地质业务综合管理平台建设;开展大型仪器共享平台及仪器状态监控和应用试点推广工作,提高仪器设备使用效率;整合实验室信息管理系统与质量监控系统,提升服务质量。“如此,不仅能大幅提升各类数据成果的价值,更能从根本上改变地质实验测试工作的方式方法。”

    队伍能力建设的创新,是强健人才队伍、激活科技人员智慧的关键。

    齐亚彬认为,其一,大联合、大协作、大团队是干大事、出大成果的前提条件。单兵作战已经不能满足新时代对科技创新的需要,申请大项目、出大成果需要人才、技术、装备等方面的强强联合,有时不仅仅是跨单位,而且很可能是跨系统、甚至跨行业的。其二,要不拘一格用人才,为年轻人压担子,通过凝练提升科研成果,加速培育人才成长。“中心现在人才断档明显、专业过于集中、领军人才缺乏,我们正自主培养科研骨干和引进高端人才双管齐下。”其三,做大科技成果转化新蛋糕、提升科技成果转化收益,不仅让科技成果加速形成生产力、发挥更大作用,而且以此激发调动中心广大科技人员创新创造活力。“当前,国家政策允许科技成果转化收益自主分配,这也是鼓励科技单位做大成果转化的新蛋糕,鼓励科技人员光明正大地走科技致富之路。2019年,中心将在加大科技成果转化力度上多下功夫。”

    开辟健康地质新领域,为人类社会绿色发展作贡献

    采访中,齐亚彬谈到了一个记者颇为陌生的名词——健康地质。

    所谓健康地质,就是将生态地球化学与预防医学、临床医学等学科相结合,研究地质背景、地质过程、生态环境对人类健康的影响,寻找各类疾病源头的地质环境因素及其分布特征。其实,人们很早就发现大骨节病、克山病等许多地方病与地质环境密切相关,而关键原因就在于各种矿物元素在人体内的过度累积或缺失。

    “自然界中各种因素失调对人体影响都可能诱发地方病,而比较突出的就是地球化学元素的地质、地理分布。”齐亚彬告诉记者,人是自然环境的有机组成部分,其生长、发育与繁衍都受到地质背景、地质结构等自然环境条件的制约。在某一环境中,一旦物质与能量不足或过量,或有某种环境因素对人体生命过程的影响超过了人类的适应和调节能力,就会产生这一环境中特有的高发病率的地方病。

    如今,测试中心已经与北京肿瘤医院、中国地方病防治研究中心、北京大学医学院等单位建立了合作关系,对接了健康地质方面的需求,同时,对健康地质学科的建立和发展进行了规划,组建了健康地质科学研究团队,并初步拟定了工作方案。

    同样,一些名特优农产品的生长也有着不可忽视的地质因素。如:黄岩的蜜桔、承德的板栗,之所以好吃,就是因为当地地层中赋存着某些特殊的组分。而有些地方的土壤中富含硒锌等有益的矿物质元素,则可以开发出有利于人们身体健康的天然富硒、富锌农产品,并以此带动地方特色农业的发展。

    “所以,健康地质不仅要关注、研究有害元素,也要突出有益元素对人体健康的作用。重要的是关注不同元素之间的相互作用,抓住元素富集、迁移和地质背景、环境因素等过程相关的关键点,体现地球系统科学研究的特色。”

    据齐亚彬介绍,中心已在湖北仙桃发现富硒土地250平方千米,为市政府规划了8个富硒产业园,农民收入增加4500多万元;在江西瑞金发现富硒土壤119平方千米、富锌土壤90平方千米,圈定绿色富硒农业产业基地15个,绿色富锌农业产业基地8个,为当地特色农产品产业提高质量提供了科学支撑。“正因为这些成果实实在在地为老百姓带来了好处,获得了当地政府和百姓的高度赞誉。”

    “新时代,新需求,新职责,新挑战。未来,地质工作对国家经济、社会发展的支撑服务还继续拓展和深化,国家地质实验测试中心也将为美丽中国、健康中国的建设释放更多的地质智慧和科技能量。”对此,齐亚彬充满信心和希望。

    修复绿色地球 拥抱健康明天