分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到8条相关结果,系统用时0.038秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    当地时间2022年2月22日,美国地质调查局(USGS)公布了新的50种关键矿产目录,同时还表示,这份目录对美国经济和国家安全至关重要。

    矿业界研究人员梳理发现,美国地调局此次发布的关键矿产目录由2018年的35种调整为50种,新增了20种、剔除了5种。主要变化在于:一是把旧版目录中的“稀土元素”变为“铈、镝、铒、铕、钆、钬、镧、镥、钕、镨、钐、铽、铥、镱、钇”等15种矿产,“钪”作为稀土元素仍然单独保留,但是“钷”作为稀土元素没有进入目录;二是把旧版目录中的“铂族元素”变为“铱、铂、钯、铑、钌”等5种矿产,但是“锇”作为铂族元素没有进入目录;三是新增加了镍和锌等两种矿产;四是剔除了氦、钾、铼、锶和铀等5种矿产。

    矿业界研究人员表示,此次目录的变化显示出美国政府对稀土和铂族元素矿产资源的管理更趋于精细化;对于新增2种、剔除5种关键矿产的考虑仍值得深入跟踪研究。

    据了解,新目录是根据美国的《2020年能源法案(Energy Act of 2020)》的指示创建的。该法案规定,至少每三年,美国内政部必须审查和更新关键矿产目录。此外,美国地质调查局还负责更新确定潜在关键矿产的方法,通过联邦登记处收集跨部门反馈和公众意见,并最终确定关键矿产目录。

    去年11月,美国地质调查局曾经就此目录修订案公开征求意见,详情请见矿业界报道“美国政府拟修订关键矿产目录:新增镍、锌!”。

    “关键矿产在我们的国家安全、经济、可再生能源发展和基础设施建设方面发挥着重要作用。”负责水和科学的美国内政部助理部长塔尼亚·特鲁希略(Tanya Trujillo)说。“美国地质调查局数据的收集和分析着眼于关键供应链中出现的新问题,每三年确定一次美国当前面临的潜在的(矿产)供应中断的可能。”

    《2020年能源法案》将“关键矿产”定义为对美国经济或国家安全至关重要,但供应链非常容易中断的非燃料矿物或矿物材料。另外,关键矿产的特点还包括在生产一种产品方面发挥重要作用,这种矿产的短缺将对经济或国家安全产生重大影响。

    美国地质调查局表示,这份目录是动态的,而不是最终的,代表的是矿产当前的供应、需求、生产集中度和政策重点。美国地质调查局国家矿产信息中心主任史蒂文·福捷(Steven Fortier)在媒体发布会上表示:“矿产的临界状态不是静态的,而是随着时间推移变化的。”

    “2022年的关键矿产目录是根据最新可用的非燃料矿物商品的数据制定的。然而,我们一直在分析矿产市场,并开发新的方法来确定各种不断变化的关键矿产供应链风险。”美国地质调查局表示,新的关键矿产目录将成为正在进行的、对美国关键矿产潜力进行量化的研究的基础。

    以下为2022年关键矿产列表完整目录:

     

     
    美国政府公布新版50种关键矿产目录

    编者按:在服务资源、环境及生态等复杂问题的解决过程中,地质科学本身也将向前发展,形成新的学科或体系。近年来,国际上形成了两种不同的发展思路,一种是以美国等为代表的将复杂性问题置于环境或生态系统中加以研究,研究对象涵盖生态系统的生命和非生命成分;另一种是以俄罗斯为代表的将环境或生态问题置于地质范畴内探讨,突出生命组分影响下的地质客体变化等。本报今天刊俄罗斯学者V. T. 特罗费莫夫阐述生态地质学理论及其应用的文章,以飨读者。需要指出的是,尽管该文发表在多年前,但仍对思考生态文明建设下的地质工作具有重要借鉴意义。

    地质学拟解决四类问题:一是为人类提供矿产资源;二是为人类的工程活动作地质论证;三是为人类的教育、文化和美学需求提供地质知识;四是为生态系统的稳定运行作地质论证。前三类问题已被地质学家接受,并已取得了满足人类社会发展需求的成果。第四类问题的意义和开创性,在20~25年前已被地质学家察觉。解决第四类问题的发展过程,引发了地质学一个新分支的形成,称之为“生态地质学”。

    生态地质学及其对象和主题

      

      图1 岩石圈生态作用的分类

    生态地质学是地质学的新分支,致力于岩石圈上层(包括地下水和气体)的勘查,并将它看作是生态系统的主要非生物组元之一,在生态系统的组织层级(从生物群落直到生态圈)中属高层级组元。用地质学家更为熟悉的术语来说,可把生态地质学的内涵定义为地质科学的一个分支,研究的是岩石圈的生态功能,这些功能的形成规律,以及在自然及人为动因影响下这些功能发生空间和时间变化的规律,它们与生物体、首先是人类的生存和活动息息相关。

    必须指出的是,术语“生态地质学”(ecological geology)不同于“地质生态学”(geoecology)。两者存在原则性区别。无论从哪种意义上说,“地质生态学”都是一门复合性科学,研究的是地球的所有非生物壳层(圈层),也研究生物体。“地质生态学”包容“生态地质学”,后者仅触及岩石圈一个组成部分,在相同层级上的还有“生态地理学”和“生态土壤学”等,它们也是地质生态学的组成部分。

    另一方面,“生态地质学”的概念内涵由“岩石圈生态功能(属性)”的概念确定。这个概念于1994年提出,是地质学中一个原理新颖的概念。它的内涵详细解释如下:

    生态地质学的研究对象是地质科学的常规客体:从理论上说,是岩石圈及其所有组成部分;特定地说,是岩石圈的近地表部分,主要是受人为影响的地带。它可被描述为一个多组元的动态系统,包括对生物(biota)的存在和发展产生影响的岩石、地下水和气体。

    生态地质学研究的是:“岩石圈—生物”系统,“受到人为影响的岩石圈—生物区”系统或“岩石圈—工程建设—生物区”系统;生物子系统与非生物子系统之间的直接和间接联系;最终是,“死”物质对“活”物质的影响,或广义地说,是岩石圈与生物之间的相互作用。这样的系统构成,意味着通过考虑岩石圈的人为改变,也把人为影响源纳入了系统之中。

    根据其内涵,所有发生过转换的系统都是生态地质系统。这两种系统之间的主要区别,在于其中存在的是有生命组分还是非生命组分。生物区存在并活动于岩石圈中,或者就在岩石圈表面。据此便可形成“生态地质系统”的定义。生态地质系统是岩石圈的特定部分,是在其内和其上容纳着所有生物区的环境的地质组元。生态地质系统由三个子系统组成:岩石圈(无生命的)、生物区(有生命的)和天然及人为影响源。

    生态地质学的研究主题是有关岩石圈生态功能(属性)的知识(数据系统)。因此,要考虑“岩石圈—生物区”系统中的功能关系,或“岩石工艺系统—生物区”之间的功能关系。

    岩石圈的生态功能

    岩石圈的生态功能多种多样,决定和反映着岩石圈(包括产于其中的地下水、油、气、地球物理场和地质作用)对生物区,主要是对人类的重要价值。人类的独特性在于人类活动对环境的影响比所有其他生物的影响都大。研究岩石圈不能采用生物生态学、生态地理学和生态土壤学研究框架内的那类途径。

    岩石圈生态功能的科学理念,意味着对岩石圈的作用要有多方面的考虑,将之视为一个存在着有机生命(各体生物、植物群、动物群和人类)的环境。从生态观点看,岩石圈主要是给生物体提供资源和能量,并通过它的资源及其地质动力学、地球化学和地球物理功能来实现(图1)。这里不考虑人与自然相互作用功能中的社会-经济、道德和审美方面,因为它们超出了专业地质知识的范畴,事实上它们构成了一个社会生态学的关切。

    在天然及被人为改变的岩石圈与有群体结构的生物物种生物区之间,有着多种多样的关系,可把它们归结成4种功能:一是岩石圈的资源生态功能,它对生物体生存和活动所需的矿物质、有机质、有机-矿物质资源有重要意义;二是岩石圈的地球动力学生态功能,它通过自然和人为的过程和现象,决定着岩石圈对生物区状态和人类生活条件的影响;三是岩石圈的地球化学生态功能,它反映着岩石圈的自然和人为地球化学场(不均一性)对整个生物体(包括人类在内)状况的影响;四是岩石圈的地球物理生态功能,它反映着岩石圈的自然和人为地球物理场(不均一性)对生物体(包括人类在内)状况的影响。

    每种功能的内涵、它们的评价标准、信息获取方法和表述方法另有专文论述。

    岩石圈的生态属性

    岩石圈的生态功能靠具体的生态属性来实现。就“岩石圈的生态属性”这一术语而言,指的是岩石圈的特征属性,即具有特定生态重要性的属性。它取决于其物质成分、地球动力学、地球化学和地球物理学的特性,且与生物体存活的供养、生物体生存和进化条件有机关联。

    有关岩石圈生态属性的问题,是一个新问题。这里力图在岩石圈的资源及其地球动力学、地球化学和地球物理的生态功能框架内,给这些属性命名(表1)。它可能不是完整的清单,但堪作举例材料。

      表1 岩石圈的生态功能与属性

      

    生态地质情势及其状态

    用术语“生态地质情势(环境)”来表达岩石圈具体生态属性(功能)的组合,反映作为栖息地的一定岩石圈体积内生物体生存条件的现状或古状态。在一个地块或一个区域范围内,生态地质情势(situation)或许会或许不会因地而变。而且,生态地质情势也会随时间而变,在这种情况下,该情势会随时间从一种状态(state)变换成另一种状态。由于人为工艺因素和灾变性自然过程的发展,这种变换可能进行得很快,从历史观点看,有时就在瞬间。

    必须强调的是,生态地质环境(conditions)或许既取决于所有生态功能同时起作用,也会仅取决于一种生态功能,比如地球动力学功能,它会在瞬间对生物区产生较强烈的影响。在后一种情况下,这种生态地质情势应该说成是“依靠岩石圈地球动力学特征形成的特色生态地质环境”。当地球化学功能在生态地质状况形成中扮演最重要角色的情况下,就说它是依靠岩石圈块段的地球化学特色形成的特色生态地质环境。

    “生态地球动力学环境”、“生态地球化学环境”和“生态地球物理环境”等术语,在地质文献中也常常使用。这些术语是对上段文字特指含义的省略表达。另外,当只分析一种生态功能对生物群或人类的影响时,使用这些术语也是对的。

    正如已经指出的那样,生态地质环境的变化或许是足够快的。人们必须把所研究对象(生态地质系统)的阶段特色称为生态地质情势(环境)的状态(state),地质学家则往往将它称为岩石圈的生态状态。可以把“生态地质情势(环境)的状态”的实质定义为某种暂时状态,并根据当时岩石圈的一种生态属性特征,或者几种生态属性(功能)的组合把这种状态估计出来。这些生态属性决定着生物体生存的有利度(水平)和或然率。

    生态地质情势的状态要根据岩石圈某些属性的暂时状态评估出来,也要描述出这些属性对活体生物产生影响的特征。根据这种定义,当对岩石圈的生态状态做评价时,就不得不一方面评价岩石圈对活体生物的资源和能源影响,另一方面评价有关活体生物响应这些影响时的特定相互作用信息。在所有的生态系统组织层级上,此类评价准则对生物体都是适用的。

    如上所述,生态地质环境的状态可以取决于岩石圈的一种属性(功能)或几种属性(功能)的组合。在地球物理功能强烈影响生物群的特殊情况下,可以说:“生态地质环境的状态取决于地球物理功能(属性)”。地质学家常常用术语“岩石圈的生态地球物理状态”来代替上面的表述。而“岩石圈的生态资源状态”、“岩石圈的生态地球化学状态”之类的术语,常被作为同义语使用。

    生态地质学的基本科学问题和实践问题

    生态地质学有5项主要任务:(1)研究岩石圈的生态功能,它们的形成规律,及其在自然和人为作用影响下发展的动力学;(2)从岩石圈生态功能变化的观点出发,针对人为成因的影响,开发评价岩石圈近地表部分稳定性的理论和方法;(3)针对岩石圈近地表地层环境与属性的控制问题,精心研制理论和方法,以保护和改善它们的生态功能;(4)研制工业废弃物利用和选择其最佳(就地质环境而论)埋置地区和层位的理论、方法和途径,以使对区域生态属性的负面影响最小化;(5)针对国土、目标客体和大型建筑的工程保护问题,精心研制进行地质论证的理论和方法,以免发生削弱其生态功能的自然和人为地质作用。

    总的来说,生态地质学的应用性问题可以通过下述途径形成:(1)论证生态系统正常运转前提下岩石圈资源的合理利用;(2)确定岩石圈近地表部的人为污染对生物群的影响;(3)针对一些生态系统或整体生态系统生物群的管理,为制定和调整解决方案进行地质论证。

    这种一般性生态-地质课题清单,通过参考早先开列的岩石圈生态功能,还可以更详细地提出来。

    生态地质学的逻辑结构

    根据生态地质学是地质学的一个科学分支,而不是一门独立学科,它的逻辑结构应该包括地质科学逻辑结构中用于解决生态问题的既定要素,以及“它自己的逻辑基础”。两者的同化不是机械式的,要遵循相当明确的关系,即生态学方法途径的逻辑。“它自己的逻辑基础”是一种逻辑支点,也能够在其它科学的理论、思想和定律中使用。

       

      图2 生态地质学逻辑结构的全域示意图

      A-生态地质学逻辑结构的逻辑基础;B-被生态地质学利用的地质学科的逻辑结构(B1-工程地质学;B2-冰川学;B3-水文地质学;B4-地球化学;B5-地球物理学;B6-矿山地质学;B7-新构造学;B8-地震大地构造学;B9-地貌学;B10-地史学与古生物学;B11-火成岩石学与沉积岩石学;B12-矿物学);C-生态地质学逻辑结构全域的轮廓线)

     

    对此问题的处理如图2所示。该图说明了生态地质学逻辑结构的镶嵌特性,就致力于解决生态问题的地质科学,以及这些地质科学对生态地质学逻辑结构的贡献,给出了概念图。不难看出,工程地质学、水文地质学、冰川学、地球化学、地球物理学和矿山地质学提供着主要的信息量,以及可用于生态地质学的大部分研究方法。在我们看来,其它地质学科及其逻辑结构可用的较少。以上结论基于一个事实,有关岩石圈生态功能的知识才是生态地质学的基础。

    基于对岩石圈生态功能的上述认识,可以对生态地质学逻辑结构的最重要要素划分出以下几个方面:(1)原理-岩石圈近地表部的结构、空间关系、属性和生态功能,是其地质特征的历史发展及其与自然环境和人为作用圈相互作用的结果;(2)原理-岩石圈的动力学状况(运动速率和特性)和生态功能的组元与变化,皆归因于它们的自然属性,归因于它们与环境(包括人为的工艺成因环境)相互作用的模式和强度;(3)生物体与环境相互作用的一致性定律;(4)社会发展特征与环境状况间的一致性定律(基本生态定律)。

    正是这些原理和定律形成了生态学的支点,把其它地质学科的基础整合起来,构成了生态地质学自身的那部分逻辑基础。

    生态地质学的科学分支及其在地质理论知识体系中的位置

    在生态地质学的结构中,有几个旨在分析所确定的岩石生态功能的科学分支。它们是资源生态科学、生态地球动力学、生态地球化学和生态地球物理学(图3)。

    资源生态科学是生态地质学的科学分支,涉及与维持生物区存续有关的全部问题,按资源利用的观点,其中首要的是通过提供岩石圈的矿产资源和地质空间资源维持人类社会存续,在科学技术活跃发展的新时代满足人类的需求。研究的焦点不是矿产资源的勘查和储量计算,而是评价其目前消费水平与合理使用的一致性。实质上,岩石圈矿产资源消费的管理问题,应该通过关注高层级生态系统的保护和正常运行来解决。地质空间资源也要用生态学的观点来评价。很明显,一些地质科学的方法,主要是矿山地质学、水文地质学的方法(对矿产资源),工程地质学和冰川学的方法(对地质空间资源),应该适用于这些研究和调查。另外,这些研究应该由社会来定向,就是说应该与社会经济学紧密关联,在实践中,生态地质学家应该与经济学家、社会学家及管理机构和设计院所的代表接触。生态地质学这一分支的主要课题是:考虑目前文明发展需要的矿产资源评价,对矿产资源消费的管理建议进行地质论证。

    生态地球动力学是一个大领域,包括所有涉及自然和人为地质过程对生物区影响的课题,以及评估生物群栖息地可能灾变和舒适度的课题。后一点仅关切人类社会。这些研究一直采用工程地质学、冰川学、水文地质学和构造地质学的方法来执行,与项目规划者和设计者联系。在该分支框架内执行的主要任务有:针对在工艺活动影响下的地球动力学参数变更,开发评价岩石圈近表部稳定性的方法;为保护生物区和人类社会免受影响其生存及舒适度的(天然和人为)不利和灾变地质过程的危害,对相应工程保护项目进行生态地质论证。

    生态地球化学是生态地质学的科学分支,研究天然和人为成因地球化学场对生物区的影响。在生物区内有岩石地球化学、气体地球化学和水地球化学异常。调查课题是:岩石圈的物质(矿物)成分,活动态化合物的迁移问题,元素的非正常浓度及其对生物区的影响性质问题。地球化学、矿物学、岩石学和水文地质学的方法被用来解决这些问题,生物区环境的生物医学评估资料具广泛的适用性。实际上,这类研究意味着生态地质学家要与医学专业人员和卫生服务机构建立密切联系,因为这些异常要用医学-卫生的观点来评价。

    生态地球物理学也是生态地质学的科学分支,研究重力、磁、电磁、热和放射性等天然和人为地球物理场对生物区的影响。这些场与背景值的偏差及其对生物区的影响,要借助地球物理学、大地构造学、地震构造学的方法和生物医学的学科资料来研究。与生态地球化学一样,这些问题的解决必须与医疗-卫生服务机构密切联系。要在该分支框架内完成的总体任务有:天然和人为源地球物理场的分析,研制评价其医学-卫生危险的方法和准则(对生物区的影响强度,评价岩石圈对工艺性污染的稳定性)。

    图3示出了生态地质在理论地质知识中的位置。在地质学的结构中包括前5个科学分支已得到承认,无需再予证明。但是,对于后两个分支,即“关于岩石圈生态功能的科学”和“关于地球的工程地质环境的科学”,其纳入地质学的合理性尚存争辩。主要争辩依据是,在科学技术活跃发展的新时代,对于涉及地球和岩石圈问题,需要强调生态理论研究的作用。目前,人为工艺因素对岩石圈外壳的影响程度,已经提高了生态地质学说在地质学中的地位,已经使这个学说可以划分为地学中的独立科学分支,已经把上面所述的后两个分支提升到了与前5个分支相同的水平。

       

      图3 生态地质学的科学分支及其在地质科学体系中的位置

    生态地质学的实用性分支

    图4说明,可以在生态地质学的构成中列出几个实用性子分支。它们是城市、矿床和复垦影响区的生态地质学,以及线状工程、热电站和核电站等影响带的生态地质学。值得特别强调的是,各类经济活动不仅在项目建设中,而且在其运营和维护时期,都应该提供对岩石圈和生物区生态影响的评估。因此,应调查的面积要比官方土地使用许可的范围更宽更广,只要在其内确定了或造成了工程客体对岩石圈生态属性的影响。

    各种经济活动在对岩石圈影响的强度、深度和性质上是各不相同的。这涉及到岩石圈的矿产资源,地质作用的活跃程度,以及自然和人为成因的地球化学和地球物理致病区的发展。

      

      图4 供人类社会正常发展和运作的生态地质学的实用分支学科

    很明显,大的城市群、采矿工程(矿山、露天矿场等)、集中在数个盆地和油气田带中的油气产业,都会对岩石圈及其生态功能产生重大的影响。对城市群而言,这种影响取决于特定的高密度城市人口;居住区,交通-通讯,大型工业、燃料和能源企业及联合企业的自营交通,均规模巨大;还取决于城市地下的支撑工程。因此,会观测到以下现象:土壤、岩石圈近地表部和水圈被活性有毒化合物强烈污染;由于热、重、电磁和地震声波等地球物理场变化,发育起致病的地球物理异常;车辆废气导致大片土地的高度重金属污染;地下水动力学和水化学机制改变;地下水储量耗竭。矿场附近岩石圈的生态性变化与下述后果关联:矿产资源枯竭,重力场变化,产生异常的地层压力,地下水动力学参数彻底转变,出现密集的人为污染区,地质环境资源减少。对线性工程而言,不利的生态后果与负面的地质作用活跃有关,与线性的人为污染晕和诱发的异常地球物理场有关。

    在不同种类经济活动影响下发生的岩石圈生态环境特性改变的清单还可能扩展,但上述这些已足以支撑得出结论。每种经济活动都与岩石圈生态属性改变的特定复杂性关联,因此要对它们进行分析,就需要运用地质科学的各类理论和方法。城市群影响着岩石圈的所有生态功能,所以要动用地质科学的整套方法,特别要涵盖图2所示的所有学科的方法。对线性建筑而言,要运用的地质科学和方法清单将取决于研究需要,首先是岩石圈地球动力学、地球化学和地球物理学功能的研究。在矿床开采方面,研究重点要集中到岩石圈资源功能的所有方面,地球物理和地球化学异常,以及一组地质作用。 

    生态地质学的任务及其应用

    5月3日,共青团广东省第十四次代表大会在广州隆重召开。会上,为第二十届“广东青年五四奖章”个人和集体颁发了奖章、牌匾。中国地质调查局广州海洋地质调查局天然气水合物试采团队荣获“广东青年五四集体奖章”荣誉。

    广州海洋局天然气水合物试采团队是我国首次海域天然气水合物试采的青年先锋团队。他们克服没有成功经验可循、没有专用设备材料可用的重重困难,坚持科技引领、创新驱动,打破国外封锁,建立了适合我国海域特点的勘查试采理论技术和装备体系,实现3项重大理论、6大技术体系20项关键技术、3项重大工程管理体系、7项重大技术装备的自主创新,取得我国海域天然气水合物首次试采成功,并创造了产气时长和产气总量的世界纪录,实现了理论、技术、工程、装备的自主创新和历史性突破,中共中央、国务院发来贺电。

    海域天然气水合物试采成功入选“两院院士评选2017年中国十大科技进展新闻”、“中国地质调查局、中国地质科学院2017年度地质科技十大进展”、“中国地质学会2017年度十大地质科技进展”和“2017中国矿业十大新闻”,试采团队也被评为“国土资源部科技创新团队”。

    广州海洋局天然气水合物试采团队荣膺“广东青年五四...

    编者按:作为自然资源的重要组成部分,矿产资源与山水林田湖草资源共同构筑起一幅多彩而珍贵的大自然画卷。在这幅地球馈赠的大自然画卷里,矿产资源不仅要有内在气质,还要有外在颜值,在有力支撑经济社会发展能源资源保障的同时,更注重绿色发展高质量发展的时代担当。对于地矿行业而言,开源是一方面,依靠科技创新和技术进步的“节流”,即矿产资源综合利用,也是不可或缺的另一方面——既提高了资源的利用效率和可持续性,又减少了尾矿排放及环境影响。

    “既要金山银山也要绿水青山”。珍惜自然资源,珍惜矿产资源,方可守护好我们的绿水青山、金山银山。从“三位一体”的综合地质调查,到全国重要矿山“三率”综合调查与评价,新发展理念已在地矿领域落地生根,并贯穿于地质勘查、选矿富集、冶金提取、材料加工的整个矿产开发利用过程。作为专注于矿产资源综合利用的科研单位,中国地质科学院郑州矿产综合利用研究所多年来致力于矿产资源综合利用技术、装备的研发、推广,厚植工艺矿物学、难选冶金属矿产高效利用、非金属矿合理利用和二次资源循环利用等优势学科,在矿产资源综合利用及技术经济评价等方面走在了全国前列。

    值此第49个世界地球日之际,中国地质科学院郑州矿产综合利用研究所干部职工围绕“珍惜自然资源 呵护美丽国土——讲好我们的地球故事”的主题,结合自身矿产资源综合利用工作的实际,从尾矿资源化利用、智能选矿技术研发、矿山地质环境保护、固体废弃物的处置、综合地质调查等方面进行了研究梳理、总结提炼,形成了多篇实用且具有科普价值的文章,现精选一部分,以飨读者,敬请垂注!

    不可或缺的矿产资源综合利用

    张艳娇 刘红召

    矿产资源综合利用目前已作为国策贯穿于地质勘查、选矿富集、冶金提取、材料加工整个资源开发利用过程,强调在开采利用矿床中主要矿产资源的同时关注共生、伴生矿产资源的利用效率。我国已探明的矿产储量中共、伴生矿占很大比例,全国25%的铁矿、40%的金矿、80%的有色金属矿及大多数煤矿都有共、伴生矿产。开展综合利用工作,既提高了资源的利用效率和可持续性,又减少了尾矿排放及环境影响。对部分资源而言,综合利用工作至关重要、不可或缺。

    山东石榴石矿选矿厂改造

    自然界中有部分元素,在地壳中含量很低,大都呈分散状态,很难形成独立的经济矿床。有独立矿物的,可以选矿富集目的矿物再冶金提取。没有独立矿物的,就只能选出其载体矿物再分离提取。这其中,如果载体矿物恰好是该矿床的主矿产,伴生组分可以随着主矿产的选矿富集而富集,其选矿回收成本最低,回收率相对也较高,在冶金提取主金属时作为副产品回收;如果载体矿物不是矿床的主矿产,但也能选矿富集,则伴生组分就可以回收,但需要论证经济可行性。还有一种情况,伴生有用组分分散在脉石矿物中,无法选矿富集,直接冶金加工成本昂贵,目前综合利用的可能性就很小。

    以金属铼为例,它具有高熔点、高硬度、抗蠕变性、抗腐蚀性以及良好的塑性,广泛应用于热电偶、金属涂层和电子工业。用于制造航空发动机涡轮叶片和发动机喷管,是其他金属不能替代的。此外铂-铼催化剂在石油催化裂化重整过程中极为重要。铼是自然界储量最少的金属之一,在地壳中丰度大约为10-9。世界上已探明铼储量2500吨,基础储量近10000吨,我国铼的保有储量237吨。铼没有具有开采价值的独立矿物,主要以类质同象形式分布在辉钼矿和斑铜矿中。开采利用钼矿床和铜矿床时,辉钼矿和斑铜矿的选矿提纯过程也就是铼的选矿富集过程。辉钼矿选矿中钼要富集数百倍,往往在钼精矿中才会检测分析铼的含量。铼随辉钼矿或斑铜矿进入精矿产品后,由于铼氧化物极易升华,在钼精矿焙烧和铜的冶炼过程中,铼与钼或铜分离进入烟灰和废酸,再通过离子交换或者萃取的方式从烟气淋洗液和废酸中提取。我国著名的钼产业基地栾川及金堆城,其选矿产品钼精矿中每吨均含有几十克铼,但长期没有合适的回收技术而无法综合利用。2015年,中国地质科学院郑州矿产综合利用研究所研究成功从钼冶炼的烟气淋洗液中回收铼的工艺,在栾川钼业公司与金堆城钼业公司推广应用,从而使宝贵的铼资源能够在这两家企业回收利用,并由此给企业带来了可观的经济效益。

    共伴生矿产同主矿产资源一样,都是大自然赐予人类的礼物。开展综合利用便是我们接受并珍惜这份分量虽小但极其宝贵的礼物。

    合理处置被放错位置的资源

    吕振福

    联合国环境规划署定义自然资源为“在一定的时间、地点条件下,能够产生经济价值,以提高人类当前和未来福利的自然环境因素和条件。”自然资源通常包括矿产资源、土地资源、水资源、气候资源与生物资源等。作为自然资源的一部分,矿产资源是人类赖以生存的重要基础,是国民经济健康发展的物质保障。矿产资源产业是基础产业,对国民经济发展起到了重要支撑作用,同时不可避免地会产生矿业固体废弃物。如何正确认识和合理处理这些被放错位置的资源?

    矿业固体废弃物通常包括废石和尾矿。废石主要指采矿环节采出的、低于工业品位且未能进入选矿等后续作业的固体物料。尾矿是选矿分选作业的产物之一,是入选物料富集得到精矿和中矿后的固体废弃物。尾矿包括物理选矿产生的固体废弃物,也包括堆浸工艺、全泥氰化工艺提取金、铜等金属后产生的固体废弃物。

    尾矿和废石的排放水平与矿产资源共伴生矿多、品位低的特征分不开。平均入选原矿品位在一定程度上决定了废石和尾矿排放水平。原矿品位低、剥离的废石品位更低,使得矿山废石量巨大。中国地质科学院郑州矿产综合利用研究所“全国重要矿山‘三率’综合调查与评价”项目对2011-2015年全国代表性矿山的废石、尾矿产生情况大数据进行了系统研究,结果表明:一方面我国经济社会发展对矿产资源的需求巨大,另一方面我国矿产资源具有富矿少、贫矿多,独立矿产少、共伴生资源多的特点;我国不仅矿产品产量居于世界第一位,在生产矿产品的同时,排出矿业固体废弃物也非常之巨量。

    废石与尾矿都具有潜在的资源属性。随着技术进步、经济发展,越来越多的废石和尾矿被用于采矿采空区充填、直接用作建材或者用于生产建筑材料。采矿废石、选矿尾矿的综合利用具有越来越好的前景。根据“三率”调查统计,我国20种典型矿产矿山当年排放的废石中有17.77%被消耗利用,当年排放的尾矿中有18.97%被消耗利用。

    2015~2017年,“22种重要矿产资源节约与综合利用调查”项目通过开展1300座尾矿库取样、分析测试,在其中的210座尾矿库中发现具有综合回收潜力的有价组分。如果对这些组分加以回收利用,潜在经济价值达349亿元。

    上述发现的具有综合回收价值的尾矿多为上世纪五六十年代排放的有色金属尾矿,说明技术的时空特征和尾矿的二次资源特征。从二次资源的角度考虑,合理处置和保护固体废弃物更加重要。

    废石与尾矿都具有环境扰动属性。废石和尾矿处置不仅占用土地,而且可能产生有机和无机污染物,并通过土壤、水体、空气和生物链传导。从技术上讲,当前技术经济发展水平条件下排放的废石和尾矿,不可能实现100%再利用。相比较而言,妥善处置可能比试图利用更加迫切。因为矿山废石和尾矿引发的环境问题必须认真面对和妥善解决,同时如果处置和保护得好,在若干年之后废石还有可能成为资源。

    我国尾矿、废石要加强减量化、无害化和资源化工作,需要加强尾矿和废石的分类处置、有效保护、合理利用的标准化工作和技术创新。通过技术经济、环境效应和资源属性三位一体的综合评价方式来确定废石和尾矿是选择利用,还是选择处置和保护。通过不断加强技术创新,提高矿产资源开采回采率、选矿回收率和综合利用率,促进废石和尾矿的源头减量化。

    矿石分拣机器人助推选矿技术智能化

    彭团儿 郭珍旭 陈明文 张继民 贾宇航

    矿石分拣机器人——智能光电拣选机是可以代替人工手选分拣矿石的智能化自动执行工作的机器装置,是集光、电、气、机为一体的具有感知、分析、推理、决策和控制功能的新型高端智能装备。它利用矿石表面特征、导电性、磁性、放射性及矿石对射线的吸收和反射能力等物理特性差异,借助各种探测仪器和执行机构实现矿石中有用矿物和废石分选。矿石分拣机器人可以拓展分拣物料的品种、粒度范围,提高分拣速度和精度,改善劳动条件。

    我国从上世纪60年代开始研制矿石拣选设备,70年代到80年代有了较大进展,但拣选理论和装备技术的发展远远落后于重磁电浮等传统选别技术,只停留在小试和工业试验阶段;90年代后期,光电选别装备——色选机在大米、杂粮等粮食加工领域快速发展,国内制造企业开始半学习模仿半自主开发色选机;从2000年开始,进口设备的市场份额大幅减少,国产光电色选机技术快速发展,色选机的规格、功能越来越丰富,多通道选别、二次复选、双面镜头检出、特殊波长光源等技术逐渐成熟;2012年后,随着矿石拣选预处理技术、高精度快速分拣、大颗粒拣选、规模化处理等行业瓶颈技术的突破,智能光电色选机逐步在非金属矿领域逐步推广应用。

    滑道式智能光电拣选试验机

    履带式智能光电拣选试验机

     

    智能拣选机工作原理及结构组成

    各种智能拣选机的组成都基本相同,主要由给料系统、照射及探测系统、信息处理系统和拣选执行系统四大功能部件组成。智能光电拣选机工作时,被选物料从顶部的料斗进入机器,通过振动器装置的振动,被选物料沿通道下滑,加速下落进入分选室内的检测识别区域,并从传感器和背景板间穿过。传感器将获得图像及数据信息经信息系统处理得出矿块品位或特征量化数据,做出决策输出信号,驱动机械打板或电磁阀工作分拣出目标颗粒至接料斗的废料腔内,而好的被选物料继续下落至接料斗成品腔内,从而达到选别的目的。

    给矿系统由料槽、给料机、滑槽、输送带等组成,使矿块呈单层、单列、多列均匀地给到机器的照射和探测系统。一般采用多级给矿,第一级控制给料量,第二、三级使矿石排队,矿块呈单层稳定离散状态,且矿块间拉开一定的距离。探测系统则通过敏感元件测定不同矿物的光学、磁学、电学或放射性环境下吸收、散射或反射特征参数作为选别依据。信息处理系统主要任务是对来自检测系统的矿块射线活度和光电信号经放大、降噪、整形、分析、转换后得出矿块品位或特征量化数据,与预定值比较后进入主控单元,做出决策,确定是否给执行机构发出命令。执行机构主要有机械挡板或高压气流两种,根据信息处理系统的命令通过使目标矿粒偏离正常运动轨迹,实现拣选分离。

    智能拣选机分类

    根据检测系统中矿物与不同波长电磁波作用吸收、散射或反射特征差异,拣选方法可以分为放射性分选法、中子吸收法、荧光法、X射线吸收法、紫外荧光法、光电法、红外法等。在各种拣选方法中,应用较多的主要是光电分选和X射线分选。根据X射线照射矿石后的不同特征反应,X射线分选法分为X射线荧光法、X射线激光法、X射线反射法、X射线吸收法等。光电法主要通过高分辨率传感器,在可见光条件下对原料进行颜色识别并剔除,从而实现分选。目前国内成熟的光电拣选机主要包括滑道式和履带式两种。

    滑道式拣选机利用斜槽滑道导矿,矿石在沿滑板平面下落完成检测和分离过程,适用于形状规则性的物料,不易翻转、干燥的块矿,具有结构简单、紧凑实用的特点。履带色选机使用皮带对矿石进行加速,使其稳定通过照射检测区域,具有给料平稳、输送物料种类多、色选精度高、破损小、产量高、带出比小、对物料的损伤相对轻微、破损小等特点,并且速度可控,产量可调整,可以具体根据客户的生产实际进行设计,但造价相对比较高。

    智能光电拣选实验室

    中国地质科学院郑州矿产综合利用研究所依托原国土资源部公益性行业科研专项——《基于CCD技术智能光电拣选装备及矿石分选工艺研究》项目,建立了0.5吨/小时~2吨/小时规模智能光电拣选实验室,分拣矿石适宜粒度范围为2~25毫米,适用于钾长石、石英、滑石、硅灰石、方解石、蛭石等非金属矿分拣。项目采用智能光电拣选工艺与传统选矿工艺相结合,研发出光电拣选原矿预处理技术、中粗粒预选抛尾与湿法磨矿磁选精选联合选矿、花岗伟晶岩分质分类差异化分选、光电拣选与干法磨矿联合制粉等绿色节能选矿技术,对河南嵩县、方城、栾川,山西运城,内蒙古察右后旗、乌兰察布市等地钾长石矿进行拣选试验。

    根据项目研究成果,中国地质科学院郑州矿产综合利用研究所在所属原国土资源部矿产综合利用野外试验基地建设5~8吨/小时规模工业试验生产线,目前已投入使用。核心设备LS1200双层智能光电拣选机具备二次复选功能,单台机器即可完成尾矿扫选或精矿精选,实现预选抛尾或直接获得合格颗粒精矿。工业化智能光电拣选机检测识别系统采用云技术相机,深度识别微小而精细的杂质,实现高清扫描、精准识别及高速运算,高速动态捕捉并实时分析显示物料,真正实现分拣目标实时可视化。执行机构采用专用新型高频电磁阀,超低耗气量,实现最优带出比,超高打击精度,拥有完美的自修复系统,维护成本低,使用寿命100亿次以上。光源系统采用高性能LED光学系统设计、光控技术,免维护,降低能耗35%。

    智能光电技术在典型矿种分选中的应用

    河南方城某风化花岗岩钾长石矿主要类型为斑状二长花岗岩和中粗粒花岗岩;主要矿物为斜长石、微斜长石、石英;杂质矿物主要为磁铁矿、黑云母。其中,高品位长石呈肉红色,致密块状,部分白色石英呈大颗粒分布在钾长石矿石中,造成矿石总体长石含量低,产品附加值低。为获得高附加值钾长石,传统选矿方法采用磨矿后在酸性或中性环境下浮选分离长石石英,磨矿能耗高,浮选废水造成一定环境污染。根据长石石英颜色差异及解离粒度,采用智能光电拣选对5~15毫米粒级原矿进行分拣,原矿K2O含量6.3%,Na2O含量3.1%,分拣后获得颗粒长石精矿K2O含量9.7%,Na2O含量3.7%,精矿产率53.6%,回收率82.7%。通过拣选工艺实现粗颗粒长石石英分离,提高湿法制备钾长石粉原矿品质,降低废石入磨量,实现中低品位钾长石高值化利用。

    5~8 t/h智能光电拣选工业试验生产线

    河南嵩县某低品位石英脉型金矿属脉幅窄、贫化率高的矿脉,由于金与黄铁矿呈密切伴生关系,根据判定矿石黄铁矿与脉石矿物颜色和晶体形态差异,采用光电分选技术对不均匀成矿矿脉、均匀成矿矿脉的边界与围岩进行处理,使低于工业品位的低品位金矿通过预选抛废可以经济利用,预选抛尾产率37.37%,尾矿金属量损失率10.18%。该技术可部分取代效率低而成本高的选择性开采方法,提高采矿效率,提高资源利用率。

    自20世纪70年代以来,计算机技术、信息技术、自动化技术与传统制造技术迅猛发展,形成了先进制造技术,促进拣选装备技术向精密化、自动化、智能化、图形化、可视化、集成化快速发展,智能拣选逐渐成为科研院所关注和研究的焦点。以人工智能为代表的智能拣选装备技术作为一种低成本、环保高效的分选工艺,有望成为继重选、浮选、电选、磁选之后又一重要的工业化选矿方法,并在有色、黑色、稀有、放射性、贵金属元素的矿石以及非金属矿领域得到广泛应用。建立和发展完善的低品位矿石拣选资源化利用知识体系已经成为选矿行业发展的主要攻关方向之一。

    (该研究为原国土资源部公益性行业科研专项——《基于CCD技术智能拣选装备及矿石分选技术研究》)

    综合地质调查谱地质新篇

    马亚梦 谭秀民 赵恒勤

    当前,我国矿产资源供需矛盾日益突出。因此,要加大勘查力度,实施找矿突破战略行动。随着矿产资源全球化配置,需要统筹协调的问题逐渐增多,单一传统的资源调查方式已不能适应当今的新时代、大格局。在此大背景下,助推单一资源调查向地质资源潜力、技术经济条件、地质环境影响“三位一体”综合地质调查转变,形成资源环境综合评价及勘查开发布局对策建议显得尤为重要。

    何为“三位一体”

    “三位一体”的综合地质调查是秉承“绿色矿业”的理念,以问题和需求为导向,按照“综合部署、科技引领”的原则,进行的逐层深入研究。其基本研究内容是以资源基地为研究对象,全面梳理资源基地资源、环境、技术经济相关数据及研究成果,在资源条件调查与潜力评价、地质环境条件调查与影响评价、技术经济调查评价的基础上开展的综合评价。

    相较于以往着重于地质找矿的单一传统的资源调查方式,“三位一体”的综合地质调查更加突出成果的集成,在推进实施过程中需要遵循自然规律与经济规律,统筹部署好相关工作,完成新发现大型资源潜力基地从资源基地到适应经济新常态的产业基地的转变,其主要包括:

    地质资源潜力——注重矿集区各类地质勘查资料的收集整理、二次开发和综合分析,注重矿集区找矿预测研究,总结成矿地质背景、成矿规律和控矿因素,开展重点区域靶区优选、野外查证、成矿预测工作。

    地质环境影响——调查评价矿山地质环境现状,着重分析评价地质环境容量,预测矿产资源开发对环境造成的影响及危害;探索矿产资源开发地质环境影响变化机制及防控技术创新,提出矿产资源绿色开发地质环境防治的对策建议。

    技术经济条件——注重资源的综合开发技术研究,提高矿产资源综合利用水平;评估矿集区资源开发利用的前景,对资源开发的经济效益、社会效益、环境效益等做出科学评价和预测,推进当地资源开发的资源-经济-环境的协调发展。

    怎样“勘查开发”

    党的十九大报告中指出,“人与自然是生命共同体,人类必须尊重自然、顺应自然、保护自然”,“为把我国建设成为富强民主文明和谐美丽的社会主义现代化强国而奋斗”,这为我们矿产资源勘查开发工作指明了方向。

    现阶段,制约我国矿业经济发展的因素主要有以下几个方面:自然条件严酷,基础设施落后;矿产资源勘查投入不足,勘查程度普遍较低;矿产选冶加工技术研究滞后。因此,在资源环境综合评价的基础上,提出科学的资源勘查开发布局对策建议,不断提高地质工作服务经济社会发展的主动性和能动性,有助于将找到的矿产资源合理、有序、高效、集约、生态地开发出来。其主要内容是:依据矿集区成矿规律与成矿预测,结合国家和区域相关产业政策,划分矿集区勘查、开发基本区块;理论与实际相结合,构建资源勘查开发布局评价指标体系;建立评价标准,评价勘查、开发各区块的优劣度,提出适宜、科学的勘查开发布局对策建议。

    划分勘查开发区块——根据勘查区和开发区划分的依据,划分矿集区勘查、开发基本区块。勘查区的划分依据包括:不存在法律和其他禁止勘查的情况;矿集区成矿规律与成矿预测最新成果,包括矿床、矿点、矿化点及异常分布,找矿靶区分布等;整装勘查区勘查规划划定的预查普查区;矿产资源规划划定的重点勘查区。开发布局划分的依据包括:不存在法律和其他禁止开发的情况;区内存在已探明并具有一定资源储量规模的矿床;区内有一定的基础设施条件,区域范围有一定的工业基础;矿产资源规划划定的矿产资源开采区域。

    构建评价指标体系——评价的基本框架和指标体系的主体构成具有共同性和通用性,主要依据《矿产资源基地综合地质调查技术要求》中的矿产资源基地综合地质调查评价指标。此外,评价指标体系也应遵循因地制宜的原则,有关评价内容需要根据评价对象所处的经济地理和社会环境的不同而有所区别。也就是说,我国东、中部的矿产资源基地和西部矿产资源基地,在布局评价的指标设计上应该有所不同。

    勘查开发布局评价——主要包括评价指标的权重确定,评价指标的评分标准,评价指标的计算等。评价指标权重一般采用层次分析法来确定,把复杂事情分成若干有序层次,确定每一层次中各元素的相对重要性次序的权重;通过对各层次的分析,进而导出对整个问题的分析,即总排序权重。评价标准是指各级评价指标评价值的判别标准,起着一把尺子的作用,一个评价指标处于什么状态,用这把“尺子”去衡量,就可以清楚这个指标的状态是好还是坏。

    规划布局对策建议——根据区块评价的结果,借鉴国内外已有大型矿产资源基地的开发经验和管理措施,提出适宜的矿产资源基地勘查开发工作布局、资源规划、资源管理的政策建议。唤起全社会资源忧患意识,加强地质矿产勘查工作,实行开源与节流并重、开发与保护并重的方针,依靠科技进步,提高矿产资源勘查、开发利用水平,加强矿业规划管理,促进矿业经济可持续发展,为社会主义现代化强国建设提供安全、稳定、经济、可靠的资源保障。

    蕴藏在尾矿中的宝藏

    王威

    尾矿具有环境危害性和资源性的双重属性。近年来,尾矿的资源属性受到我国各级政府和生产企业的高度重视,尾矿资源化的发展趋势日益清晰,尾矿综合利用将是21世纪矿产综合利用范围最广、潜力最大的领域。因此,从国内尾矿资源的实际出发,开展系统调查评价,厘清尾矿利用、保护和处置的边界和先后次序,提出规模化消纳、资源化利用、无害化处置总体解决方案,实现尾矿资源化利用的同时,最大限度地消除其对周边环境的威胁,有着十分重要的经济效益和社会意义。

    尾矿是矿石经粉碎、选冶形成精矿后的剩余部分。我国尾矿来源按行业划分主要包括黑色金属尾矿、有色金属尾矿、稀贵金属尾矿和非金属矿尾矿。

    根据《中国矿产资源节约与综合利用报告(2016)》,截至2015年度11月底,我国在用或者未治理尾矿库有9565处,尾矿累计量超过200亿吨,占地约100万亩。矿石空场填充是尾矿利用的重要方式,占尾矿利用总量的53%,金矿石、铜矿山的尾矿及其他有色和稀贵金属矿山、铁矿山是尾矿充填利用的主要方向,分别占尾矿利用总量的18%、23.6%和11.4%。

    虽然我国尾矿综合利用起步较晚,但由于各级政府和生产企业的高度重视,我国矿产资源综合利用及矿山环境治理已经快速起步并取得了很大成绩,但还需进一步加强尾矿资源化利用领域研究,提高有价组分综合利用水平,丰富尾矿资源化利用的方法途径,实现尾矿利用由“削足适履”到“量体裁衣”的转变。

    中国地质科学院郑州矿产综合利用研究所在地质调查项目支持下,开展铜、铅、锌、钼、金和萤石矿山尾矿调查评价,完成了1300个尾矿库的调查,形成了尾矿综合利用特征大数据,同时,发现了一批稀有稀散组分高的尾矿。栾川地区尾矿库中赋存高于工业品位的钨金属量>5万吨(估算),达到大型规模;在其他尾矿库中还发现了高于或接近工业品位的金1.1316吨,银114.3604吨,钴3581.4吨,铅36.152万吨,锌21.294万吨,萤石26.685吨(估算)。筛选其中42个尾矿库尾矿进行综合利用技术研发和评价,发现有38个尾矿库尾矿综合利用技术经济合理,这说明尾矿资源化具有广阔的前景。

    铁尾矿、铜尾矿和黄金尾矿分别占我国尾矿的51%、19%和13%,是我国主要的尾矿类型。铁尾矿的综合利用主要体现在铁矿物的回收利用、用作建材原料、用做土壤改良剂和微量元素肥料、进行生态恢复等。铜尾矿综合利用主要有铜尾矿再选、用于矿井充填或复垦土地、用于生产建筑材料等。金尾矿的综合利用主要体现在有价元素的综合回收、生产各种建筑材料、井下充填、复垦造田等。

    由于我国前期选矿技术水平的制约和“单打一、重主轻副”的思想等多种原因,我国尾矿中不仅含有可提取的金属组分,而且存有大量可用的以硅酸盐矿物、碳酸盐矿物为主甚至可直接提取的非金属组分,是我国矿产资源的新的宝藏。

    开展典型尾矿资源综合利用技术研究和推广尾矿资源产业化利用技术研究与推广,不但可使原来资源枯竭或资源不足的矿山焕发青春,而且还能够重新成为新的资源基地,以开辟新的材料科技领域,推动科技进步,同时也可以解决环境污染、改善生态环境,具有巨大社会效益、经济效益和环境效益。虽然我国在尾矿综合利用领域开展了很多研究,但仍缺乏关于尾矿的系统调查评价,尾矿综合利用依然停留在单一的综合利用模式,没有形成区域性整体利用模式。因此,亟须开展系统调查评价,厘清尾矿利用、保护和处置的边界和先后次序,提出规模化消纳、资源化利用、无害化处置总体解决方案,实现尾矿资源化利用的同时,最大限度地消除其对周边环境的威胁。

    揭秘日常生活中的高岭土

    赵恒勤 谭琦

    高岭土,俗称“瓷土”、“观音土”,是一种铝硅酸盐矿物,也是人们日常生活中必不可少的一种矿物材料,其中最广为人知的是用来制作陶瓷。

    我国是世界上最早发现和利用高岭土的国家,远在3000年前的商代所出现的刻纹白陶,就是以高岭土制成。江西景德镇生产的瓷器名扬中外,国际上通用的高岭土学名-Kaolin,就是来源于景德镇东郊高岭村边的高岭山。高岭土在陶瓷中主要用来做坯胎,将高岭土用于陶瓷坯胎中在我国陶瓷史上具有划时代的意义,高岭土在釉料中的作用主要是提高釉料的熔融温度和悬浮性,使釉水不宜沉淀。

    我国历史上闻名的“唐三彩”和“青花瓷”均采用高岭土来制作坯体。唐三彩的釉质,主要成分是硅酸铅,而呈色剂则是在釉料中加入各种不同的、适量的金属氧化物所形成的。青花瓷是我国陶瓷中的珍品,也是瓷器的主流品种之一。目前,陶瓷考古界和科技考古界较为认同的“青花”是指利用含钴的矿物作为着色颜料在白瓷坯上绘画,经上釉后在高温下一次烧成(非低温铅釉)而呈现蓝色装饰的釉下彩瓷器。青花瓷的制作工艺复杂,整个工艺流程主要分为瓷土加工工艺-制坯工艺-釉与料工艺-装饰工艺-烧成工艺等5个部分。其中高岭土主要用于制作瓷胎,高档青花瓷对于高岭土原料要求很高,要求Al2O3含量>21%,Fe2O3+TiO2<0.5%。

    现代人们的日常生活中也处处可见高岭土制品,比如日用陶瓷、建筑卫生陶瓷等。我国是世界上最大的日用陶瓷和建筑卫生陶瓷生产国和消费国,且产品逐步被世界认可和接受。近年来,其生产工艺技术进步迅速,整体已接近世界先进水平,但存在过度消耗高岭土资源、中低档产品居多、污染环境等问题。随着陶瓷行业的不断发展,优质的高岭土资源日趋枯竭,对陶瓷生产质量造成很大影响,故中低品位高岭土成为陶瓷行业的接续矿物资源。

    此外在人们日常生活中用到的各种纸张中也不乏有高岭土的身影。高岭土作为造纸涂布颜料的主体组分,其特性对造纸生产可操作性和涂料特性以及成纸质量有很大影响。国外发达国家高岭土主要用于造纸行业。高岭土既可用于填料,也可用于涂料,在造纸中的要求要比陶瓷用高岭土高。此外,高岭土还能用来制备化肥、农药、杀虫剂载体等。

    我国高岭土资源储量丰富,总储量约30亿吨,主要分布在广东、广西、福建、江苏、江西、湖南、河南、山西和内蒙古等省区,可划分为煤系高岭土、软质高岭土和砂质高岭土三种类型。其中煤系高岭土储量约17亿吨,主要分布在我国北方地区。软质高岭土为热液蚀变型,主要分布在苏州。砂质高岭土属风化型或沉积型矿床,主要分布在南方亚热带多雨地区。根据不同的资源类型,采用不同的加工工艺,煤系高岭土主要采用破碎-磨剥-煅烧-超细解聚-分级,部分磁选工艺,应用方向是油漆、涂料、造纸、橡胶、电缆、陶瓷等;砂质高岭土和软质高岭土主要采用捣浆-螺旋除砂-旋流器分级-离心机分级-磁选-漂白-洗涤-压滤-干燥等工艺,陶瓷土主要采用磁选除铁增白,造纸涂料土主要靠漂白除铁增白。

    现在我国多数高岭土企业的现状是:规模较小、产量不大、产品质量不高,与美国、英国、巴西等国相比,存在较大的差距,甚至全国高岭土总产量不及国外一个高岭土大公司的产量。因此,我们应在资源合理利用与保护、产品和市场开发、工艺技术和装备以及管理和政策支持等方面,共同努力,尽快使我国由高岭土资源大国变为高岭土产业强国。

    高寒荒漠区金属矿产资源开发中的矿山地质环境保护

    张永康 曹耀华 谭秀民

    青藏高原东北部、柴达木盆地西南缘铁铜等金属矿集区,是我国西部地区重要的铜、铁、铅、锌、镍多金属成矿带,目前已发现大型、超大型铁、铅锌、铜、镍等矿产资源多处,其中夏日哈木镍矿资源丰富,镍资源量达106.24万吨,有望成为继甘肃金昌镍矿之后我国又一“镍都”。

    该地区平均海拔在3000米以上,属于典型的高寒、干旱内陆高原盆地气候,区内地势陡峻,沟谷深切,地貌以戈壁滩、沙丘、高山为主,地表处有厚1米左右的土层覆盖,底下为岩石及沙石层,土壤类型主要为灰棕漠土。植被覆盖率一般小于15%,呈现典型的高寒荒漠景观。

    高寒荒漠区金属矿产资源的开发历史悠久。随着国家对紧缺矿产资源需求量的增加,该区丰富的铁铜镍等金属矿产资源的进一步开发将对国民经济发展起到重要作用,可为国家经济安全提供有力保证,带动交通、通信等基础设施发展,提供一定数量的就业岗位,促进工业化和城镇化建设,为更好地实现西部地区脱贫攻坚提供经济支撑。

    金属矿产资源的开发一般包括采矿、选矿、冶炼三个过程。以往粗放式的采、选、冶过程对生态环境的影响主要有矿山地质灾害、地形地貌景观破坏、土地资源破坏、含水层破坏和水土环境污染等。

    那么,高寒荒漠区矿山地质环境灾害如何防治?

    建设绿色矿山

    我国历来重视环境保护。习近平总书记指出:“既要绿水青山,也要金山银山;宁要绿水青山,不要金山银山;而且绿水青山就是金山银山。”这为矿业开发环境保护指明了方向。2017年,原国土资源部、原环境保护部等六部委联合出台了“关于加快建设绿色矿山的实施意见”,详细阐述了绿色矿山的建设。

    绿色矿山是指在矿产资源开发全过程,既要严格实施科学有序的开采,又要将对矿区及周边环境的扰动控制在环境可控制的范围内;对于必须破坏扰动的部分,应当通过科学设计、先进合理的有效措施,确保矿山的存在、发展直至终结,始终与周边环境相协调,是融合于社会可持续发展轨道中的一种崭新的矿业形象。绿色矿山建设是一项复杂的系统工程,代表了一个矿业开发利用总体水平和可持续发展潜力,以及维护生态环境平衡的能力。它着力于在科学、有序、合理开发利用矿山资源的过程中,最大限度保护和恢复治理矿山环境。

    加强矿山地质环境防治

    在高寒荒漠区,这样一个矿产资源丰富、动植物资源丰富、环境又极为恶劣的区域,结合矿山开发对地质环境造成的影响,建议从以下几方面进行矿山地质环境防治及保护:

    针对新建矿山,应按照“加快建设绿色矿山的实施意见”精神,建设绿色矿山,从源头保护矿山地质环境,实行过程控制的保护性开发措施。

    针对已发现的矿山地质灾害,应加强治理与监测工作,加强对不稳定边坡监测和移动规律认识,消除和减小不稳定边坡崩塌滑坡灾害可能对过往行人和车辆的威胁。

    针对高寒荒漠区矿山开发过程中主要造成的影响是土地资源破坏和地形地貌景观破坏这一现状,加强土地资源的保护,尽量减少对原生态土地的占用与破坏,特别是尽量减少对表层土壤的破坏,以地下开采为主,采取以钻代槽、浅钻的绿色勘查技术,对于必须破坏部分土地时,必须对表层土采取保护措施以防止表层土散失和退化。

    锡铁山铅锌矿废石堆上的人工林

    采取封育、地表植被重建,在草皮的种属选择、工艺的采选上要与矿区所处的地理位置、气候条件、土石环境相匹配,以确保植被重建的成效;废石、废矿渣堆覆土绿化;废石、废矿渣堆积台面整治,压实台面,加固边坡、衬砌护坡,在有效部位建设拦挡工程,设计相应的排水、防水工程;地质探槽治理,采取土方回填。

    开展人工现场调查、遥感监测工作,动态掌握矿产资源勘探开发活动对土地资源的破坏类型、面积及破坏程度等,同时监测监督矿山地质环境治理恢复工作情况。

    建设矿山公园

    在青海西部大柴旦地区,西部矿业股份有限公司锡铁山铅锌矿分公司在矿山地质环境保护方面就是一个优秀的典范。该矿山位于青海省柴达木盆地北缘戈壁滩上,常年刮风,沙尘暴天气时有发生,降水量稀少,植被稀少,难以存活。整个矿区及周围只有少许骆驼草和麻黄草生长。经过改造,该矿山在废石堆、厂区内种植了大量杨树、柳树、红柳和草皮,在厂区形成了具有防风固沙能力的人工林,绿化覆盖率达到了可绿化区域面积的80%以上,改变了矿区小环境,降雨量增加,风沙天气逐年减少,逐步形成了适宜人居住的环境。

     

    珍惜矿产资源 助力生态文明

    1 前言

    近年由于常规天然气资源量和产量的下降,特别是在北美洲,非常规天然气得到了高度的重视。一些估计表明,全球非常规天然气资源量(不含水合物)超过30000万亿立方英尺,大约有50%的资源来自页岩气。Julander能源公司的首席执行官Fred Julander认为页岩气(SG)是“自发现石油以来最重要的能源进展”。

    水平钻井技术的进步、水力压裂、相对高的天然气价格(相比2009年之前)和近来在巴内特页岩(Barnett Shale)和美国其他几个页岩气藏的商业成功都使页岩气在美国成为了热门能源,而且页岩气的勘探开发已开始蔓延到加拿大和世界其他几个地区。

    由于页岩气远景的复杂性和广泛性,针对页岩气的应用不能采用普遍用于常规气和煤层气的应用技术,而需专门设计开发工具和方法。多名学者包括Gray等人(2007)和Harding(2008)认为基于确定性解决方案的决议不适用于页岩气开发,因其没有考虑与复杂成藏有关的风险和不确定性,且经常导致过于乐观的结果。

    到目前为止,尽管在北美和欧洲的勘查活动活跃以及近期商品价格下降,页岩气远景分析工作也只完成了极少的部分。商品价格的下降使最高质量远景区的开发至关重要,这些区域的开发不仅最符合公司的利益,并且赋予公司与国外的低成本常规气田(即卡塔尔和沙特阿拉伯相关的天然气)竞争的最佳潜力。Williams-Kovacs和Clarkson(2011)提供了与非常规的远景分析有关的现有工作的回顾,并提供了一种专为页岩气应用而设计的综合的六阶段远景分析及开发评价方法(PADEM)。本文中,作者还展示了一个专门开发用以筛查页岩气远景区并且选择最适合详细分析远景的工具。本文以Williams-Kovacs和Clarkson的工作为基础,致力于远景评价并选择进行更深入分析的远景区的试点位置。

    当前工作的目标是:①开发一种协助页岩气勘探开发阶段的方法和配套的分析工具;②演示已开发技术在加拿大西部致密砂岩/页岩远景区的应用。这项工作的主要贡献是开发与示范一种针对页岩气远景区的严格分析方法。当考虑共存关系时,基于先导试验井输入变量的不确定性,该方法能生成其预测的分布。以前所有的工作一直专注于全域开发方案,然而无法利用勘探开发早期阶段可获取的少量数据快速形成这种全域开发方案。

    2 工具开发

    在这项工作中,开发了一种用于分析页岩气远景的工具。该工具选择使用(以Williams-Kovacs和Clarkson提出的方法(2011)为例的)预筛选的方法。本文将重点放在该工具的开发和应用,分析某一远景区的不同区域,以确定它们是否是适合的试点项目,并描述了图1所示的PADEM工作流程的勘探阶段。勘探阶段的目的是对从更多的详细资料中筛选的远景进行调查,以增加对油藏流动性和碳氢化合物生成能力的了解。在这项工作中,我们对个别类型油井采用概率范围经济学(probabilistic scoping economics)作为勘探标准,以确定该远景区是否适合实行试点项目。表1中完整提供了Williams-Kovacs和Clarkson(2011)详细讨论整体勘探开发方法的总结。

    表1  勘探开发方法概况

    发展阶段

    概述

    靶区筛选

    评估所有潜在的远景区,并选择能提供最好的商业成功机会的远景区

    勘探

    对远景区进行更详细地调查,提高对油藏流体特性和相应碳氢化合物生产能力认识。确定有代表性的试点项目适合的地区

    试采

    继续提高对远景区的认识,集中验证试采区单井的供给能力,评估完井方法

    商业示范

    在项目提交全部资金预算之前,完成开发部分(30%)针对错误的试验结果的测试

    全域开发

    完成全域开发计划,开始制定退出战略

    新的远景/退出

    完成项目详细回顾,评估区域及具体化开发过程中新的远景相关区域。调整和实施退出战略以及任何所需的补充措施

    在这项应用中解析模型比数值模拟更适用,其原因在于应用程序自设置和初始化的时间很短,整合的蒙特卡罗模拟法简单易行,并且在勘探早期阶段不容易获得形成精准的数值模拟所需的详细数据。尽管数值模拟技术已得到改进,但解析方法在工业和文献中依然被大量使用。下文给出了开发工具的关键部分的概要。

    2.1 属性图

    勘查方法最关键的组成部分可能是关键储层、地质力学、岩石物理和地球化学特性的精确属性图的开发。从地质模型、产量不稳定分析(RTA)、压力不稳定分析(PTA)、岩石物理调查等组合中可以推导出这些属性图。这些属性图用于远景的可视化、区块选区以及单一区块的分析。天然气原始地质储量图(OGIP)、Km-h图、压裂脆性图等有助于选择代表性区块以及具备更大开发潜力的区块,甚至高度非均质性区块。区块作为一种评价不同区块远景生产特性的方法,基于地质和岩石物理的观察,比较简单易于操作。采用区块方法不需要针对每个勘探网区块开发一种标准井进行分析,然而通过应用蒙特卡罗法依然解释了其变化性和不确定性。Clarkson和McGovern(2005)采用区块方法评价了煤层气(CBM)远景。通过输入X-Y坐标值以及PetrelTM软件的储层属性Z值可以在Excel中创建储层属性图。随后,数据透视表程序被用于对数据排序,并利用二维绘图应用软件创建属性图。由于早期的岩石物理模型通常利用有限的数据集开发,单一区块在蒙特卡罗模拟中选择不确定的输入数据和参数范围可以解释模型参数的不确定性。这种解释不确定性的方法将在本文所示实例中进行演示。

    2.2 水力压裂模型

    该项工作中,水力压裂裂缝的半长采用Valko(2001)提出的在常规和致密气中应用的简单双翼压裂模型来预测。该模型采用基质渗透率、剪切模量(杨氏模量与泊松比的函数)以及其他储层参数作为输入数据,且如果建模的输入参数不确定,则都必须重新计算每次蒙特卡罗迭代。采用简单的关联(Acm=4xfh)可将裂缝半长转换为与压裂有关的面积。这个压裂模型可能无法代表部分更复杂的页岩气裂缝。为了更好的表示引入到大部分页岩气储层的复杂压裂网,Xu(2009,2010)等人建立了一个更具有代表性的水力压裂模型,该模型将被结合到本次工作中所演示的更新版本的方法中。该区的微地震观测表明,在本文预测的远景区横向双翼压裂的假设是合理的。

    作为所应用的速率预测模型中的关键组成部分必须估算裂缝半长,这一问题将在下面部分开展讨论。水力压裂裂缝半长在随机分析中作为不确定的输入量,其分布主要根据该地区的微地震事件或者其他方法来确定。

     

     

    图1  非常规天然气勘探阶段的勘探/开发方法工作流程

    2.3 速率预测

    Clarkson(2013)提供了关于页岩气井生产分析和速率预测综合全面的概述。在该工作中,我们将页岩气井理想化为一个矩形双孔介质系统,气体从基质岩块流入到裂缝且储层不随着裂缝延展(如图2的概念模型)。该模型忽略了包括体积压裂(SRV)在内的影响,其他作者认为大部分低渗页岩气井在合理的时间内不会发生体积压裂。此外,图2所示的概念模型假设了一个均质的完井——Amborse等(2011)和Nobakht等(2011a)讨论了非均质储层完井的预测。

    在本次工作中,该模型的解决方案首先由EI-Banbi(1998)提出来。人们普遍认为在页岩气藏中占主导地位的瞬时流动状态是从基质到裂缝的线性流。同时,也可能出现一个与水力压裂线性流动相关的线性流动周期,但是通常认为这个阶段持续时间很短,或者被水力压裂清理以及表皮效应所掩盖,而很少可用于分析。本项工作中,我们假设瞬时线性流(从基质到裂缝)之后是边界控制流,该流态与受表皮效应(见等式7)影响的线性流体模型存在早期偏差。压裂段之间的不渗透边界结构导致了边界控制流产生。由Wattenbarger等(1998)首先将早期线性到边界控制流体的假设引入到致密气的应用中,并且该假设被广泛应用于文献和页岩气行业的解析模型。

     

     

    图2  从线性流到边界流的解的概念模型

    2.3.1 瞬时线性流的速率预测

    EI-Banbi(1998)提出通过恒定速率和恒定流体压力来描述瞬时线性流的公式。本项工作中采用恒定流体压力的条件,这也是本文其他部分的重点——该边界条件最接近大部分产生达到最大水位降低值的页岩气井的流动条件。Samandarli等人(2011)采用不同的流体压力迭代方法,对页岩气生产进行分析建模,但是他们表明在大部分情况下采用恒定流体压力的假设就可以了。

    与常用于表征简单横向双翼压裂的裂缝半长(Xf)相比,相关储层面积(Acm)能更好的表示完井措施和增产措施效果以及生成复杂裂缝的能力。因此,在这一分析中,采用相关的储层(气藏)面积(Acm)取代裂缝半长(Xf)。许多业内专家相信由于页岩气藏超低的基质渗透率,复杂压裂对于页岩气的商业生产至关重要。

    无因次时间,tD,Acm,相关储层面积(Acm)依据公式1在恒定压力条件下定义。

                               (1)

    无因次速率,qD,Acm,由无因次时间定义:

                                           (2)

    基于储层特性的无因次速率表达式,如果可获得关于KmAcm估算值,通过公式(3)可确定气体流速。采用不稳定产量分析或者其他的模拟技术可估算KmAcmKm也可以通过实验室技术单独确定。

                                 (3)

    Ibrahim和Wattenbarger(2006)认为线性流的性能受水位下降程度的影响,同时提出水位下降量修正因子(fcp)。此次工作中采用的修正因子(fcp)由公式4给出。

                                (4)

    此处,

     

    Nobakht等人2011a和Nobakht等人(2011b)通过分析中采用校正时间(本次工作未采用)提出一种更严格的校正水位下降量的方法。

    将水位下降量修正因子应用到公式3得出公式5:

                           (5)

    除了水位下降量的修正,这些公式经过进一步修改可直接应用于页岩气井。与致密气井相比,大部分页岩气井在时间曲线的平方根中表现出的较大截距(在致密气井中曲线通常穿过原点),而在流量和时间双对数曲线上页岩气井则呈现出的一半斜率的偏差。多名作者最初认为是裂缝的有限导流能力造成了这种偏差,但是Bello(2009)和Bello和Wattenbarger(2009,2010)认为这种偏差可以通过采用表面效应来更好的解释。Bello(2009)、Bello和Wattenbarger(2009)在恒定流量和恒定流体压力条件下完成了大量的受表皮效应(skin effect)影响的线性流分析,且推导出了恒定流体压力条件下的解析解。在他们的分析中,将表皮效应作为一个常量。Bello(2009)和Bello和Wattenbarger(2009)证明恒定流量情况下表皮是附加量,而恒定流体压力情况下表皮的作用是非线性的。由Bello和Wattenbarger(2009)提出的解析式可以使用下面的近似代数方程:

                    (6)

    从方程(6)可以看出,当tD(t)值大时,包含表皮的项就会变小。

    Nobakht等人(2012)研究了巴内特、马塞勒斯和蒙特利的大量页岩气井(这些气井在相对恒定的流压下产量不断降低),同时得出结论:通常这些页岩气井更多表现出恒定流量的情况而不是恒定流压的情况。作者假设这种意想不到的表现可能是由于Bello(2009)以及Bello和Wattenbarger(2009)提出的表皮模型太过理想化,因此无法代表野外条件。通过假设恒定的表皮效应,模型不能说明由压裂清理、压力敏感地层、变化的压裂导流能力、变化的井底流压、压力相关的流体性质、变化的井筒流体梯度、液体加载等导致的表皮改变。作为这项工作的结果,作者提出了一个可应用于公式(2)的替代表皮修正项:

                       (7)

    包括水位最低量和表皮的影响,公式(1)、(5)、(7)能够利用预测的气体流量,作为时间的函数,在线性流区域可对KmAcm给出独立的估测。

    2.3.2 边界控制流的流量预测

    上面描述的方法适用于有效的储层边界相互接触,边界控制流形成之前。基于图2所示的几何图形,边界控制流紧随着瞬时线性流的末期出现。当外部SRV的影响较为显著时,这一观点较为保守。Clarkson和Beierle(2011)认为如果遇到了其他的瞬时流区,则应采用多重分区的方法,此外,如果多级压裂井需要进行非均质性储层的完井(heterogeneous completion),早期线性流之后不会立刻发生真实边界控制流,且需要更复杂“混合”预测技术。如同下面叙述的,我们选择采用更为保守预测程序,假设线性流之后紧随边界控制流。

    利用公式8计算达到线性流的拟稳态时间(或者是瞬时线性流的结束时间):

                           (8)

    正如图2中看到Ye是压裂到储层边界的距离,计算公式如下:

                           (9)

    多名作者已经提出了页岩气井拟稳态线性流的预测方法。包括Fraim和Wattenbarger(1987),Palacio和Blasingame(1993),Doublet等(1994),Agarwal等(1999)和Mattar和Anderson(2005)认为可采用物质平衡类模拟程序预测边界控制流。Clarkson和Pedersen(2010)将这种方法应用于致密油研究,同时本文也将采用这种方法。公式(10)给出采用物质平衡方法预测边界控制流的生产速度:

                  (10)

    此处qpssi-Linear是边界控制流初始的页岩气流体速度,Pri)pss是边界控制流初始的平均储层压力,且Pwfi)pss边界控制流体初始时井筒流体压力。通过物质平衡计算平均储层实际气体拟压力。对于含有大量吸附气的页岩气开采(application),一般使用Clarkson和McGovern(2005)提出的MBE方法。而在以游离气为主的情况下,则使用定容气藏的常规MBE方法。物质平衡计算需要地质储量和气体特性(比如天然气压缩因子),这两者都是由关键PVT输入量和状态公式(EOS)确定的。

    (a)

    收入总额

    (b)

    收入总额

    扣减

    使用费

    扣减

    使用费

    扣减

    运营成本

    扣减

    运营成本

    得出

    税前运营现金收入(OCIBT)

    扣减

    资金成本补助(CCA)

    扣减

    收入税

    扣减

    加拿大开发费用(CDE)

    得出

    税后运营现金收入(OCIAT)

    扣减

    加拿大勘查费用(CEE)

    扣减

    资本支出

    扣减

    加拿大油气物业费(COGPE)

    得出

    税后现金流(CFAT)

    得出

    生产应税所得

    贴现

    税后贴现现金流(DCFAT)

    生产税率

       

    得出

    应付税款

       

    扣减

    免税额度

       

    得出

    应付净所得税

    图3  现金流分析:(a)现金流;(b)收入税(加拿大税制)

    结合El-Banbi(1998)改进的瞬时线性流的无因次公式和边界控制流的物质平衡模拟方法,可以开发一种综合的预测方法:

    1)        获取Acm(或者Xf)和Km(来源于微地震和/或RTA模拟/已有生产数据或者其他估计)的独立估算值。

    2)        使用公式(1)和(7)作为时间函数计算tD,AcmqD,Acm

    3)        线性流部分的数据利用公式(5)作为时间函数计算qg

    4)        指定排放区(来源FMB模拟/已有的生产数据或者其他估算)。

    5)        使用公式(8)和(9)计算tPSS-LinearYe

    6)        确定

    7)        采用公式(10)通过废弃量(边界控制流)从tPSS-Linear预测产量。

    上面描述的解析模型是假设模型(最小变化)区块内的体积平均值参数是恒量,并从认为是不确定的参数的概率分布中选择一个值。每一次蒙特卡罗迭代将选择不同的值,导致不同的流量预测和不同的主要经济指标值。在许多参数高异质性水平的情况下,存在明显的不确定性,这种不确定性反映在关键输出参数的显著变化。

    2.4 经济模块

    将经济模块与速率预测集成来计算与生产相关的现金流。因为通常行业采用名义美元计算实际(通常的)现金流和名义(现行的)现金流,虽然采用实际的盈利指数计算项目的最低预期资本回收率,且通过不同的通货膨胀率来比较项目。采用图3中的业务流程计算现金流和收入税(加拿大税收制度)。

    该模块中的天然气价格的确定实行了价格操纵,而非价格预测。采用价格操纵表明了项目十分稳定(不论是单独而言还是相较于其他项目),并且不再需要预测极不稳定的天然气价格,该模块中也设置了以价格预测为基础引导经济的选项。

    方法中建立了多个实际盈利能力的指标,包括净现值(NPV)、内部收益率(IRR)和投资收益率(ROI),用来比较项目和公司设定的最低预期资本回收率,同时可给项目进行排序。

    2.5 蒙特卡罗模拟的一体化

    本次工作将蒙特卡罗模拟整合到方法开发中。采用@RISKTM(Palisade Corporation,2010)对关键PVT和储层属性(原始参数)进行概率分布和模拟操作。概率分布的输入变量根据不同项目的数据数量和质量而变化。Clarkson和McGovern(2005),Haskett和Brown(2005)和Harding(2008)认为对数正态分布最能代表PVT、储层和经济特性,因此本文使用了这种分布类型。这些概率分布拟合按P10(低)、P50(中)和P90(高)不同的值输入各个不确定变量。这些输入值可能来自勘探/远景数据、个人经验、模拟数据等。缩减所有输入变量的分布保证每个实现只选择合理的数值(缩减分布将选择少量接近无穷大的数值,从而影响输出变量)。

    上面讨论了@RISKTM输出变量定义的关键经济参数,以及气体速率和累积天然气产量。由于每个输出变量允许量化与项目相关的不确定性,可对其生成一个概率分布,以便做出与远景选取和开发有关的明智决策。

    通过在x轴上找到相应的最低预期资本回收率时的位置,向上垂直移动至曲线处,然后再水平投影到y轴,这样可以从累积概率分布计算出超过设定最低预期资本回收率的概率。用1减去y轴上求出的值,得出超过最低预期资本回收率的概率。这个方法在本文中将作为范例进行演示。

    在这一应用中(如在孔隙度和渗透率之间),采用了拉丁超立方体抽样,如果有必要的话,还可合并相关性(如孔隙度与渗透率)。典型的多相(气+水)页岩气/致密气应用的主要参数如表2.3所示。在某些情况下,参数的依赖关系可使用行业普遍接受的经验模型进行解释,而在其他情况下会使用来自现场数据或者估算得到的基于方向的相关性(如较高的正相关关系)。例如,与压力有关的渗透率(绝对的渗透率比值)使用Yilmaz等人(1991)的方法可与储层压力和岩石力学特性关联。相反,束缚水饱和度与孔隙度密切正相关。可能的参数关系如表2所示。

    蒙特卡罗模拟运用了一个类似于Clarkson和McGovern(2005)使用的煤层气气藏远景分析的方法。

    表2  基本参数、可能的相关性和参数关系

    基本参数

    可能的相关性

    关系

    有效厚度/英尺

    孔隙度/%

    粒径,有机质

    适用于某些情况下和正相关情况的实证模型

    初始含水饱和度/%

    孔隙度

    高度正相关

    束缚水饱和度/%

    孔隙度

    高度正相关

    基质渗透率/毫达西,初始状态

    孔隙度,有机物

    适用于某些情况下和正相关情况的实证模型

    基质渗透率/毫达西,初始比

    储层压力,力学性能

    野外/岩心数据经验曲线

    相对渗透率

    含水饱和度,束缚水饱和度

    野外/岩心数据经验曲线

    初始储层压力/磅/平方英寸

    深度,渗透率(超压)

    气压梯度

    储层温度/℉

    深度

    温度梯度

    天然气比重

    朗缪尔体积/标准立方英尺/吨

    容积密度

    来自岩心/岩屑的线性关系

    朗缪尔压力/磅/平方英寸

    体积密度/克/立方厘米

    流泄区/英亩

    含气量/标准立方英尺/吨

    TOC

    正相关

    井眼半径/英尺

    表面

    增产效果

    高度正相关

    压裂总半径/英尺

    剪切模量(+),渗透率(-),有效厚度(-),井眼半径/英尺

    变化—见括号中相关方向

    井底流压

    井眼长度

    高度正相关

    3 该方法应用于远景勘探

    本文中开发的方法广泛应用于SG远景将其分成区块进行分析的目的,以确定是否适合作为一个试点项目。由于SG试点和开发项目成本高,且其详细分析需要大量数据,页岩气远景勘探至关重要。

    对于远景勘探应用而言,其方法的选择以当前远景数据和模拟数据相结合为基础。理想情况下,对于关键PVT和储层参数情况良好的估计,作为空间坐标的函数可用于远景勘探。如果事实并非如此,可以对模拟气藏或者其他数据源进行估算以获取数据,同时分析该方法带来的不确定性。

    假定整个远景区PVT和其他储层特性不变,输入数据可用于生成主要储层特性图。关键生产指标图如OGIP和基质渗透率乘以可以开发的净投入(千米/小时),可用于区块的选择。区块的选择基于区域类似的关键生产指标的值。对页岩气储层而言,压裂的指标,如压裂指数或脆性也可能用于区块选择,同时许多作者表明建立复杂裂缝网的能力对于页岩气商业开采至关重要。

    选择区块后,开始进行蒙特卡罗模拟,按照P10、P50、P90的概率预测和可以开发累积产气的区块,且结合使用关键经济指标的分析来确定区块能否适合一个试点项目。其他因素比如公司的经验,企业和商业策略,可用的资源和基础设施等都将纳入评估,以便为公司以及股东们确定哪些区域可以作为最佳试点选项作出明智的决策。

    远景勘探方法工作流程见图4所示。

    4 采用两段页岩开发模型的样本示例

    为了进一步说明该方法的应用,对加拿大西部的某处致密砂岩/页岩(假定没有吸附气体)远景区的两段进行了分析。在之前的研究中,PetrelTM开发的远景地质模型采用可用的岩石物性、储层和生产数据。图5所示研究区域内4口井的三维孔隙度模型和孔隙度相关的钻/录/测井记录。在该区域,存在两处可获益的产气水平井段(井段3和井段4)。

     

    输入数据

    关键储层属性的填图属性

    PVT,其他储层和水力压裂属性

    生产数据

    经济投入

    区块选择

    根据OGIP或者其他关键属性确定区块

    蒙特卡罗模拟

    模拟输出

    P10、P50、P90的概率预测和累积产气量

    水力压裂运行情况

    经济参数

    可行的商业区块标志

    其他

     

     

    图4  远景勘探方法的工作流程

     

     

    图5  三维孔隙度模型和孔隙度相关的测井

    模型开发期间这个开发区拥有11口垂直井,2口倾斜井和4口水平井。最初钻完成垂直井,紧随其后的是开始于2008年的水平井。Clarkson和Beierle(2011)在该区选择一系列井进行不稳定产量试井(RTA)。模型开发中使用的水平井的总结显示在下面表3中,同时在图6中(在下面描述)该区域的天然气原始地质储量(OGIP)图上显示了井的近似轨迹。

    表3  研究区水平井概况

    井名

    井向

    进入层位

    完井方式

    1号井

    水平

    井段4

    尾管注水泥

    2号井

    水平

    井段3

    自膨胀封隔器

    3号井

    水平

    井段4

    自膨胀封隔器

    4号井

    水平

    井段4

    自膨胀封隔器

    所做的分析主要集中在大部分是水平井的井段4。为了简化分析,采用孔隙度下限为4%,通过Excel加权平均井段4层位,将PetrelTM多层模型转换成一个单层模型。这一平均化过程是为了完成对基质的孔隙度、初始含水饱和度和渗透率的处理。利用孔隙度下限值还可以计算总有效收益和毛净收益(有效收益假设包括所有孔隙度下限值以上的层)。图7a和图8a显示了OGIP和Km-h属性图。

    模型采用的网格大小如表4所示。在整个开发过程中假设为常量的PVT、储层和生产参数如表5所示。

    表4  网格属性

    网格属性

    数值

    网格尺寸

    135×129

    区块长度,X/英尺

    49.76

    区块长度,Y/英尺

    49.76

    网格区块面积/Ac

    0.057

    对于这种情况,人们认为井筒流动压力(pwf)为常量1750磅/平方英寸,接近开发区水平井最初的井筒流动压力。随着时间的推移井筒流动压力降低,后期模型中压力驱动力低于开发井,模拟气率并不乐观。这种情况下,在可获取日常生产和流动压力期间内,平均两个收益井的流动压力大约是1550磅/平方英寸,因此到开发后期之前,这种假设的影响并不很明显。在实际勘探中,该地区还没有投入生产,由于我们不需要将可用的生产数据与模型匹配,而是采用实际的流动压力估计值尝试得到一个准确的潜在生产能力估计值,所以这种假设的影响不是一个值得关注的问题。

    表5  PVT常数、储层和生产投入参数

    参数

    PVT参数

     

    气体比重

    0.648

    N2/%

    0.46

    CO2/%

    0.2

    H2S/%

    0.0

    温度/℉

    166.5

    Cw/磅/平方英寸-1

    2.9×10-6

    Cr/磅/平方英寸-1

    5.6×10-6

    VL/标准立方英尺/吨

    N/A

    PL/磅/平方英寸

    N/A

    储层参数

     

    Pi/磅/平方英寸

    3500

    排放面积/Ac

    80

    生产参数

     

    Pwf/磅/平方英寸

    1750

    rw/英尺

    0.3

    3个区块中假设关键属性的变化情况如表6所示。各属性的数值是每个区块的各个网格值的算术平均数。由于基质渗透率是蒙特卡罗输入量,且利用基质渗透率值可计算总压裂半径(虽然也可使用压裂分析模型在每次迭代时作为基质渗透率函数计算总压裂半径),故给出了一个基质渗透率值以显示区块之间总值的变化情况。

    表6  储层变量和水力压裂输入参数

    参数

    区块1

    区块2

    区块3

    储层参数

         

    有效厚度/英尺

    102

    74

    58

    孔隙度/%

    7.1

    6.5

    6.0

    Sw/%

    18

    15

    16

    Km/毫达西

    0.0084

    0.0079

    0.0077

    水力压裂参数

         

    剪切模量/磅/平方英寸

    2×106

    2×106

    2×106

    总压裂半径/英尺

    1432

    1477

    1489

     

     

    图6  研究区地质储量图呈现近似水平井轨迹

    4.1 区块选择

    利用从PetrelTM多层模型开发的单层模型,其单层等量地质储量如图7a所示。根据类似颜色为代表的区域具有类似地质特征和岩石物理性质,通过视觉观察可选择区块。虽然已知气藏具有高度的横向非均质性,可以看到关键的地质和岩石物理性质明显凸出部分。该图形显示了更复杂的异质性模式的情况,需要更多的区块并且可能有必要用区块代表具有相似属性的不连续块段。图7b显示基于天然气原始地质储量选择的区块远景区。在计算天然气原始地质储量时,虽然该远景区吸附气体量很容易被包含其中,但还是假设其可以忽略不计。

     

     

    图7  地质储量图:(a)地质储量;(b)选区

    从图7b可以看出选取的三个区块中,区块1具有最高的天然气原始地质储量(红色和橙色),区块2具有的地质储量(光和暗绿色)次之,区块3具有的地质储量(紫色和蓝色)最低。从这幅图中可以推断出区块1将有最理想的属性,因此可能具有最高的产量,而区块3产气物性最不理想,因此可能具有最不理想产气量。如同气藏地质储量图(图7)一样,如果绘制Km-h图我们也可以分辨出三个相似的区块。此次应用区块选区采用的天然气原始地质储量图和Km-h图作为代表资源的程度/密度和储层特性的两个要素,这是工业上常用的评估致密砂岩和页岩远景好坏的关键因素。区块选区的属性根据不同项目而变化,取决于驱动特定资源类型远景的关键要素。

    对于这种情况,假设简单的水平双翼压裂(如所使用的压裂模型所假定的)就足够了,因为微地震数据对同一区域的补充水平压裂井的解译说明复杂程度较低,如果不是水平情况,则进行压裂(图9)。采用水平和垂直观察井用以观察,同时采用双阵列处理会产生一个好的数据集。一般情况下,各个阶段仅出现一个水力压裂裂缝。水力压裂裂缝通常选择北东-南西方向,与加拿大西部沉积盆地(WCSB)部分最大水平应力方向一致。

     

     

    图8  Km-h图:(a)Km-h;(b)选区

    通过比较图6与图7b和8b可以看出在开发区所有水平井部分或全部在区块1范围内。因为这个原因,剩余的分析还将在区块1中开展。对区块1区域的水平井的预测情况而言稍微乐观,因为这些水平井水平延伸超出区块1区域进入地质储量和Km-h更低的区域(该区水平井采用恒定的流体压力与(Pwf)i相比将获得相反的影响)。

     

     

    图9  根据微地震数据解译的研究区内水平井水力压裂裂缝几何图形

    4.2 经济分析

    分析假设只有天然气价格是变量,而所有其他经济参数都保持常量。表7列出了其他主要经济参数的值(基于Magyar和Jordan的估算(2009))和表8介绍了主要的专利权使用费、税和贴现参数。

    在本文的分析中,净现值(NPV)作为重要的收益经济指标且最低资本回报率为0。

    分析远景的工作流程图如图4。

    表7  资本和运营成本参数

    参数

    土地成本

     

    租金/美元/亩

    2500

    代理费/美元/亩

    50

    单井成本

     

    钻井/百万美元

    1.5

    完井/模拟/百万美元

    2

    配套设施/管道/百万美元

    0.35

    储层表征

     

    地震/百万美元

    0

    测井/百万美元

    0

    提取岩心/百万美元

    0

    其他/百万美元

    0

    运营成本

     

    固定成本/美元/月

    5800

    可变成本/美元/千标准立方英尺

    1.25

    表8  使用费、税收和折现率

    经济参数

    费率

    使用费率

    20%

    税率

    30%

    实际贴现率

    15%

    名义贴现率

    18.45%

    通货膨胀率

    3%

    4.3 蒙特卡罗模拟

    在区块选择之后,本文进行了蒙特卡罗模拟研究。蒙特卡罗模拟中,基质渗透率(km)和页岩气价格不断变化,而所有其他的PVT、储层参数和经济参数保持不变。为了更好地进行说明,我们选择了将“不确定”的输入变量的数量显著限制在基本控制远景的油藏性能(储层渗透率)和经济情况(天然气价格)。基于P10、P50和P90值按照对数正态分布模拟参数。在大多数的勘探情况下,许多参数都是不确定的,可以通过这些参数的概率分布(见表2)来定义。对于需要使用概率分布进行定义的一些关键参数,可通过评估给定区块内重大变化的属性图来直接确定,或用更严格的统计技术,如采用区块内部数值计算变异系数(Cv)。由于基质渗透率是基质流动的主要控制要素,以及未来商品价格造成的天然气价格的高度不确定,针对这种情况,我们选择基于视觉观察的基质渗透率。

    基质渗透率按照P10、P50和P90的值计算如下。通常情况下,可以通过岩石物理模型中的参数值拟合分布来生成概率分布,但是因为我们处理的是远景的早期评估,因此我们采用了替代的方法,即最大限度提高模型获取的不确定性来解释其他早期参数估算无法获取的变化性。如果需要,对其他不确定参数也可以使用相似的方法。

    P10——区块1中比第十百分位值的基质渗透率低20%

    P50——区块1中的基质渗透率值居中间数

    P90——区块1中比基质渗透率的九十百分位值高20%

    表9中定义了2个输入变量的分布。将模型内部不确定参数合并关联(见表2)也很重要。虽然孔隙度和渗透率之间的相关性被加入到原始岩石物理模型(幂律相关),并且压裂半径与剪切系数(正相关)、基质渗透率(负相关),净收益(负相关)和压裂模型井眼半径(负相关)相关,但是出于演示的目的,本文对这一方法进行了简化,使蒙特卡罗模拟中的主要变量之间没有相关性。由于压裂半径取决于基质渗透率,压裂模型必须在每次迭代时重新计算。气体流量,累积产气量和净现值被定义为@RISKTM输出变量。

    本文进行了5000次蒙特卡罗迭代,以确保蒙特卡罗输入变量充分覆盖样本空间。要求覆盖足够的样品空间,是为了确保每个模拟输入相同参数运行时,能得出同样的结论。出于演示的目的,用上述方法获得的迭代数并不是最优化。但是,通过将无限大(非常大)的样本输出分布与减少样本数量的输出分布比较,同时寻找要求充分重复“已知”输出分布的最小值,可以获得优化的迭代数。当进行多个模拟时,优化处理可用于减少处理时间和容量。

    4.4 结果

    图10显示了区块1中单口气井的确定产气量和累积产气量预测。这个“确定性”的基质渗透率的值来自于表9所示输入分布的斯旺森平均值(SM),假设这个值代表区块收益的平均水平(静态平均Km=0.0095毫达西)。虽然Bickel等人(2011)指出了斯旺森平均值(SM)的缺点,但它仍然被广泛地用于工业,因此在这种情况下还将使用。此外,斯旺森平均值在输入分布的平均值的5%范围内(使用@RISKTM计算),因此认为在这个例子中的平均值是准确的。另外,可以使用另一个估计的平均值(即分布平均值、区块值的算术平均值等)。图10a显示的产气速率与时间半对数图以及累积气体的产生与时间的笛卡尔曲线,而图10b显示了产气速率和时间的对数分布图。

     

     

    图10  开发模型情况下的确定速率预测:(a)产气速率和时间、累积产气量和时间的半对数;(b)产气速率和时间的对数关系

    图11显示了产气速率与时间的半对数图,图11b显示一个产气速率与时间的对数图和图11c显示预测(约14年)最初5000天累积产气与时间的笛卡尔曲线。

    通过比较图10和图11,可以再次看到确定性预测与P50概率预测相比,具有更大的IP,持续的生产速度和累积产气量,表明确定性预测是比中位数情况稍微乐观,并且明显远超过P10的情况。这些结果再次支持使用概率分析取代非常规应用的确定性分析。

     

      

    图11  开发模型情况中概率速率预测:(a)产气速度和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    随后,P10、P50和P90产量预测与区块1内水平井可获取的生产数据进行对比,以测试开发方法的稳健性和准确性。在这个比较中,由于完井的复杂性,只有井3和井4可用,而井1表现不佳,且井2在此次分析区块外部。井3的产量被缩减了30天,以便使该井产量自然下降的初始时间与概率预测的一致(指修正井3)。生产的前430天的对比曲线如图12所示。

    如图12所示,两口井的生产数据(修正井3和井4)普遍落在P10和P90之间(使用@RISKTM生成的预测)。除了生产的前20天和第300天左右时的大约20天两个时间段(模型没有指出的操作问题导致的结果)外,约80%的数据点如预期处在P10和P90预测之间。初步预测产量可能更高,因为它不考虑压裂清理干扰、启动效应等,该模型增加了表皮效应来提高与IP的匹配程度。但是,在真正的勘探情况下表皮效应的大小无从得知,这是因为无法获取产气远景区域的数据且需要将其作为不确定的输入量以最大限度地提高模型的准确性。

     

     

    图12  3号井和4号井生产数据和概率速率预测的对比:(a)产气速率和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    虽然这不是一个令人满意的统计样本,只有一个关键属性(Km)被认为是不确定的,但结果令人鼓舞。图13显示了净现值的增加的累积概率分布,直方图和回归系数托那多图。图13a再次显示超过最低预期资本回收率概率计算的累积概率分布图。

    从图13a可以看出这个模拟平均净现值为53万美元,可能超过最低预期资本回收率的50%。然后,可将平均净现值和超过最低预期资本回收率的概率与相同远景的其他区块,以及与其他潜在远景的区块进行比较,从而确定哪些远景区域可提供最好的经济成功机会。这一分析显示了积极的NPV平均值和超过最低预期资本回收率的适度概率。基于这样的分析,可以得出结论:区块1的样品远景对于试点项目是极好的备选。这一分析支持了该地区的开发,但是这一测试中所采用的天然气价格网格假设对其结果影响极大。图13C中托那多图表明天然气价格对净现值带来的影响最大,基质渗透率给净现值带来的影响其次(区块1中最小的基质渗透率变化的结果)。这表明假设较高的气体价格(比如该区水平井钻探时期的气体价格)将提高远景的可取性。从图13b直方图可以看出模拟中大部分的净现值在300万美元和350万美元之间,众数等于-1.5万美元,相当于平均数53万美元左右。

     

     

    图13  开发模型应用NPV法得出的经济结果:(a)累积概率分布;(b)柱状图;(c)回归系数的龙卷风图

    此分析程序可在在开发区的其他2个区块内完成,以协助选择最适合公司的试点项目的位置。2号和3号区块的填图属性的直观观察(图7b和8b)表明,这些地区情况没有区块1理想,因此在本次分析所使用的气体价格假设中可能不适合作为试点项目。

    5 结论

    在本文中,开发了一种方法理论和基于excel的方法以协助页岩气和致密砂岩气藏的勘探。这个方法包含了来自不同来源的映射属性、一个用于估算水力压裂半径的简单的压裂模型、目前应用于页岩气井开采的速率预测技术、计算关键盈利能力指标的经济模块以及解释非常规资源中内在的风险和不确定性的蒙特卡罗模拟。本文所描述的方法和工具可被工业界用于评估远景区域内的各个区块和选择适合试点项目的地区。该方法较为严谨,以岩石物理、地质和现在产业应用的分析储层模型为基础,且通过重建现有实例的油藏动态来证明其准确性。由于不需要建立复杂的数值模型和详细的开发方案(所需数据是在开发早期通常无法获取),这种方法既简单又高效。

    感谢代金友副教授对本文提出的宝贵意见。本文受中国地质调查“地学情报综合研究与产品研发”(121201015000150002)项目支持。

    资料来源:Williams-Kovacs J. D., Clarkson C. R. A new tool for prospect evaluation in shale gas reservoirs. Journal of Natural Gas Science and Engineering,2014,18(5):90-103.

    一种用于页岩气藏远景评价的新方法

    2020年5月29日,自然资源部中国地质调查局武汉地质调查中心相关负责人代表中心将建设的“杨西村安全饮水示范井”正式移交给当地政府。赣州市赣县区委区政府、自然资源部赣南老区扶贫开发中心、赣县区自然资源局、赣县区大埠乡政府等单位的领导参加了移交仪式。

    长期以来,杨西村群众一直采用山间溪谷地表水为饮用水水源,受赣南气象降雨及水文地质条件等因素影响,秋冬旱季水量严重不足,春夏雨季水质浑浊,属于赣南山区农村典型的“季节性缺水”村。2019年下半年,恰逢赣州遭遇百年一遇的旱灾,该村供水水源几近干涸,1200余群众面临无水可用的困境,加剧了当地脱贫攻坚对安全饮水考核的担忧。为落实自然资源部关于加大对当地安全饮水帮扶要求,武汉地调中心精准对接当地需求,立即前往杨西村开展找水打井工作,成功实施一口单日水量达到256吨的探采结合井,并于2019年12月提供给当地应急使用。在此基础上建设了泵房,捐赠了水泵、水管等设备和材料,于2020年3月建成安全饮水示范井,彻底解决了该村群众用水需求。

    在移交座谈会上,当地干部表示,在2019年大旱时期能及时用上该井的自来水,真是久旱逢甘霖,群众普遍反映“有了这口井,冬天再也不愁没水用了,下雨也不怕水浑了!”赣县区委副书记薛永森、副区长朱隆泽对武汉地调中心建设杨西村安全饮水示范井的举措给予高度赞赏,认为武汉地调中心为赣南革命老区人民群众做了件大实事,解决了当地政府和群众的燃眉之急,直接支撑了杨西村脱贫攻坚安全饮水考核达标验收。

    杨西村向武汉地调中心赠送锦旗

     

    村支书介绍示范井使用情况

    武汉地调中心向赣县区杨西村移交安全饮水示范井

     

    2015年中国西南岩溶石漠化分布图

      

    贵州巨木地下河出口筑坝拦蓄地下水

      

    中国西南地区岩溶景观

     

    致力于促进全球岩溶资源可持续利用和环境可持续发展的“全球岩溶动力系统资源环境效应”国际大科学计划,前不久在广西桂林正式启动。

    该计划由国土资源部中国地质调查局提出实施,旨在建立全球岩溶环境监测网络,攻克岩溶关键带科学难题,各国共绘全球岩溶一张图,为人类利用岩溶资源、保护岩溶生态提供科学方案和公共信息服务。

    国土资源部部长姜大明在贺信中称,这是一项雄心勃勃的大科学计划,更是一幅岩溶地质科学造福人类的宏伟蓝图。联合国教科文组织总干事伊琳娜·博科娃则通过贺信表示,国际大科学计划中提出的研究领域,对克服我们人类共同面临的难题来说是非常重要的,非常期待能听到关于项目实施取得进展并获得成功的好消息。

     

    1 中国为“全球岩溶”国际大科学计划实施奠定坚实基础

     

    阅读提示:中国取得了一系列具有全球视野的岩溶研究成果,并为国际大科学计划的实施提供了理论基础、科学思路、人才队伍、技术条件以及国际合作经验。

    目前,世界上的岩溶区分布面积约为2200万平方千米,约占世界陆地总面积的15%。我国的岩溶面积约为344万平方千米,约占国土面积的1/3。其中,我国西南裸露岩溶面积达54万平方千米,涉及贵州、广西、湖北、湖南、云南、四川、重庆和广东等8省(区、市),是我国碳酸盐岩层分布最为集中的地区,也是世界三大岩溶集中连片区中面积最大、岩溶作用发育最强烈的典型地区。

    岩溶地区山水奇特,水资源和油气资源丰富,为人类生产生活提供了得天独厚的物质资源和精神享受。但是,岩溶地区面临的干旱、石漠化、水污染、水土漏失等环境问题,也已成为当今制约经济社会可持续发展的全球性问题。

    近年来引发关注的是,岩溶作用在应对气候变化中可发挥重要作用。已有研究发现,全球的岩溶作用能够吸收与全球森林植被比例相当的大气二氧化碳,而且岩溶洞穴石笋可以年际分辨率记录气候环境变化,与黄土、冰芯、湖泊沉积及树轮等古气候环境记录比较,具有记录时间跨度大、年代记录准、分辨率高等优势。

    为有效解决岩溶地区的资源环境问题,促进全球岩溶资源的可持续利用和环境的可持续发展,科学应对全球气候变化,中国地质调查局倡导设立了“全球岩溶动力系统资源环境效应”国际大科学计划(以下简称“全球岩溶”国际大科学计划),依托联合国教科文组织国际岩溶研究中心和中国地质调查局岩溶地质研究所,以地球系统科学和岩溶动力学理论为指导,利用10~12年时间,建立全球岩溶生态环境监测网络,研究和查明全球不同岩溶动力系统类型的碳—水—钙循环规律和资源环境效应,突破岩溶关键带资源环境科学问题的瓶颈,创新岩溶资源勘探开发和岩溶环境治理与保护科学技术体系,创建全球岩溶资源环境信息平台,各国共绘全球岩溶一张图。

    据该计划负责人、联合国教科文组织国际岩溶研究中心常务副主任曹建华介绍,目前,国际岩溶研究中心及其依托单位中国地质调查局岩溶地质研究所,已经为计划的实施奠定了坚实基础。

    以中国科学院院士袁道先为首的科研团队建立了以碳—水—钙循环为核心、以岩石圈、水圈、大气圈、生物圈四大圈层为主体结构的地球系统科学观下的岩溶动力学理论,为计划的实施奠定了理论基础。在国际地球科学计划(IGCP)中国国家全委会支持下,我国科学家牵头连续主持实施了5个岩溶领域国际地质对比计划,储备了40个国家200多名优秀的专业技术人才,为计划实施提供了科学思路和人才队伍。国际岩溶研究中心7年的高效运行,已与15个国家和国际科研机构签订了合作备忘录,推动了8个国家间岩溶领域的深入合作研究,成功联合国际著名岩溶学者举办了7次国际培训班,为计划的组织实施提供了国际经验和基础。国际岩溶研究中心在中国、美国、泰国、斯洛文尼亚等岩溶国家建立了岩溶生态环境监测站,并与东亚东南亚地学计划协调委员会(CCOP)国家、东南亚国家合作开展了岩溶地质和跨界含水层编图,建立了全球岩溶科技创新平台和编图技术方法,为计划实施提供了技术条件。

    更为重要的是,我国在岩溶作用与碳循环、洞穴石笋古环境重建、岩溶生态系统与石漠化治理、岩溶地质公园和世界自然遗产申报与保护,岩溶地下河和表层岩溶水探测与开发、碳酸盐岩油气储存区古岩溶刻画等方面取得了一系列具有全球视野的岩溶研究成果,奠定了我国岩溶研究的国际领先地位,使中国地质调查局牵头组织实施“全球岩溶”国际大科学计划顺理成章。

     

    2 建立全球岩溶生态环境监测网,因地制宜修复和保护岩溶生态

     

    阅读提示:只有揭示全球不同类型岩溶动力系统的演化、形成过程、结构功能和运行机制,因地制宜运用各国经验,才能科学、合理地修复和保护岩溶地区生态,并实现其可持续发展。

    我国岩溶动力学理论的发展历史,可以追溯到20多年前对岩溶地球化学的研究。

    国土资源部岩溶动力学重点实验室的研究团队,在中国科学院院士袁道先的带领下自1990年以来连续实施的国际岩溶对比计划项目,在岩溶形成演化、碳循环、岩溶生态和水资源等领域,为国际岩溶学术界提供了共同解决岩溶地区资源环境问题的平台,将地球系统科学思想引入现代岩溶学,建立了岩溶动力学理论,有力推动了国际岩溶学科的发展。

    曹建华介绍说,在岩溶地区,岩石圈、水圈、大气圈、生物圈界面上的碳—水—钙和其他元素之间的物质、能量传输与转换,构成了岩溶动力系统。由于岩溶动力系统同时受到地质、水文、大气和生物过程的影响,因此岩溶动力系统有各种不同的类型。在上世纪90年代,我国岩溶地质学家开展了一系列研究,提出了将“岩溶形态组合”(即在相同环境下形成的宏观的微观的、地表的地下的、溶蚀的和沉积的岩溶形态的配套组合)作为全球岩溶对比的基础,推动了全球岩溶对比的顺利进行,并揭示出在世界上具有不同地质环境背景的岩溶区,其岩溶系统与人类活动的相互作用是极不相同的。因此,只有对全球不同类型的岩溶动力系统进行对比,揭示其不同的演化、形成过程,及结构功能和运行机制,因地制宜地运用各国经验,才能更加科学、合理地修复和保护岩溶地区的生态,并实现其可持续发展。

    为进一步开展国际合作与对比研究,“全球岩溶”国际大科学计划将针对全球岩溶主要类型,重点在中国西南与中南半岛热带亚热带岩溶区、北美亚热带温带岩溶区(美国)、 加勒比海地区和印尼热带新生代孔隙碳酸盐岩岩溶区、中东干旱岩溶区(伊朗、土耳其)、地中海型气候岩溶区(斯洛文尼亚、塞尔维亚等)、冈瓦纳大陆岩溶区(巴西、澳大利亚)设置岩溶环境监测站,逐步实现典型地区连续高分辨率监测,建成覆盖全球的岩溶环境监测网络。

    为保证全球数据统一及不同比例尺数据的交互使用,还将建设分布式全球岩溶数据平台。

     

    3 创新资源勘探开发和环境治理技术体系,应对岩溶区生态环境面临的挑战

     

    阅读提示:瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等进行技术创新。

    “让我们共同协商,推进国际大科学计划的完善和实施,为应对岩溶地区脆弱的生态环境面临的诸多挑战,为全球岩溶地区的资源合理利用、经济社会发展贡献岩溶地质科学家的智慧与才华。”在“全球岩溶”国际大科学计划启动仪式上,中国地质调查局岩溶地质研究所所长刘同良代表中国岩溶地质科学家,向全球从事岩溶科学研究的同行们发出倡议。

    推动岩溶科技创新,切实改善岩溶地区居民生活质量,是全世界岩溶国家和广大岩溶科技工作者的一致目标。为此,“全球岩溶”国际大科学计划瞄准碳循环与人为干预、固碳增汇,洞穴石笋与年际尺度过去气候变化,水循环与地表地下水时空调配与管理,钙循环与岩溶生态系统评价,岩溶塌陷预警等领域,发挥国际岩溶研究中心国际平台作用,充分利用各岩溶国家的技术及资源优势,创新科学技术体系,应对岩溶区脆弱生态环境面临的挑战。

    已有的研究数据表明,随着植被的恢复、岩溶作用强度的增加,近10年中国西南岩溶区石漠化综合治理工程增加了2500万吨的岩溶碳汇量。中国地质调查局岩溶地质研究所创新流域尺度岩溶碳循环研究方法,研发的陆地植被、土壤改良、引入外源水和沉水植物等人工干预固碳增汇技术,引领了国际岩溶地质碳汇研究新方向。此外,利用微区取样技术,通过同位素微量测试,准确获得了石笋记录的年际尺度历史气候变化信息,恢复重建了高精度的古气候和古环境变化历史,为预测未来气候变化趋势提供了科学依据。为科学应对气候变化,“全球岩溶”国际大科学计划将着重开展岩溶环境二氧化碳增汇效应研究,在查明流域水文地质、环境地质条件基础上,对比研究植被变化、土壤改良、土地整理等人工干预措施对流域碳通量的影响,进而创建人工干预增加岩溶碳汇技术体系。

    岩溶区地下水的开发利用,为世界约25%的人口提供了饮用水源。但岩溶地区孔、隙、缝、管、洞并存,岩溶地下水流运动规律复杂,时空分布极不均匀,使得岩溶地下水的开采难度大大增加。对此,“全球岩溶”国际大科学计划将选择典型岩溶水系统,开展不同类型岩溶地下水开发利用技术与方法研究,形成岩溶水开发利用模式和高效利用技术集成。针对典型岩溶地区岩溶干旱、内涝、石漠化、水污染、水土漏失等问题,建立岩溶地区水土耦合调控信息平台,形成岩溶地区水土耦合调控技术体系。

    岩溶石漠化是岩溶生态系统在特定条件下运行的产物,其分布具有区域性。针对全球不同岩溶环境类型区,“全球岩溶”国际大科学计划将研发适宜各种类型的石漠化综合防治和岩溶生态修复模式及技术体系,阐明生态环境对水资源的调蓄功能,研发生态与工程联合调蓄岩溶水资源的技术,并开展试验示范。在岩溶含水层水质详细调查的基础上,选择已经发生污染的地下河(泉)系统或子系统为典型案例区,开展岩溶地下水环境修复技术及工程研究。

    旱涝、石漠化、水污染、水土漏失、岩溶塌陷等在全球岩溶区普遍发生,更令人担忧的是,这些环境问题和岩溶地质灾害形成演变过程十分复杂,而且具有隐蔽性,难以防治和预测,严重威胁着岩溶区水安全、生态安全、乃至当地居民的生命安全。对此,“全球岩溶”国际大科学计划将瞄准建立岩溶塌陷调查、风险评价和监测预警方法,重点研究大型岩溶塌陷风险评价、监测预警、早期识别与防控技术。

     

    4 在六大领域引领国际研究方向,建立“岩溶地球”大数据平台

     

    阅读提示:直击全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等重大岩溶科学问题。

    据曹建华介绍,“全球岩溶”国际大科学计划主要依托联合国教科文组织国际岩溶研究中心和岩溶动力系统与全球变化国际联合研究中心,破解重大岩溶科学问题,在全球岩溶碳循环调查与全球气候变化、全球岩溶水文地质调查与水资源开发、全球岩溶石漠化调查与生态修复、全球岩溶景观与地质公园建设、全球岩溶塌陷调查与防控及服务岩溶区油气资源高效低污染调查等领域,引领国际研究方向,建立“岩溶地球”大数据平台。

    在岩溶作用与碳循环调查研究方面,将重点研究碳在岩溶动力系统中的迁移过程与土地利用、水生植物光合作用的关系,水库或湖泊等水体中的碳汇效应;调查研究不同水体的生物地球化学变化规律,利用水化学与碳同位素技术厘定碳的来源、不同碳形态之间的转换与通量估算,分析不同水体碳汇与生物地球化学效应,研究碳酸盐岩沉积/溶蚀、脱气与水生植物光合作用之间的相互关系,进而为科学应对全球气候变化提供依据和支撑。

    为提高岩溶水的开发利用效率和效果,“全球岩溶”国际大科学计划将选择全球典型岩溶水系统,开展岩溶地下河管道和含水介质探测,岩溶地下水循环的水动力对比试验,以及降水、地表水、土壤水、表层岩溶水与地下河水“五水”转化机制和过程研究,揭示不同类型岩溶水循环模式,建立不同岩溶水系统水资源评价模型,进行水质、水量定量评价,阐明岩溶关键带对水资源的调蓄功能和地下水资源动态变化规律。同时,开展生态环境对岩溶水资源的影响调查研究,岩溶含水层水质和污染调查研究,进行岩溶含水层防污性能评价,建立岩溶地下水水质监测网,尤其是加强对地下河和岩溶大泉的监测,并对已被污染的地下河和岩溶大泉进行修复示范。

    中国在西南岩溶地区开展的石漠化综合治理地质调查工作,建立10处石漠化综合治理示范区,形成了4种可复制、可推广的石漠化综合治理模式:岩溶峰丛洼地区土地整理与生态产业协调模式,解决了石漠化区无地可用的问题;岩溶高原区地表水地下水联合调度模式,解决了石漠化区无水可用的问题;岩溶地质景观区土地流转与生态旅游模式,促进了石漠化生态修复景观产业化;岩溶断陷盆地区流域尺度综合治理模式,力促县域生态产业可持续发展。目前,中国岩溶石漠化研究与治理示范,已在新西兰、坦桑尼亚等6个国家推广应用。

    全球有具有岩溶特征的世界遗产47处、世界地质公园46处。但迄今为止,国际上一直没有反映全球岩溶资源与环境的系统数据与专题图件,缺乏普及全球岩溶知识的信息数据平台。为科学评价和保护岩溶地质景观,“全球岩溶”国际大科学计划将开展全球岩溶地质景观调查评价,划分涵盖全球岩溶地质景观类型,进行全球尺度岩溶地质景观区划,提出岩溶地质景观设立世界遗产、世界地质公园、国家公园、地质保护区、旅游开发景区等方面的开发利用与保护规划建议。在此基础上,编制全球性岩溶景观与洞穴资源分布图集开发利用保护图件,建立全球岩溶地质景观信息系统,面向全球提供检索、咨询与开发规划等应用服务。

    为摸清全球岩溶塌陷发生规律,“全球岩溶”国际大科学计划将从23个岩溶塌陷国家的岩溶塌陷发育现状、地质背景、水文工程地质特征分析入手,结合岩溶塌陷动力条件监测,深入研究岩溶塌陷形成演化的地质环境模式,建立全球岩溶塌陷发育的动力模型,重点研究极端气候特别是极端暴雨影响下岩溶塌陷形成演化机理,提出国际岩溶塌陷发育态势与对策。

    岩溶区的油气资源具有很大的勘探开发潜力。世界碳酸盐岩大型油气田有321个,其油气资源量占全球油气资源总量的50%,产量占到60%以上。为认识油气储存与岩溶介质内在关系。“全球岩溶”国际大科学计划将以“将今论古”的方法,在对现代岩溶发育特征、规律认识的基础上,开展古岩溶、深部岩溶发育的科学研究,探索古岩溶在区域差异、垂向上分带、时代分期发育特征,揭示古岩溶发育对油气储存岩溶介质的控制作用,建立岩溶油气储层地质模型。

     

    5 实现全球岩溶信息社会共享服务,支撑岩溶区资源与环境可持续发展

     

    阅读提示:全球岩溶国家密切合作,建立实时更新的全球岩溶网络信息平台,促进岩溶学技术进步。

    “全球岩溶”国际大科学计划的实施,不但需要有科学的理论基础、先进的技术支撑,还需要全球岩溶国家的共同参与和密切合作。目前,国际岩溶中心已经收到了来自15个国家的23名资深专家学者签署的支持函。

    通过“全球岩溶”国际大科学计划的实施,国际岩溶研究中心将编制全球岩溶地质、岩溶地貌、岩溶水文地质和岩溶环境地质图,编制“一带一路”岩溶地区和重点岩溶区专题图件,查明全球岩溶动力系统的碳—水—钙循环规律,科学评价全球岩溶资源和岩溶环境,编制典型岩溶类型区资源开发与环境综合整治区划;研发具有国际先进水平的岩溶动力条件快速捕捉、岩溶资源勘探利用和环境治理关键技术方法;在岩溶地下水、石漠化、岩溶塌陷、应对全球气候变化、岩溶地质景观等领域形成4~5项国际领先水平大成果。

    同时,通过计划的实施,进一步建实建强国际岩溶研究中心,建立完善全球岩溶环境监测网点,建立定时更新的全球岩溶网络信息平台;在我国,建设岩溶动力学国家重点实验室,建强岩溶动力系统与全球变化国家级国际联合研究中心,建实国际一流岩溶地质调查研究机构,建强岩溶环境监测野外台站和研究基地。

    通过国际大科学计划的实施,全球岩溶科技成果不仅可促进岩溶学的跨越式发展、技术进步和多种形式的国际合作,实现全球岩溶信息社会共享服务,而且可提升我国的国际地位和话语权,培养我国的国际领军人才,并为“一带一路”战略决策和实施提供科学依据及资源环境保障。

    让岩溶地质科学造福人类


      近几年来,特别是国务院出台找矿突破战略行动纲要以后,湖南省从本省实际出发,从理顺矿政管理体制到构建有序外部环境,从优化地质找矿布局到地勘人才队伍建设,从加大地质勘查投入到创新地质找矿机制,采取了一系列行之有效的具体措施,切实加强地质找矿工作,并取得了令人满意的成果。今年是国土资源部在全国全面推进“358行动”的第三年,也是关键之年,那么,湖南省实施找矿突破战略行动的具体情况怎么样?取得了哪些成果,如何进一步推进?带着这些问题,中国矿业报记者近日采访了湖南省国土资源厅党组成员、总工程师彭悦。

      记者:说到湖南的矿产资源,人们就会想到湖南是“有色金属之乡”和“非金属矿产之乡”。能不能请您具体介绍一下湖南省的矿产资源现状和开发利用情况?

      彭悦:湖南是一个矿业大省,有色金属和非金属矿产在全国乃至全世界都具有非常重要的地位。截至2012年底,全省已发现各类矿产121种,探明有储量的矿种90种。石煤、钨、锑、铋、铍、普通萤石、玻璃用白云岩、海泡石粘土8个矿种保有储量居全国第一位;钒、镉、重晶石、隐晶质石墨、陶粒页岩等5种矿产居全国第二位;保有储量居全国前五的矿产共有39种。其中,钨、锡、锑、钼、铋、铅、锌等,在世界有着举足轻重的地位。水口山、锡矿山、柿竹园等一批特大型的有色金属矿山驰名海内外。

      湖南省矿业开发历史非常悠久。近代历史上,我们的前辈通过对锡矿山锑矿、水口山铅锌矿、瑶岗仙钨矿、湘潭锰矿、湘西金矿、石门雄磺矿等一大批解放前遗留下来的老矿山进行深入勘查,使它们成为了新中国几十年来经济社会发展的支柱矿山、功勋矿山;解放后,地质工作者又评价和发现了柿竹园钨锡多金属矿、黄沙坪铅锌矿、湘南铀矿、民乐锰矿、贡溪重晶石矿、衡南萤石矿、浏阳海泡石矿等一大批享誉中外的矿床。目前,湖南省已经形成了各具特色的钢铁、水泥、煤炭、锰、铅锌、钨、锑、黄金和盐化工工业体系。尤其是锰加工业和有色金属冶炼加工业在国内具有明显的产业优势,10种有色金属的产量多年来高居全国第一。

      记者:刚才您大致描绘了湖南省矿业开发的图景,那么,目前湖南省地质找矿工作面临着怎样的情况?

      彭悦:湖南省地质找矿工作面临的基本形势,可以用“四个有”来概括——

      第一,有优势。除了刚才提到的资源优势和产业优势外,我们省还有一个独特优势:一支非常优秀的地质找矿队伍。目前,全省有4个专业化的地勘局(湖南省地质矿产勘查开发局、省有色地勘局、省核工业地质局和省煤田地质局)、96家具有地质勘查资质的单位,拥有除海洋地质调查、石油天然气勘查外的11类地质勘查资质。湖南省从事地质勘查工作的人员有45283人,在职职工3万多人。其中,中高级以上职称技术人员4087人,教授级高级工程师近80人。这支队伍,既经历了五六十年代艰苦环境的考验,也经历了改革开放以来的市场经济考验,目前已经成为专业齐全、技术精湛、作风过硬、特别能战斗的队伍。

      第二,有危机。从资源需求看,随着“四化两型”战略的深入实施,我省对矿产资源的需求越来越大,能源资源保障能力不强的问题正在日益凸显。比如,当前我省的石油、天然气、铬铁矿、钾盐等全部靠省外调入;原煤需求对外依存度达到25%;铁、铅、锌、金、铜、铝、锑、锰、铁、磷、硫等主要矿种也不能完全自给。从资源禀赋看,我省有色金属和非金属赋存较好,但对国民经济具有支柱性作用的15种矿产品非常短缺。目前,我省仅有钨、铋、萤石、隐晶质石墨等4种矿产可以保障本省需求,铀、锰、硫、水泥灰岩能够基本满足需求,其他重要矿产均不同程度地依赖省外、国外资源。在“走出去”战略实施过程中,信息、财税、金融、人才、法律援助等配套政策相对滞后,境外地质勘查项目基本上是以劳务输出、技术咨询为主,对湖南省重要矿产资源需求的保障支撑作用还不明显。从找矿难度看,湖南现代地质工作的历史已将近百年,可以说地表、浅表矿经多轮找矿,常规矿产基本已经找得差不多了。今后,要么向深部发展,找1000米以浅的深部矿产,要么查找新的矿产资源。而这两个方向都有理论瓶颈和技术瓶颈,在较短时间内很难取得决定性的突破。

      第三,有潜力。危机和机遇、危机与潜力一般是相辅相成、相互联系的。从潜力看,主要有两个,一是基础地质条件有很大潜力。二是新型能源资源有很大潜力。全国19个大的成矿带中,我省占了3条,南岭、钦杭、湘西鄂西三大成矿带横跨三湘大地,具有良好的成矿地质背景。另外,根据新的找矿理论和找矿规律,我省的页岩气资源非常丰富,预测资源量可达9万亿立方米,在全国排第五位。如果页岩气勘查开发取得重大突破,对缓解湖南乃至中部地区能源紧张局面都将产生深远而又积极的影响。

      第四,有机遇。主要是政策层面上的利好。从国家层面上看,李克强总理明确提出,“矿产资源保障要立足于国内”。2011年,国务院部署了找矿突破战略行动,对我国地质找矿工作的目标、任务提出了明确部署。从省层面看,省委省政府高度重视找矿工作,强调要大力推进地质找矿工作,为经济社会发展和“四化两型”建设提供强有力的资源保障。这些都为我省地质找矿工作提供了良好的工作环境。

      记者:您多次提到找矿突破战略行动。那么具体到湖南,这个行动的具体内涵是什么?

      彭悦:湖南省委省政府高度重视找矿突破战略行动,省政府专门成立了找矿突破战略行动领导小组,并批准了《湖南省找矿突破战略行动实施方案》。省委书记徐守盛同志多次强调,要切实加强全省地质找矿工作,提高能源资源保障程度。在省厅层面,党组书记、厅长方先知同志也高度重视,提出要将实施找矿突破战略行动作为重大政治任务和战略任务,举全系统之力加以推进。具体来看,我省的找矿突破战略行动设定了“358”阶段性目标:2011年~2013年,用3年的时间,实现地质找矿重大进展;2011年~2015年,用5年的时间,实现地质找矿重大突破;2011年~2020年,用8年的时间,巩固我省矿业优势地位,开拓新的领域,重塑矿产勘查开发新格局。

      总体来说,到2020年,全省要新发现矿产地170处,新增原煤9.7亿吨、铀12000吨、铁2500万吨、锰9000万吨、铅+锌1730万吨、钨+锡210万吨、铜35万吨、岩金135吨、锑20万吨、稀土氧化物20万吨,煤层气、页岩气、金刚石等矿产取得重大进展与突破。特别是,页岩气勘查开发要取得突破,改变我省“无油无气,缺煤少电”的现状。

      记者:这个行动进展得怎么样?

      彭悦:这两年来,我们按照国家和省委、省政府的要求,做了一些工作。概况起来主要有四方面:

      第一,明确了找矿目标和任务。在湖南省的历史上,提出如此具体的找矿目标尚属第一次。它不仅明确了重点矿种,还明确了时限要求。我省找矿的基本任务主要有3个:一是加强基础地质调查与基础科研工作,以重要成矿区带、主要矿集区、重要经济区为重点,开展区域地质调查、区域地球物理地球化学调查、矿产资源远景调查和综合研究;二是加强重要矿产资源勘查工作,以国家级整装勘查区、重点勘查区和重要远景区的重要矿种为重点,开展矿产资源勘查与评价,有序开展老矿山深边部地质找矿和煤层气、页岩气、金刚石、“三稀”等矿产的专项勘查工作;三是提高矿产资源利用效率,开展主要矿产共伴生有用组分综合利用、难选冶矿石利用、低品位矿石利用技术等重大专项研究,以经济、技术、行政等手段促进矿山企业提高矿产资源利用效率,实施以企业为主体的矿产资源节约与综合利用示范工程。

      第二,优化了地质工作布局。在基础研究方面,2011年以来已投入经费1.8亿元,安排基础地质调查项目76个。在整装勘查方面,投入资金5.21亿元,部署了18个省级整装勘查区和3个国家级整装勘查区,累计安排项目141个。在非常规能源方面,目前有14个区块正在开展油气勘查工作,其中油气区块9个、页岩气区块5个。在资源利用方面,部署了一批矿产资源节约与综合利用专项项目,提高了资源综合利用水平。

      第三,探索了新的找矿机制。我省根据自身实际,探索出了“锡田模式”和“岩头寨模式”两种新型找矿模式,在国内形成了品牌。在株洲锡田,我省与国土资源部开展联合勘查,通过两年的实践探索,探获钨锡资源量32万吨。中国地质调查局将其经验概括为:公益先行、商业跟进;统一部署、有序推进;矿权整合、地方支持;快速突破、多方共赢。在古丈县岩头寨,我们开展了矿产资源快速评价试点,创造了“地方政府高度重视,管理部门服务到位,投资公司密切配合,承担单位全力以赴”的运作方式,仅用一年时间,完成了古丈县岩头寨钒矿从普查到详查评价的全部工作,提交钒资源量310万吨。

      第四,构建了新的地质找矿工作体系。一是建立了以省国土资源厅为主导,以地勘项目为纽带,以4个属地化地勘局为主要项目承担单位的地勘工作体系。二是出台了《湖南省地质勘查项目管理暂行办法》和《湖南省地质勘查项目监审方案》等一系列规定,建实了地质勘查项目技术管理机构,完善了项目质量管理体系。三是成立了地勘项目监审组,启动了项目质量监审体系。

      记者:能不能请彭总具体介绍一下湖南省近几年来地质找矿的具体成果?

      彭悦:近年来,我们在省委、省政府的坚强领导和国土资源部、中国地调局的关心支持下,地质找矿工作取得了较大突破,不仅进一步确立了湖南有色金属资源的优势地位,为全省经济社会发展和“四化两型”建设提供了资源支撑,同时,也通过项目带动,培养了一大批地质科技人才,全面提升了我省地质找矿的能力。从具体的成果看,主要表现在以下几个方面:一是战略性矿产远景调查评价取得了重大成果。永州铜山岭地区的锡多金属矿远景调查项目,新发现钨锑等矿点10余处,一钻孔见139米的厚大钨矿体,具有寻找世界级超大型矿床的前景,被中国地质调查局评为2010年“全国十大找矿成果”。二是危机矿山接替资源找矿实现了重大突破。柿竹园、锡矿山、宝山等16个危机矿山接替资源找矿项目取得重大突破。新发现的储量相当于新增了10多个大中型矿山,有效地延长了矿山服务年限,稳定职工队伍5.5万余人。三是整装勘查工作取得重大进展。湖南花垣整装勘查区的铅锌矿勘查取得了历史性突破,具有探获铅锌资源量2000万吨的前景,被中国地调局评为2011年“全国十大找矿成果”。四是油气勘查取得初步成效。我省5个页岩气中标区块都已基本完成了野外地质调查。一些实验井已经打出了可用的气源。

      记者:我们知道,湖南是一个能源矿产比较缺乏的省份。刚才您反复地提及页岩气,那么能不能请您介绍一下湖南省近几年在寻找能源矿产方面做了哪些工作?成效怎么样?

      彭悦:刚才已经介绍,我省页岩气资源丰富,初步估计储量在9万亿立方米,在全国排第五位。去年,我们按照国家的统一部署,已经在龙山、保靖、花垣、桑植、永顺5个区片招标出让了页岩气探矿权,工作进展很快。2011年,中石化在湘中涟源市开展油气勘查工作,实施了湘页1井,探获了页岩气并成功点火,初步实验最高日产气量达1000多立方米。今年,中石化又在娄底市冷水江市中连村开钻了我省第一口页岩气水平井,湘平1井,这也标志着我省页岩气勘探开发工作达到了新的高度。

      另外,随着我省经济社会发展,特别是工业化、城镇化的加快发展,煤炭需求呈快速增长态势,供需矛盾十分突出。为了提高省内自产供应的能力,我省加大了煤炭资源的勘查力度,自2006年以来由省级财政投入勘查经费4.52亿元,安排项目99个,新增煤炭资源9亿吨。
      众所周知,湖南是一个铀矿资源丰富的省份。我省找矿突破战略行动部署设立了2个铀矿整装勘查区。自2006年以来省级财政共投入资金6600万元,安排项目17个,探获了一批铀矿资源量。
      记者:国土资源部曾要求省厅在地质找矿过程中充当第一责任人的角色,为找矿突破行动保驾护航。那么请问,湖南省国土资源厅在这方面做了哪些工作?
      彭悦:我们主要从建立地质找矿激励机制,完善项目管理政策,优化勘查环境三方面入手来为找矿突破战略行动保驾护航。

      建立地质找矿机制方面。一是政府表彰。湖南省人民政府专门召开表彰大会,省委书记徐守盛,常务副省长于来山等省领导为29个获奖项目单位和项目工作的主要人员颁发了奖牌和证书。二是支持国有地勘单位盘活存量土地资产。2011年我省出台了文件,对国有地勘单位原有的划拨土地改变用途的,土地出让价款返还给地勘单位用于解决历史遗留问题。三是优先配置国有地勘单位探矿权。按照《财政部、国土资源部关于加强国家出资勘查探明矿产地及权益管理有关事项的通知》要求,国家出资安排的矿产调查评价中探明矿产地的项目承担单位,在同等条件下优先取得探矿权,近年来我省优先配置32个探矿权给国有地勘单位。四是提升国有地勘单位地质勘查实施能力。省财政每年拿出4000万元支持地勘单位购置地质勘查设备。

      完善项目管理的政策方面。近几年来,我省先后出台了《湖南省地质勘查项目管理暂行办法》、《湖南省地质勘查项目监审方案》等一系列规定,建实了矿业权价款地质勘查项目技术管理机构。通过实行项目专家负责制,对项目从立项开始到项目成果验收,由固定专家负责全程监督。实行地质勘查项目绩效考评管理,量化项目绩效指标,公开考评结果,建立了绩效考评与单位资质、承担项目资金数量和奖惩挂钩体系。
      在优化勘查环境方面。一是将地质勘查外部环境情况纳入省厅对各级国土资源部门年度考核范围。考核内容包括:协调解决青苗补偿、平整机台、槽探坑探、修建道路、搬迁钻机、工程劳务等方面遇到的矛盾纠纷。二是构建了齐抓共管的协调机制。由市级国土资源部门牵头,建立了市、县、乡、村四级地质勘查外部环境联动机制,逐级抓落实。

      记者:能不能请您介绍一下阶段湖南在地质找矿方面的主要设想?

      彭悦:总体来说,我们将按照省政府批复的找矿突破战略行动实施方案的总体部署,综合推进各项工作。到今年年底,我省的找矿突破战略行动第一阶段三年工作就已基本结束,将转入第二阶段工作。下阶段工作的总体思路是:巩固扩大成果、拓展勘查领域、引导商业跟进、提升找矿能力。一是大力推进整装勘查,巩固扩大找矿成果。对我省近两年来18个整装勘查区的工作进行总结评估,进一步细化下阶段具体目标和实施措施,优选一批新的整装勘查区和找矿靶区,加大经费投入和技术指导。二是不断深化机制创新,加快商业跟进的步伐。进一步探索公益性地质工作引领拉动,商业性矿产勘查跟进拓展,中央地勘基金和省两权价款做好衔接,地勘专业技术优势与矿产企业资金管理优势互补。下阶段,我们将陆续投放50个矿业权用于引进社会资金,激活矿业权市场。三是加快非常规能源勘查,拓展地质勘查领域。在现有的5个页岩气区块基础上,面向社会继续推出石门、张家界、常德等区块。四是强化地勘项目管理,确保项目质量。五是加强科技创新和人才培养,提升地质找矿能力。在基础理论、关键技术等领域投放一批重大科研项目,将找矿的项目现场变成人才培养的课堂,进一步推进理论与实践相结合。特别是,我们将加强对中青年技术人才的培养力度,发现和储备一批顶尖的地质专家,这是我们湖南找矿工作能否可持续发展的关键因素。


    湖南:“有色金属之乡”的找矿突破