分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到5条相关结果,系统用时0.009秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    2018年12月3日,为更好地面向国家重大需求,推进科技创新引领新时代地质调查工作,自然资源部中国地质调查局武汉地质调查中心泛珠三角工程首席黄长生一行7人,应邀前往中国科学院武汉岩土力学研究所开展学术交流与业务合作调研。 

    交流座谈会上,中科院岩土所薛强副所长围绕“资源、能源、环境领域国际一流的研究机构”战略定位,介绍了中科院岩土所面向国家重大工程需求、面向国民经济主战场,在环境岩土、特殊土力学、城市地下空间开发、深部资源探测等领域提供的全套解决方案。黄长生介绍了武汉地调中心业务发展、中南地质科技创新中心建设、长江流域水文地质与水资源调查、粤港澳大湾区及海南生态文明试验区综合地质调查、武汉多要素城市地质调查等方面的工作情况和取得的重要成果。

    中科院岩土所刘磊副研究员系统讲解了固体废弃物安全处置与生态高值化技术,重点就温纳-偶极探测技术、好氧通风降解技术、多参数一体化远程在线监测系统等自主研发技术,以及在生活垃圾原位隔离、市政污泥固化稳定、矿山生态修复、污染土及河湖底泥处置多领域的应用情况。张先伟副研究员汇报了岩土所在特殊土方向科学研究、土体性质分析、指导工程应用的研究成果,提出了双方在土力学结合地质调查支撑服务地方发展的合作设想。李琦研究员介绍了岩土所自主研制的重大试验设备,包括岩石动三轴试验系统、微米CT、核磁共振成像、真三轴、岩石渗透-流通反应-波速成像室内测试系统。

    黄长生一行对中科院岩土所依托国家重点实验室开展基础研究,依托长江经济带固废产业技术研究院开展技术开发与集成,通过中宜生态土研究院实施技术输出及成果转化的全链条形式表示赞赏。并就压性构造带找水、岩石破裂应力空间拓展过程与岩土所科技人员展开学术探讨。黄长生一行还参观了岩土力学与工程国家重点实验室、能源与废弃物地下储存研究中心实验室、污染泥土科学与工程湖北省重点实验室。

    双方认为,要充分发挥各自优势,围绕粤港澳大湾区、长江经济带等国家重大战略,强强联合、共谋发展,多角度推动战略合作,并探讨了优先合作领域。

    武汉地调中心与中科院武汉岩土力学所开展业务交流

    新华社深圳5月21日电 题:深圳突进源头创新 发起“原点冲击”

    新华社记者周科、刘宏宇

    2016年4月12日拍摄的深圳前海。新华社记者 毛思倩 摄

    全球招才引智、设立诺奖实验室、发力中外合办高校、打造大科学装置群……系列举措让深圳再度成为瞩目的焦点。

    从学习到创新,从跟跑到并跑、领跑,深圳迅速崛起,成为全球重要的科技节点城市,但基础研究和源头创新不足,也成了制约“巨人”成长的“阿喀琉斯之踵”。

    站立在改革开放40年的历史节点,深圳不断发起“原点冲击”,全力打造科研新起点、技术新起点、产业新起点。

    这是2017年9月6日拍摄的深圳华强北赛格电子市场。新华社记者 毛思倩 摄

    全球“寻人之旅” 夯实创新根本

    我国第一台自主知识产权3.0T高场超导磁共振成像仪,诞生于深圳南山区一所面积2000余平方米的实验室。

    这是深圳引进的第一所诺奖实验室,以2003年诺贝尔奖医学奖获得者、磁共振成像技术之父——保罗·劳特伯命名成立。

    人才是第一资源,也是核心竞争力。

    作为创新之都的深圳,最缺的是“金字塔尖”的技术和产业。为此,深圳开启全球范围的“寻人之旅”。

    深圳,不断向全球伸出橄榄枝,加大海外引才力度。

    保罗·劳特伯之后,诺贝尔物理学奖得主中村修二、诺贝尔化学奖得主阿里耶·瓦谢尔来了,诺贝尔化学奖得主布莱恩·科比尔卡、诺贝尔生理学或医学奖得主巴里·马歇尔也来了。截至目前,已有近10家诺奖得主科研机构在深圳陆续挂牌成立。

    每一个顶尖学者背后,都是一个团队。深圳举措频频,包括诺奖得主在内的尖端人才纷纷汇聚深圳。

    截至2018年3月,深圳累计确认“孔雀计划”海外高层次人才3264人,外籍人才1.6万在深圳工作。

    深圳,也积极在科技资源高地搭建交流平台。

    在美国,在欧洲,在以色列,深圳都在布局海外创新孵化器。2017年5月,深圳市美国旧金山海外创新中心、英国伦敦海外创新中心、法国伊夫林海外创新中心等首批7家深圳市海外创新中心正式授牌。

    “未来,深圳还将建设更多海外创新中心,努力在全球范围集聚配置创新资源,在更高层次上参与全球科技合作竞争。”深圳科创委政策法规处处长潘伟旗说。

    格拉布斯实验室负责人张绪穆说:“深圳,不仅有强大供应链和工厂支持,还有越来越厚重的知识沉淀。”

    “人才效应”与市场协同作用,近年苹果、微软、高通、英特尔、三星等跨国公司纷纷在深圳设立研发机构、技术转移机构和科技服务机构。

    “国际尖端人才,可以补深圳源头创新之短板,夯实创新之根本。”深圳市政府发展研究中心主任吴思康说。

    2017年7月13日,工作人员在位于深圳的中国国家基因库操作基因测序仪测序。新华社记者 毛思倩 摄

    建设大科学装置工程 寻求0到1的突破

    在寸土寸金的深圳大学城,位于国家超级计算深圳中心南部的一块空地虚席以待,这里未来将建设E级超级计算机。

    顺应全球新一轮科技革命潮流和趋势,深圳上马了一批大科学装置工程。

    “‘十三五’期间,深圳计划投资40亿元,打造E级计算机。”国家超级计算深圳中心主任刘明伟说,E级计算机将使中心的计算能力提升1000倍,每秒可进行百亿亿次数学运算。

    刘明伟介绍,E级计算机将成为粤港澳大湾区重要的大型科学装置,为湾区基础科学研究、云计算、大数据和人工智能提供强有力支持,同时也为大湾区的科技创新提供有力支撑。

    “新一轮科技周期需要大工程的支撑。”中国科学院计算所研究员胡伟武说。

    随着国家超级计算深圳中心、大亚湾中微子实验室和国家基因库的建成使用,深圳的基础研究能力有了很大突破。

    深圳夯实基础的努力不止于此。2014年前后,深圳掀起了一轮合作办学的高潮。香港中文大学在深圳设立分校,从2014年起正式招生,短短两年多时间,香港中文大学(深圳)就发展成在校人数达2000人的现代化大学。

    一个学院保守估计投入要几亿、上十亿元。目前,深圳已有深圳北理莫斯科大学、清华-伯克利深圳学院、天津大学-佐治亚理工深圳学院等十余所高等院校。

    “大科学装置,科研院所,可能没有即期产出、效用,但那将是我们前进的基点。”华大基因董事长汪建说,前沿科学实现0到1的突破就是因为有大平台,只有大平台才能真正诞生大科学。

    在光启东莞生态园的研发基地,集广域互联网信息传输和光学监控于一体的“云端号”准备升空(2016年7月7日摄)。新华社记者 毛思倩 摄

    新型研发机构 激发前所未有的活力

    从艰难的起步创建,到立于全球超材料技术领域前沿,2010年成立的光启高等理工研究院仅仅用了几年时间。与此同时,其所属光启技术股份有限公司也迅速发展成为深圳科技领域的“独角兽”企业。

    光启高等理工研究院院长刘若鹏说,光启的成功离不开其作为“新型科研机构”所取得的突破,它将科学发现、技术发明和产业发展结合起来,有效地缝合了经济、科技“两张皮”,构建了全新的产业链条。

    新型科研机构像企非企,似事业非事业的科研单位,也就是有人形象比喻的“四不像”。

    深圳提出大力夯实基础研究、技术攻关、成果产业化全过程创新产业链。在企业与人才、大科学装置、高等院校之间,“四不像”是重要的连接器。

    目前,深圳已有类似科研机构数十家。

    作为其中的代表,中科院深圳先进技术研究院在源头创新方面成绩斐然:世界首创超声脑调控方法及验证系统;首次合成纳米人工红细胞,开发肿瘤检测诊疗一体的可视化精准医疗;成功实施亚洲首例多功能神经假肢手术;研制国际首台柔软材料爬行机器人……

    中科院深圳先进技术研究院党委书记杨建华认为,产生“聚变效应”的原因在于,作为新型科研机构,产学研资“四位一体”创新机制和集聚一流人才是关键所在。

    今年一季度,全社会研发投入达216.7亿元,增长15.1%,占GDP比重4.16%;新增各级各类创新载体51家,累计达1800多家;国家高新技术企业达11230家,占全国总数的8.2%。

    改革创新,活力迸发。“随着源头创新动能的不断增强,深圳站在了新一轮科技突破的起点上。”深圳市发改委主任聂新平说。

    深圳突进源头创新 发起“原点冲击”

    2020年9月19日,以“决胜全面小康、践行科技为民”为主题的全国科普日活动在全国范围内同步启动。9月26日,自然资源部中国地质调查局青岛海洋地质研究所与青岛市科学技术协会、青岛市教育局、青岛水族馆联合举办了一场“走进可燃冰实验室”大型实景科普直播活动,活动通过青岛海洋科普联盟科普直播室、中国矿业报社Bilibili平台“矿世奇谈”直播间面向全网直播。

     

    活动当天,以自然资源部天然气水合物重点实验室主任、海洋试点国家实验室海洋矿产资源评价与探测技术功能实验室主任、自然资源部首席科学传播专家吴能友研究员为首的科研团队14名科研人员,带领观众走入9个天然气水合物子实验室,介绍前沿科学知识,带大家领略了科技的魅力。

     

    在两位主持人的引领下,观众们从“海洋地学之光”雕塑开始开启了认识可燃冰之旅。吴能友研究员首先介绍了自然资源部天然气水合物重点实验室的定位、研究方向,以及“多学科结合、多尺度融合、直接面向应用”的特色,目前实验室已经发展成为国际上重要的天然气水合物勘探开发研究核心基地之一。吴能友研究员向观众们预告了科技人员将通过声光电等高科技手段揭秘可燃冰、展示来自我国海域真实的可燃冰样品、进行可燃冰点燃实验等参观内容,让观众对接下来的旅程充满期待。

    观众们跟随镜头最先进入的是水合物XRD(X射线粉晶衍射)和CT实验室,孟庆国老师首先通过形象的图片介绍了可燃冰微观晶体5种主要的笼形结构,这5种笼子按照一定的组合方式就形成了可燃冰I型、II型和H型三种典型的晶体结构类型。孟老师用科学小装置展示了光的衍射现象,每种晶体在X射线的照射下,都有形成专属于自己的衍射谱图,就像每个人的指纹一样。科学家就是用XRD仪器作为眼睛,去“观察”可燃冰的微观世界。接下来,李承峰老师用一张人手部的X射线透射光片介绍了医用CT探测人体内部构造的功能,实验室的X-CT也是一样的原理,它利用不同密度物质对X射线吸收能力的差异来探测可燃冰物质内部信息。李老师向观众展示了可燃冰在有孔虫腔体中、沉积物空隙中以及裂缝中分布的CT影像。

     

     

    纯有孔虫壳体介质中甲烷水合物生成前(a)和生成后(b)的微观分布图

     

    甲烷水合物在南海沉积物中生长过程微观分布的CT图像

    在NMR核磁共振实验室,孟庆国老师同样从医用核磁共振检测入手,介绍实验室利用核磁共振成像原理观察可燃冰分解过程。在声学和电学实验室,陈杰老师敲击岩心激发声波展示接收的波信号,赵金环博士用不同浓度的盐水点亮灯泡,这些简单而有趣的小实验帮助观众理解科学家应用超声波和电学成像法探测水合物的技术手段。

    做完声学与电学小实验,最激动人心的时刻来了!李彦龙和孟庆国老师在低温实验室隆重地向大家展示了科学家们千辛万苦从海底采集的可燃冰样品,让大家见到了这位沉睡在海底的“神秘朋友”。除了展示自然条件形成的可燃冰样品,他们还介绍了实验室人工制备和保存可燃冰的方法,并在现场点燃了实验室特地为本次直播活动合成的可燃冰,熊熊火焰在“冰”上“跳舞”的奇观,让人叹为观止!李彦龙老师还用量筒中的沉积物做了水的渗流实验,生动直观地让观众认识到砂质沉积物和泥质沉积物不同的渗透能力,从而理解了在两种储层中开采可燃冰的难易程度。

    点火实验结束之后,主持人带大家来到激光拉曼实验室,郝锡荦博士从天空为什么是蓝色的讲起,介绍空气中的氧气和氮气分子的瑞利散射现象,以及光的另一种特殊的散射现象-拉曼效应,正如每个人的指纹是不同的,不同的物质都有属于自己特征的拉曼光谱。正是利用这个原理,科学家用激光照射水合物样品,就可以鉴定水合物的类型。郝博士展示了南海和祁连山水合物样品的拉曼光谱,观众们也可以轻松地鉴别出二者的不同。

     

     

    在低温扫描电子显微镜实验室,孙建业博士向大家展示了低温扫描电镜在水合物实验测试中的应用。同学们熟悉的光学显微镜一般最高能将样品表面放大到几百倍,而扫描电镜则可以放大到几千至上万倍,让科学家细致观察物质的微观表面形貌。我们虽然用肉眼看不到南海岩心样品中的水合物,而在低温扫描电镜下,可燃冰就清晰地呈现在我们眼前了。

    低温扫描电镜下南海水合物微观形貌特征(分散型) 

    在黑暗的深海底部,没有阳光,却繁衍着大量的微生物,孕育着另一片生命的绿洲。在微生物实验室,李晶博士讲解了她培养和研究与甲烷关系密切的微生物-产甲烷菌和嗜甲烷菌的工作,原来研究这些细菌不仅可以深化我们对水合物成藏机理的认识,对它们进行DNA解码还可以为海底生态系统研究提供信息。

    参观到这里,可燃冰的微观探测体验就告一段落了。主持人带领观众来到了冷泉研究室,徐翠玲博士介绍了海底冷泉的概念,冷泉探测标志,如声学剖面上的气泡羽状流、特征生物群落等,向观众展示了海底机器人抓取到的冷泉碳酸盐岩实物样品,冷泉周围生长的巨蛤、贻贝、管状蠕虫、盲虾、毛瓷蟹等生物,主持人代表观众和徐博士探讨了巨蛤能不能吃、为什么海底白色的生物居多等有趣的话题。

    毛瓷蟹和贻贝

    巨蛤

    最后,观众随着镜头来到了地震数据处理中心,徐华宁主任用一段“海洋地质九号”实施地震测量的动画给观众介绍了如何利用地球物理方法快速寻找海底可燃冰藏,他展示了经过处理的赋存可燃冰地层的地震剖面,漂亮的剖面展示了科技人员高超的处理水平,赢得了网上同行的称赞。徐主任用通俗易懂的语言讲解了水合物储层的反射特征,他热情地鼓励观众认真听讲,成为一名水合物地震勘探小专家。

    含水合物储层的BSR剖面

    帅气的陈强博士是从事水合物试开采技术研究的专家,他用动画的形式向大家介绍了水合物开采方面存在的技术难题和破解方法,他自信的话语让我们对未来可燃冰的开发应用充满了信心。

    水平多分支井试采工艺示意图

    本次的“云上参观可燃冰实验室”让观众们行程满满,收获多多,大家走进各种各样的实验室,见识了各种各样先进的仪器设备,跟随科学家为可燃冰做了一个全面透彻的体检,了解了可燃冰是什么物质,可燃冰的结构、性质和形成条件,到哪里寻找可燃冰,用什么样的手段寻找以及怎样安全高效地开采可燃冰等科学知识。活动展示了我国海洋地质调查研究的创新性成果,展现了科学家风采,引发了网友对海洋科学、可燃冰的兴趣,让广大科技爱好者更加了解可燃冰这种新能源,唤起了大家关心海洋,保护海洋的责任感和意识,激发了大家参与探索海洋、建设海洋强国的决心。

    本次活动中青岛海洋地质研究所首次在移动端开展移动场景大型科普直播,活动得到了青岛水族馆的大力支持,共吸引5万多观众在线收看,体现了青岛海洋科普联盟的组织力量,为联盟成员合作开拓海洋综合研学实践领域提供了优秀案例。

    青岛海洋所成功举办“走进可燃冰实验室”大型实景科...

    说起氦气,人们对它的认识大多来源于中学的化学课。殊不知,氦,作为熔点和沸点最低的已知元素,在军工、航天、核工业、深海潜水及民用高科技等领域具有广泛用途,是关系国家安全和高新技术产业发展的一种重要战略性稀有气体资源。

    据统计,全球的氦气资源长期供不应求,年需求量约为2亿立方米,但年产量仅有1.7亿立方米。我国目前氦气年需求量约为2200万立方米,但勘查开发程度极低,资源情况不明,仅四川自贡威远气田进行了小规模提氦利用。我国氦气供应长期依赖进口,资源安全形势十分严峻。

    可喜的是,自然资源部中国地质调查局在渭河盆地组织开展的氦气资源调查工作发现,渭河盆地不仅有水溶氦,还存在便于利用的游离态富氦天然气藏,有望构建我国氦气资源基地。

    我国对氦气资源的研究程度低,资源家底不清

    氦气开始进入人们的视线,始于1868年。那一年,法国天文学家彼埃尔·让桑(Pierre Janssen)和英国天文学家约瑟夫·洛基尔(Joseph Lockyer)几乎同时分别独立发现太阳光谱里有一条陌生的明亮黄线,其后,洛基尔将其命名为氦。

    氦是一种无色、无味、不燃烧也不助燃的稀有惰性气体。由于其特殊的物理、化学性质,尤其是其化学惰性和沸点极低的特征,使得氦气成为低温学领域的无价之宝。比如:氦的低溶解度、低沸点以及化学惰性,使其清洗和密封火箭和宇宙飞船的液体氢燃料系统十分有效。在电子工业中,氦气在半导体、液晶面板和光纤线制造中起着重要作用,可实现零部件的快速冷却,也可在电焊、硅晶片生产中用作保护气。在现代分析测试检测仪器中,氦气在气—液和气—固色谱分析中是最常用的载体气。在超低温冷却方面,氦广泛应用于核反应堆的冷却介质和清洗剂,在超导冷却方面,应用于核磁共振设备、超导量子干涉器、粒子加速器、磁悬浮列车、电能的存储等,其中最大的消费群体是医院的核磁共振设备。

    地球上的氦气含量极为稀少,最主要的来源不是空气而是天然气。富氦烃类天然气中最高可含7.5%的氦,是空气中的1.5万倍。可是,这种含高氦的天然气矿藏并不多,这是因为天然气中的氦气是铀之类的放射元素衰变的产物。一般而言,只有在天然气矿附近有铀富集时,氦气才能在天然气中汇集。

    根据美国地质调查局的数据,目前全球的氦气资源量估计达519×108立方米,储量仅74.25×108立方米。美国是世界上氦资源最丰富的国家,虽然已大规模开采60多年,但氦气资源量仍占世界总资源量的40%以上。根据美国地质调查局2016年的调查报告,美国、卡塔尔、阿尔及利亚和俄罗斯共计拥有世界88%的氦资源,中国的资源量仅为11×108立方米。中国西部大型叠合盆地及东部郯庐断裂带已发现广泛的含氦天然气显示,但研究程度低,资源家底不清。到目前为止,只有四川省自贡的威远气田曾提到氦利用,其中的氦含量为0.2%左右,而且现在已经基本枯竭。

    提出氦气弱源成藏理念,论证了渭河盆地富氦天然气成藏条件

    近年来,中国地质调查局组织开展了《渭河盆地氦气资源远景调查》项目,由中国地质调查局西安地调中心牵头,渭河能源公司(陕西金奥能源公司)、陕西省地质调查院、陕西地矿总公司第二综合物探大队、西北大学、长安大学、西安石油大学、中石油东方地球物理公司等单位参加完成。项目组在广泛调研国内外氦气资源研究进展的基础上,系统研究了渭河盆地基础地质、氦气成藏机理、成藏条件及资源前景,取得了一系列新进展、新成果。

    渭河盆地位于秦岭造山带与鄂尔多斯盆地之间。在渭河地区广泛分布燕山期富铀花岗岩,其分布面积达近万平方千米。在现今渭河盆地基底的深部10千米~20千米,沿深大断裂带分布有10个隐伏(花岗岩)岩体。这些富铀花岗岩是盆地壳源氦气的主要源岩,通过铀、钍衰变源源不断地向盆地输送壳源氦气。

    地壳中铀、钍元素的丰度低、半衰期长,因此壳源氦生气强度极低,为典型的弱源气。按照油气地质理论,壳源氦不存在集中的生气高峰,生气速率极低,难以发生突破“压力封存箱”的大规模集中排气。但现实是,确有富氦天然气藏存在,并被工业利用。而常规的油气理论难以解释氦气成藏机制。项目组通过在渭河盆地开展氦气调查工作,认为“有效氦源岩、高效运移通道(断裂、不整合)、载体气藏(适度,“载体气”又是“稀释气”)是氦气成藏的基本条件”;提出了“成岩温压与变质温压下氦行为差异与氦气成藏及古老克拉通基底蕴藏的巨量氦因克拉通破坏的构造作用而释放、运移到浅层聚集成藏”的理念”;初步建立了氦气成藏模式。

    项目组认为,壳源氦气相对于常规油气为典型的弱源气,但由于地质体的巨大和地质时间的漫长,壳源氦气生成总量是巨大的。氦气常以甲烷或二氧化碳气藏中的伴生气产出,因其稀有性,工业品位0.1%即可成为矿藏,且成藏与地下水关系密切。综合分析认为,氦气在深部氦源岩处能溶解于水而运出,运移至浅部遇到天然气藏时脱溶成藏,并在气藏附近水体形成溶解氦低浓度漏斗,使水溶氦不断向气藏附近迁移而进入气藏,大大提高了氦气的运聚系数。而气藏在盖层处又因低分压难溶于水、不易扩散,而有利于保存。这一分析,从理论上认识了氦气弱源成藏机理,明确了氦气在氦源岩处“运得出”、遇到气藏“脱得出”,在气藏中“保得住”的高运聚系数富集机制,解答了氦气为何能克服溶解与消耗、提高运聚系数形成富氦天然气藏的疑惑,为氦气资源勘查提供了理论依据。

    渭河盆地是否具有天然气前景一直是众多学者关注的问题之一,核心是是否存在烃源岩。前人认为,盆地深部不存在晚古生代煤系地层。但项目组根据区域地质背景、地热井气样分析及地球物质测量成果,特别是地震测量成果,论证了渭河盆地前新生代基底局部残留晚古生代煤系地层,为渭河盆地天然气勘探带来了希望。由于氦气不能单独成藏,只有在甲烷等载体气藏中聚集、积累,才能形成富氦天然气藏,从而为氦载体气成藏提供物质基础。

    渭河盆地不仅存在水溶气资源,也存在富氦天然气藏

    自然界气体赋存状态有游离态、溶解态、吸附态及水合态,不同赋存状态氦气资源的工业利用前景和经济性具有天壤之别。项目组对已有资料进行分析研究发现,渭河盆地不仅存在水溶气资源,也存在游离态氦及伴生气资源,即富氦天然气藏。

    资料显示,渭河盆地地下水资源丰富,有渭北岩溶溶隙裂隙水、秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水。其中,渭北岩溶溶隙裂隙水中未见氦气显示,秦岭山前构造裂隙水和盆地中部新生界孔隙裂隙水均有氦气显示。除渭北岩溶溶隙裂隙水外,盆地4000米以浅地热水总静储量达14781.2×108立方米。剔除固市断凹(渭南生物气区)张家坡组的储量数据后的总静储量达14200.57×108立方米。根据气水比1∶10和氦气含量1.5%计算,盆地内4000米以浅的水溶氦气资源量达21.3×108立方米。若按供热季单井日产水1000立方米,年生产100天计,250口地热井每年就可提供2.5×104立方米伴生氦气资源综合利用,就量而言已经达到半个威远气田。但水溶气的性质决定了其处于量大却难用的处境。

    众所周知,目前还没有发现独立的氦气藏,而工业利用的氦,是与载体气(烃类或二氧化碳、氮气)一起以游离态赋存于地层圈闭中,形成富氦天然气。那么,渭河盆地是否存在富氦天然气藏或游离态氦,成为目前氦气资源前景评价的关键。可喜的是,现有调查资料初步表明,渭河盆地氦源岩和高效运移通道(断裂)发育,具有载体气成藏形成条件,特别是伴生于甲烷气中的富氦天然气,是目前勘探工作的重点。

    通过近年的研究,项目组探索提出了“地质指方向,地震、重力、电法探结构、识断裂(高效运移通道)、找圈闭,磁法识别磁性岩体(氦源岩),化探异常圈定目标区,气测录井标定富集层段”的氦气调查技术方法。应用这一调查方法,通过物探、化探工作,项目组基本查明了富氦气区地层层序和构造格架,重点刻画了隐伏花岗岩体(氦源岩)、断裂发育特征。渭河盆地(鄂尔多斯周缘盆地)与目前广受关注的坦桑尼亚富氦区具有相似的地质背景,均为古老克拉通上的新生代裂谷盆地。渭河盆地不仅有长期稳定的古老基底可作为氦源,同时具有大量富铀花岗岩作为氦源岩,较坦桑尼亚富氦区具有更好的氦源条件。同时,花岗岩即是重要的氦源岩,也可以成为储集岩。

    根据调查成果,项目组初步圈定了华州—潼关、户县—蓝田和武功—咸阳等3处远景区。

    我国具有氦气资源前景,亟需加大工作力度

    研究认为,我国(特别是西北地区含油气盆地)氦气资源成藏基本条件良好,分布广泛,层位众多,具有资源潜力,但研究程度低(作为资源研究更少),家底不清。渭河、塔里木、柴达木、银额等盆地局部地区具有资源前景。在柴达木盆地北缘检测出壳源氦气含量为0.21%~0.72%;发现马北、东坪(花岗岩基岩气藏)等气田氦气资源前景良好。认识到塔里木盆地巴麦隆起及周缘具有良好氦气前景。

    尽管渭河盆地地热井发现了氦气资源赋存的良好信息,但项目组指出,由于缺乏专门的氦气评价钻探工作,目前还无法评价其工业价值,无法对深部可能含气层进行验证和产能测试,急需在远景区开展网度地震勘探,寻找有利圈闭,为钻探提供目标;通过钻探工作发现或验证目标层段的含气性;开展地热井氦资源专项调查,探索现有地热井条件下伴生气资源的有效利用;针对氦气资源的勘查技术手段基本空白,探索有针对性的地球物理探测方法、有效的测井解释模型、钻探和气藏测试工艺等。此外,由于氦气多以伴生资源形式产出,氦气的提取、提浓、提纯工艺需要继续探索完善,急需形成多种资源综合开发利用技术,以提高多种低丰度伴生矿产的经济价值。

    同时,加强国家公益性队伍对氦气资源调查工作的组织引领,联合油气企业开展主要天然气田氦气资源调查评价,是全国氦气资源调查尽快取得突破的快捷有效途径;建议修订石油天然气储量规范,在氦气成藏远景区开展的油气勘探中进行氦气兼探工作,具有综合利用价值时,氦气需与天然气同时提交储量。

    氦的应用

    ①核潜艇气冷核反应堆与深潜呼吸气

    ②火箭及航天飞机燃料加压剂

    ③核电站气冷核反应堆

    ④航空合金弧焊保护气

    ⑤半导体硅晶片制造保护气

    ⑥光纤制造保护气

    ⑦核磁共振成像仪超导冷却剂

    ⑧潜水呼吸混合气

    点亮新希望

    摘要:实验测试技术是获取天然气水合物基本信息的重要手段。通过研发、引进和技术集成,建立了系统的天然气水合物实验测试技术体系,具备了针对不同研究需要的分析测试能力,将为天然气水合物勘探、开发提供强有力的技术支撑。

    1.项目概况

    中国地质调查局青岛海洋地质研究所以大型高新仪器为支撑,通过研制特殊的实验装置,系统地开展天然气水合物测试技术研究,建立一系列的实验测试技术与方法,可获得天然气水合物的结构类型、笼占有率、气体组成、形态学、赋存状态、微观动力学过程等基本信息,已成功应用到天然气水合物的相关研究中。

    2.成果简介

    到目前为止,已建立、健全天然气水合物的实验测试技术体系(图1),针对不同的研究对象,采用不同的实验测试技术,获取不同研究需要的特定参数信息。主要技术成果如下:

    (1 )天然气水合物晶体分析技术: 建立了粉末X射线衍射(PXRD)实验测试技术,可测定水合物晶体的晶胞参数,从而判别水合物的结构类型(I型、n型或h型等)。

    (2)天然气水合物谱学分析技术:建立了激光拉曼光谱(Raman)和固体核磁共振(NMR)实验测试技术,可提供客体种类及笼占有率、水合指数等参数。如果是甲烷水合物等简单水合物,还可判断水合物的结构类型。建立了核磁共振成像(MRI)和拉曼成像技术,可对天然气水合物生成/分解微观过程进行直接观测,准确捕捉到水合物在生成与分解过程中微观结构的变化,对水合物的相关理论研究有重要的意义。

    (3)天然气水合物晶体微观形态学分析技术:通过研制专用装置建立了X-CT技术,可直接观测沉积物中水合物的赋存状态。无论其测试分辨率(最小分辨率可达20 pm),还是灰度识别方法都领先于国际上的同类技术,实现了对水合物与气、水及沉积物颗粒边界的准确划分,形象地阐明了水合物在沉积物孔隙内的生长、聚集和分布特征,对天然气水合物成藏微观动力学机理研究具有重要的科学意义。建立了低温扫描电镜(SEM)实验测试技术,能够观测到天然气水合物晶体表面形态,对于研究不同条件下水合物表面形态学具有重要意义。

    (4)天然气水合物地球化学分析技术:建立了一套完整的天然气水合物气体组成的分析测试方法(GC、GC-IRMS),包括水合物样品的气体分解与收集方法、气体成分与同位素组成的测定等。该技术已成功应用到我国在海域和陆域天然气水合物样品的气体组成、气 源与结构信息的研究中。建立了水合物样品气水比测定法,能够提供不同样品中的气水比,对水合物样品含气量评价具有重要意义。

    (5 )天然气水合物热学分析技术:建立了高压差示扫描量热仪(DSC)实验测试技术,可在高压环境下在线测量水合物的热力学数据,确定不同条件下水合物的相平衡曲线。另外,通过对反应进行在线监测,可了解天然气水合物生成/分解微观过程,对水合物的相关理论研究具有重要意义。

    3.成果意义

    天然气水合物实验测试技术体系的建立,为我国深入、系统地开展天然气水合物研究提供了技术支撑。该技术体系可广泛地应用于我国海域和陆域钻获的天然气水合物样品中,提供了丰富、准确的分析测试信息,揭开水合物的神秘面纱,推动了我国天然气水合物研究的不断深入。(中国地质调查局青岛海洋地质研究所 刘昌岭 孟庆国 供稿)


    天然气水合物实验测试技术体系建立