分类:全 站  |  新闻  |  通知公告  |  重大计划  |  工作动态  |  队伍建设  |  关于我们  |  互动  |  图 片  |  视 频 查询到7条相关结果,系统用时0.013秒。

查询时间:时间不限

  • 时间范围


查询范围:标题+正文

排序方式:按相关度排序

检索范围:

    大海上的“蓝鲸1号”平台

    2017年5月18日,我国海域天然气水合物试采宣布成功,这标志我国取得了天然气水合物勘查开发理论、技术、工程、装备的自主创新。本次试采中,“蓝鲸1号”深水钻井平台功不可没。

    “蓝鲸1号”是什么?

    “蓝鲸1号”钻井平台诞生于山东烟台,是由中集来福士海洋工程有限公司(以下简称“中集来福士”)自主设计建造的超深水半潜式钻井平台,是目前世界上最先进的钻井平台。

    此次南海天然气水合物试采作业,是“蓝鲸1号”平台承担的首次钻采作业任务。试采工区在水深1200~1300米处,设计井深300~400米。对于这种程度的钻采作业而言, “蓝鲸1号”完全可以胜任。

    那么,“蓝鲸1号”的优势在哪里?

    一是体型大。“蓝鲸1号”平台排水量可达7万吨,与“辽宁”号航母满载排水量相当;长117米,宽92.7米,面积相当于一个标准足球场大小;高度达118米,相当于40层楼的高度。

    二是性能强。“蓝鲸1号”平台最大作业水深可达3658米,最大钻井深度更是达到15240米,其中大钩钩载1250短吨,可变载荷1万吨。这是目前全球作业水深、钻井深度最深的半潜式钻井平台,适用于全球深海钻探作业。

    三是效率高。“蓝鲸1号”装配了全球最先进的液压双钻塔和2个井口,两台钻机可在2个井口同时实现钻井、连接套管、下放防喷器等主副线作业,有效减少了钻井辅助时间,使深水钻井作业效率比传统的单井口作业平台提高30%。同时配备了全球领先的闭环动力系统,可比同类作业平台燃油消耗降低10%。

    四是安全系数高。“蓝鲸1号”配备了主副两套15000psi压力级别的水下防喷器,每套防喷器配备三组剪切闸板,而剪切闸板是井喷控制的最后一道屏障。如此配置,大大提升了常规井下压力控制设备的能力,保证了试采作业安全。同时,该平台配备了世界上最先进的DP3动力定位系统,最精确的定位测量误差达到0.1米,通过8台全回转式6034马力的推进器实时定位,保证了作业期间平台在台风“苗柏”11级风力里保持“纹丝不动”。

    与天然气水合物试采之约

    中国地质调查局和中石油集团到国内运营深水钻井平台的企业进行了多次调研,最终“蓝鲸1号”凭借优越的装备性能、完全自主设计建造而入选为天然气水合物试采施工作业平台。

    2016年8月,“蓝鲸1号”平台技术服务合同签订。此时,距天然气水合物试采预定开工时间不到7个月,而平台的建造进度刚刚达到90%左右。中集来福士将平台建造与水合物试采适应性改造同时进行,大大缩短了建造和改造工期,增加了平台调试时间,为平台的如期交付奠定了基础。

    天然气水合物试采施工作业面临着新平台、新设备、新队伍和平台作业准备时间紧的几大挑战。试采指挥部高度重视,多次派技术人员驻厂调研、跟踪平台作业准备进度,参与工程总承包中国石油集团海洋工程有限公司与中集来福士“蓝鲸1号”平台项目推进会。试采指挥部在平台调试、海试测试、人员培训、第三方设备安装等关键阶段出谋划策,协调解决遇到的问题,共同推动平台于2017年2月13日如期交付。

    台风中保障产气平稳

    试采工程光荣而艰巨,工期极为紧张,挑战巨大。

    3月6日,“蓝鲸1号”平台从烟台启航,自航奔赴南海工区。平台航行总行程约2263公里,共航行7.1天,平均航速达8.27节,动力功率仅占平台功率的70%左右,可见其动力能力强大,远超越同类的平台。

    对南海海域来说,海上钻采作业最大挑战就是遇到台风。6月12日,“蓝鲸1号”平台正面迎来第一次台风——“苗柏”。试采现场指挥部与“蓝鲸1号”操船团队根据南海前期台风的特点,以及对当前平台动力系统和定位系统的能力评价,最终作出保持生产测试、原地抗击台风的决定,同时制定了详细的、可操作性强的应急解脱躲避台风的应急预案。

    当日凌晨4点,“苗柏”转向风力突然由预测的9级加剧至11级,海况异常恶劣。但平台凭借强大的动力定位系统和经验丰富的操船队伍,保持在安全区域与暴风对抗,实测最大漂移距离不超过6.5米。在试采各参战单位的坚守下,南海天然气水合物试采的火焰在狂风暴雨中依旧燃烧。

    7月9日,我国首次南海天然气水合物试采安全生产满60天后主动关井。此次试采,获得了持续产气时间最长、产气总量最大、气流稳定、环境安全等多项重大突破性成果,并创造了产气时长和总量的世界纪录,全面完成了试采预期目标。这也充分证实, “蓝鲸1号”平台凭借自身强大的功能,为我国首次海域天然气水合物试采工程的成功实施提供了坚实保障。

    (作者系中国地质调查局水合物试采现场指挥部办公室工程组成员,《南海天然气水合物试采工程实施及关键技术》项目主要成员,主要从事钻井技术研究工作。)

    “蓝鲸1号”:助力可燃冰试采的超深水钻井平台

    2016年11月29日,应地调局武汉地调中心同位素室邀请,英国Nu仪器公司北京分公司杨启超博士一行2人,为同位素室科技人员宣传讲解多接收电感耦合等离子质谱仪Nu Plasma3。

    Nu Plasma 3是英国Nu仪器公司生产的第三代大型双聚焦多接收电感耦合等离子体质谱仪(MC-ICP-MS),是为同位素离子同时测量提供最佳精密度和准确度而专门设计,配备有受专利保护的可变色散离子透镜、固定位置多接受检测器、强峰拖尾过滤器、干泵等,可有效降低仪器维修频率,大大提高使用效率。除了常规的Sr、Nd、Pb、Hf同位素体系外,亦能用于Li、Mg、Ca、Cr、Fe、Cu、Zn、Mo、Cd等同位素测定,广泛应用于地球科学、核工业、生物医药、环境科学等领域。

    随着地调局“九大计划、五十项工程、三百多个项目”实施,各项目组的测试需求不断增加,而同位素室现有仪器设备已无法满足地质调查及科研项目的需要,尤以高精度锆石原位微区U-Pb同位素定年最为突出。

    目前,武汉地调中心同位素室已做好多接收电感耦合等离子体质谱仪(MC-ICP-MS)相关购置申请。新仪器到位后,可开展锆石和其它含U矿物(斜锆石、金红石、榍石、磷灰石、独居石等)微区U-Pb定年和Hf同位素分析、单矿物Li、Sr同位素分析及非传统稳定同位素(Mg、Fe、Cu、Zn、Mo等)分析等。

    通过此次新仪器调研活动,同位素室科技人员详细了解了Nu Plasma 3的特点和性能,正开展该仪器与其它厂家同类型仪器的综合对比工作。同时,同位素室将提前部署开展新仪器相关测试方法的准备工作,为新仪器的安装调试和管理运行做好充分的准备,切实为地质调查科技人员排忧解难。

    武汉地调中心同位素室开展新仪器调研

    英国海滩实景玻璃门

    英国滑坡事故应急

    ●英国地质调查局未来10年科学计划提出了去碳化与资源管理、适应环境变化、多重灾害与风险等三大科技挑战。

    ●通过监测与预测、地质环境压力研究、资源环境恢复力研究和环境治理等工作,为人类社会基础设施和生物系统突发变化的脆弱性提供创新解决方案。

    ●开展多重灾害系统研究、灾害数据采集和可视化、灾害风险分析和风险的传播等工作,帮助提高自然灾害发生时的生存率和恢复力。

    ●继续开展海底观测站、火山观测站和地质灾害全球信息基础设施等其他研究基础设施的建设。

    2018年10月,英国地质调查局更新并细化了2014年发布的《通往地球之门——英国地质调查局未来10年科学计划》。多年来,英国地质调查局在应用地球科学领域,在感知、认识和预测地球活动方面,为全球提供先进的研究解决方案,并在过去4年里取得了如下进展:位于柴郡和格拉斯哥的英国地球能源观测站的两个试验台使用高性能传感器系统和数据智能,实现从3D地质图和模型产品向实时地球科学数据信息转变,同时还为发展中国家处于各种复杂环境中的社区提供科学的全球化支持。

    未来10年,英国地质调查局将迎接三大科技挑战:去碳化与资源管理,将为减排和能源生产、利用、分配的合理化,探讨地球科学解决方案;适应环境变化,将在自然环境和建成环境中,探寻可帮助我们适应环境变化的地球科学;多重灾害与风险,将调查地质灾害(干旱、洪水、山体滑坡、地震和火山爆发)如何影响人类的生命及财产安全,并提供能够确保恢复力和可持续性的解决方案。英国地质调查局预计未来10年将获得超过6亿英镑的资金用于开展各项研究活动,使最新科学战略能够提供专业、公正、创新的科学解决方案,在政府、公众、行业中发挥更重要的作用。

    1 去碳化与资源管理

    在英国及其他地方,实现电力生产、供热、交通运输和工业等领域去碳化是一项重大挑战,涉及关注地下和地球科学,如碳捕获、利用与封存,地下储能,地热能,低碳关键原材料和放射性废物处理。英国地质调查局将研究不同去碳化技术的可行性,同时对矿产与能源管理的需求进行审查。本项挑战确定了5个主题和17个子主题:

    地质处置——放射性废物。高强度放射性废物(高放废物)的长期安全管理对核工业发达国家来说是一项日益严峻的挑战,并且随着核能在未来能源结构中发挥重要作用以应对能源去碳化,这一挑战将持续存在。对高放废物进行长期管理最主要的方法是深部地质处置,英国地质调查局正与合作伙伴着手解决关键的科学问题,包括应力状态、埋存历史,以及断层和裂缝的产生和行为带来的影响。其中,选址问题和地质环境息息相关,需要确定和评估可能对储库体及其周围地质、地表环境的长期完整性带来影响的地球科学因素,对论证选址安全性至关重要;需要了解近场(地质特征、水文地质动态)和远场(板块构造、气候)过程,以综合理解地下演变过程,以便对高放射性废物的长期安全性进行科学合理的评估。

    地质处置——碳捕获与封存。碳捕获与封存技术被广泛认为是英国实现去碳化目标的关键技术。主要挑战包括降低碳捕获与封存经济模型的不确定性,降低整个供应链的风险,以及调查公众对碳捕获与封存的态度。这项工作中最根本的是要选择和表征那些能够预计实现永久密闭的地质场所,英国地质调查局将继续领导二氧化碳储库的选址和表征方面的工作,以识别英国可供封存开发者使用的场址资源。预计二氧化碳封存的部署速度将在未来20年内迅速增加,同期,随着油气田停产,预计石油和天然气基础设施将可用于二氧化碳封存。在不久的将来,了解未来封存需求(时间、地点、数量)和基础设施再利用的机会,可能是重中之重。

    能量储存。包括储热、盐穴储能、地层储能、抽水储能。其中,在地层储能方面,将热量、气体或水注入多孔地层用于储热或储气,以减缓可再生能源生产的短暂波动带来的影响,并提高其供应的安全性。地质资源研究将与热量、水文地质、机械、化学和微生物研究同时进行,利用格拉斯哥和柴郡的英国地球能源观测站及其他地方的设施,评估一系列注入剂、压力、循环率的密闭性能、优化效果和发生泄漏的可能性。关于抽水储能,将开展适当的地质、岩土工程和地震学研究,以了解不同规模抽水储能的资源潜力。

    清洁能源—供热—制冷。包括浅层地热、深层地热、海上选址三大内容。其中,在浅层地热方面,英国在利用浅层地下能源方面具有相当大的潜力,如开采低位热能、制冷和跨季节蓄热、开发区域供热网络、减少国内天然气消耗、缓解燃料短缺等方面。英国地质调查局通过利用格拉斯哥的英国地球能源观测站和其他设施,将开展对地质和水文地质系统以及热能性质的研究,以准确描述相关资源,并验证系统的潜在性能以支撑管控。而在深层地热方面,英国也具有开发此类资源的潜力,英国地质调查局将通过资源调查以及对烃源岩的裂缝、地球化学、水文地质、热性能的详细理解,将对直接从岩浆中提取热量以提高转化为电能的效率进行研究,来降低该行业的风险。

    低碳世界的地球资源。一方面,英国地质调查着重研究烃类层系中的常规和非常规能源,将继续提供陆上和海上烃类层系的地质填图,并继续优化资源利用的热量、水文地质、机械、化学和微生物研究。同时,将继续开展降低未来勘探成本的大数据分析。如果政府允许开展此项活动,则柴郡的英国地球能源观测站还将进行一系列与页岩气水力压裂相关的实验和基线地下研究。另一方面,将研究低碳经济所需的关键金属,如一些金属原材料(钴、重稀土元素和铂族金属)等对低碳能源转型(电力和运输方面)发挥重要作用的主要金属的来源、迁移进行研究。同时,将利用现有的海洋钻探基础设施重点研究在岩浆热液矿床中的关键金属及其与全球构造的联系,进而实现对未来开发深海监测站点(“潜水艇”)的目标。此外,还将开展原材料库存及流动方面的课题研究,包括初级和二次资源的分布地点、产量与产地、精炼与消耗地点,以及初级(开采)资源与二次(可循环)资源如何交互,将继续全面监测全球矿产生产、贸易流量、矿产统计数据以及相关的分析和情景开发,包括循环经济、原材料供应安全和关键问题,除了国内,重点关注英国和欧洲。

    2 适应环境变化

    适应是对环境变化的响应,致力于降低人类社会基础设施和生物系统对突发变化的脆弱性。例如:即使温室气体排放量在相对较短的时间内稳定下来,全球变暖及其影响仍将持续很多年,必须加以适应。在发展中国家,适应气候变化尤其重要,因为它们可能首当其冲受到全球变暖的影响。在本项挑战中确定了四个主题和15个子主题,包括地质环境压力、表征资源恢复力、监测和预测、环境治理等方面:

    其中,在地质环境压力方面,英国地质调查局将启动一些研究,探究水、陆地和海洋资源以及相关生态系统之间的多种压力是如何通过地上、地下环境系统,从而交互和级联的。这将促使包括水文地质学、土壤科学和滑坡建模在内的传统科学领域结合到一起,也将促进应用新的地表和地下监测技术、传感器技术和建模方法,研究未来如何可持续地管理这些压力组合。同时,作为可持续发展的一部分,将开发一种全系统化的方法途径来利用和管理地下空间。通过与世界各地增长型城市(包括英国、印度、越南)开展合作,该方法将有助于释放城市地下空间的经济潜力并最大化地为城市地下空间提供服务,不仅关系风险管理,也关乎增长所需的资源。此外,海洋对英国至关重要,蓝色经济既为资源勘查、经济活动提供了新的机遇,也为环境可持续性与海洋生物资源研究提供了机遇。英国地质调查局将制定一项名为“潜水艇”的新提案,将应用先进的勘探和环境自主机器人技术,以提高英国在最大限度利用海底地质环境方面的能力。

    在表征资源恢复力方面,英国地质调查局将开展调查、数据收集、建模和解译,以评估变化和减缓不良情况。在整合所有海洋部门数据的基础上提供工具,为不同的应用型问题提供解决办法,为有效传播海洋空间数据提供协助,以支持海洋空间规划的制定并协助制定政策。同时,将在水质和水量、废物管理、交通和能源基础设施开发等方面对地下条件进行评估,从而为英国国内外铁路、公路、管道、隧道基础设施以及农村地区恢复力的发展提供支持。

    在监测和预测方面,英国地质调查局将开发综合环境监测和传感系统,这些系统经过优化,可以测量与环境变化相关压力的参数和性质,以及测量这些压力如何随着时间的推移影响不同的环境区划。开发的系统将能够容纳下不同类型的环境数据(物理、化学、生物、行为)并包含对这些数据各种形式的表征(定量、定性、可变频率、精度和准确性)。同时,开发必要的工具来表征环境特征,以及测量变化和对干预措施的响应。

    在环境治理方面,英国地质调查局将开发面向政策制定者和执行者的信息传播方法,为环境变化的减缓、适应、环境恢复力方面有效决策的制定提供支持。这是英国地质调查局科学研究的服务“前线”,涉及新的社会科学进展、新的伙伴关系,以及与公众、政府和机构的互动,为政策的制定和实施、经济的增长、民生福祉的增进提供支持。

    3 多重灾害与风险

    自然灾害(干旱、洪水、滑坡、地震和火山爆发)对经济增长、建成环境、生活和生计具有重大影响。世界范围内正在收集有关自然地质灾害的数据,并且在整合这些数据之后,可以进行更好地预测,而与社会科学家合作将使灾害信息转化为决策者和公众需要的风险信息。《英国地质调查局未来10年科学计划》在这方面确定4个挑战主题和10个子主题。

    在多重灾害系统方面,由于许多灾害过程,如地下水灾害、地磁感应电流或火山灰都集中在流体物理现象上,为此,英国地质调查局将推进英国和国际上对“单一”灾害过程(例如岩崩或地震)的监测、分析和特征描述方面的技术发展,同时对多重灾害表征和级联效应之间的交互作用进行多个科学家群体的整合研究,以更好地提供灾害现状报告或灾害预测,提供灾害或多重灾害的发生概率、分布和规模方面的定制信息。

    在风险分析方面,英国地质调查局启动研究灾害或多重灾害对暴露人群、社区及其资产的影响、脆弱性等,该分析用于研究在灾害事件中什么事物是可能损坏或丢失的,侧重研究处于风险中社区的社会属性和经济属性,以及他们的房屋或基础设施等实物资产。

    在风险的传播方面,英国地质调查局将启动研究,增进对处于风险中的社区或社会(或其代表)的了解,从而实现行动或行为模式的改变。这些研究的一个重点是与受灾害影响的社区合作,特别是开展国际合作。这项工作的开展可能需要物理和社会科学家越来越多地联手。

    在多重灾害数据科学研究方面,英国地质调查局将在灾害或多重灾害事件及其过程和影响的相关观测或监测数据采集和管理方面进行创新,将通过欧洲板块观测系统和极限地球项目数据管理平台进行商业安排。其中,可视化将包括在面临复杂的多重灾害的发展中国家应用智能手机和众包技术。英国地质调查局强调对基础设施研究的重要性,强调大型研究基础设施有助于提高调查、监测和实验的能力,吸引全球科学和专业人才,并有助于创新、实现商业化、扩大就业和促进经济增长。通过建设和使用基础设施,将形成对基础科学的支撑,进而推进国家公益科学与研究线路的整合。这也意味着制图和建模将从静态3D到动态4D实现跃迁式变化,并将越来越多地发布实时数据。而所有以上挑战,尤其是全球性灾害和风险,需要统计、预测和预报、人工智能和创新数据存储各方面的计算机科学专家,需要更加关注社会科学并与社会科学家进行更加深入地融合交流。对此,英国地质调查局将探索招聘社会科学家的方式,以及拓展合作伙伴关系和新模式,例如外包和全民共享。

    4 迎接地质调查科技挑战

    “第四次工业革命”的特点是技术融合,包括对机器人技术、人工智能、纳米技术、量子计算、生物技术、物联网、5G移动数据、3D打印和全自动驾驶汽车的融合。为此。英国地质调查局将创建一个新的综合信息“操作系统”,以持续地为全球地球科学的云平台提供信息,彻底改变数据的提供、预测和预报模式——并支持上述三大科技挑战和其他世界级的地球科学挑战。同时,利用新的操作系统和知识将这些数据集结合起来,提供从城市到大陆边缘各种比例尺的地质系统尖端信息。英国不同地区的经济驱动力正在迅速发展,英国地质调查局将开发各种途径为特定地区的需求提供最适合的定制信息,同时确保国家的地球科学框架得到加强。在国际上,将在英国海外发展援助计划的范围内与伙伴国家展开合作。具体来讲,英国地质调查局将开展包括数据科学和数据基础设施、建模、区域地质调查、新一代英国国家地质模型、地球科学和社会等方面的战略研究工作。

    其中,在数据科学和数据基础设施方面,通过新数据和采集技术,显著提高影像的拍摄和传输能力,以更好、更详细地表征环境和地质体,并提高时间分辨率。其中一些技术将是新颖的,需要新的遥测技术或转用其他领域及行业获取的技术,从更深的地下探测信息。

    在区域地质调查方面,将在英国和国际上启动地区层面的项目,将与各地区特有的一系列工业和可持续发展挑战相关联。比如:东北走廊项目,该项目将支持矿产、基础设施(公路和铁路)、建成环境、可能的氢经济、碳捕获与封存和页岩气工业网络。这些定制项目将与英国的区域产业战略、地方增强基金以及工业利益相关者的需求密切相关。类似的以工业为重点的项目将在英国和其他国际区域开展。这类区域工作将在英国的国家层面进行协调,以确保数据集之间的一致性,保证连贯性和在国家尺度上理解一致。

    在地质模型方面,将开发新一代英国国家地质模型,重点关注英国的浅层地下模型和基岩体元模型。这些模型将建立在现有数据的基础上,并结合正在进行项目的新数据,特别是聚焦区域的地质调查数据。例如:新的英国浅层地下模型旨在开发用于模拟浅层地下结构和性质的新方法。通过使用地貌形态测量和数据分析技术,将推动地球科学的发展,形成对当前浅层地下模型的支撑,以期为未来开发增强型模型,发布新产品。此外,一个结合浅层和深层、区域和国家的地质模型,将提供可供外部利益相关者用于改进决策的3D框架;而对地面和地下传感器网络的不断改进和开发部署,将能够使所提供的数据从3D走向4D。

    (作者单位:中国地质调查局发展研究中心)

     

    迎接科技挑战 叩响地球之门

    1 前言

    近年由于常规天然气资源量和产量的下降,特别是在北美洲,非常规天然气得到了高度的重视。一些估计表明,全球非常规天然气资源量(不含水合物)超过30000万亿立方英尺,大约有50%的资源来自页岩气。Julander能源公司的首席执行官Fred Julander认为页岩气(SG)是“自发现石油以来最重要的能源进展”。

    水平钻井技术的进步、水力压裂、相对高的天然气价格(相比2009年之前)和近来在巴内特页岩(Barnett Shale)和美国其他几个页岩气藏的商业成功都使页岩气在美国成为了热门能源,而且页岩气的勘探开发已开始蔓延到加拿大和世界其他几个地区。

    由于页岩气远景的复杂性和广泛性,针对页岩气的应用不能采用普遍用于常规气和煤层气的应用技术,而需专门设计开发工具和方法。多名学者包括Gray等人(2007)和Harding(2008)认为基于确定性解决方案的决议不适用于页岩气开发,因其没有考虑与复杂成藏有关的风险和不确定性,且经常导致过于乐观的结果。

    到目前为止,尽管在北美和欧洲的勘查活动活跃以及近期商品价格下降,页岩气远景分析工作也只完成了极少的部分。商品价格的下降使最高质量远景区的开发至关重要,这些区域的开发不仅最符合公司的利益,并且赋予公司与国外的低成本常规气田(即卡塔尔和沙特阿拉伯相关的天然气)竞争的最佳潜力。Williams-Kovacs和Clarkson(2011)提供了与非常规的远景分析有关的现有工作的回顾,并提供了一种专为页岩气应用而设计的综合的六阶段远景分析及开发评价方法(PADEM)。本文中,作者还展示了一个专门开发用以筛查页岩气远景区并且选择最适合详细分析远景的工具。本文以Williams-Kovacs和Clarkson的工作为基础,致力于远景评价并选择进行更深入分析的远景区的试点位置。

    当前工作的目标是:①开发一种协助页岩气勘探开发阶段的方法和配套的分析工具;②演示已开发技术在加拿大西部致密砂岩/页岩远景区的应用。这项工作的主要贡献是开发与示范一种针对页岩气远景区的严格分析方法。当考虑共存关系时,基于先导试验井输入变量的不确定性,该方法能生成其预测的分布。以前所有的工作一直专注于全域开发方案,然而无法利用勘探开发早期阶段可获取的少量数据快速形成这种全域开发方案。

    2 工具开发

    在这项工作中,开发了一种用于分析页岩气远景的工具。该工具选择使用(以Williams-Kovacs和Clarkson提出的方法(2011)为例的)预筛选的方法。本文将重点放在该工具的开发和应用,分析某一远景区的不同区域,以确定它们是否是适合的试点项目,并描述了图1所示的PADEM工作流程的勘探阶段。勘探阶段的目的是对从更多的详细资料中筛选的远景进行调查,以增加对油藏流动性和碳氢化合物生成能力的了解。在这项工作中,我们对个别类型油井采用概率范围经济学(probabilistic scoping economics)作为勘探标准,以确定该远景区是否适合实行试点项目。表1中完整提供了Williams-Kovacs和Clarkson(2011)详细讨论整体勘探开发方法的总结。

    表1  勘探开发方法概况

    发展阶段

    概述

    靶区筛选

    评估所有潜在的远景区,并选择能提供最好的商业成功机会的远景区

    勘探

    对远景区进行更详细地调查,提高对油藏流体特性和相应碳氢化合物生产能力认识。确定有代表性的试点项目适合的地区

    试采

    继续提高对远景区的认识,集中验证试采区单井的供给能力,评估完井方法

    商业示范

    在项目提交全部资金预算之前,完成开发部分(30%)针对错误的试验结果的测试

    全域开发

    完成全域开发计划,开始制定退出战略

    新的远景/退出

    完成项目详细回顾,评估区域及具体化开发过程中新的远景相关区域。调整和实施退出战略以及任何所需的补充措施

    在这项应用中解析模型比数值模拟更适用,其原因在于应用程序自设置和初始化的时间很短,整合的蒙特卡罗模拟法简单易行,并且在勘探早期阶段不容易获得形成精准的数值模拟所需的详细数据。尽管数值模拟技术已得到改进,但解析方法在工业和文献中依然被大量使用。下文给出了开发工具的关键部分的概要。

    2.1 属性图

    勘查方法最关键的组成部分可能是关键储层、地质力学、岩石物理和地球化学特性的精确属性图的开发。从地质模型、产量不稳定分析(RTA)、压力不稳定分析(PTA)、岩石物理调查等组合中可以推导出这些属性图。这些属性图用于远景的可视化、区块选区以及单一区块的分析。天然气原始地质储量图(OGIP)、Km-h图、压裂脆性图等有助于选择代表性区块以及具备更大开发潜力的区块,甚至高度非均质性区块。区块作为一种评价不同区块远景生产特性的方法,基于地质和岩石物理的观察,比较简单易于操作。采用区块方法不需要针对每个勘探网区块开发一种标准井进行分析,然而通过应用蒙特卡罗法依然解释了其变化性和不确定性。Clarkson和McGovern(2005)采用区块方法评价了煤层气(CBM)远景。通过输入X-Y坐标值以及PetrelTM软件的储层属性Z值可以在Excel中创建储层属性图。随后,数据透视表程序被用于对数据排序,并利用二维绘图应用软件创建属性图。由于早期的岩石物理模型通常利用有限的数据集开发,单一区块在蒙特卡罗模拟中选择不确定的输入数据和参数范围可以解释模型参数的不确定性。这种解释不确定性的方法将在本文所示实例中进行演示。

    2.2 水力压裂模型

    该项工作中,水力压裂裂缝的半长采用Valko(2001)提出的在常规和致密气中应用的简单双翼压裂模型来预测。该模型采用基质渗透率、剪切模量(杨氏模量与泊松比的函数)以及其他储层参数作为输入数据,且如果建模的输入参数不确定,则都必须重新计算每次蒙特卡罗迭代。采用简单的关联(Acm=4xfh)可将裂缝半长转换为与压裂有关的面积。这个压裂模型可能无法代表部分更复杂的页岩气裂缝。为了更好的表示引入到大部分页岩气储层的复杂压裂网,Xu(2009,2010)等人建立了一个更具有代表性的水力压裂模型,该模型将被结合到本次工作中所演示的更新版本的方法中。该区的微地震观测表明,在本文预测的远景区横向双翼压裂的假设是合理的。

    作为所应用的速率预测模型中的关键组成部分必须估算裂缝半长,这一问题将在下面部分开展讨论。水力压裂裂缝半长在随机分析中作为不确定的输入量,其分布主要根据该地区的微地震事件或者其他方法来确定。

     

     

    图1  非常规天然气勘探阶段的勘探/开发方法工作流程

    2.3 速率预测

    Clarkson(2013)提供了关于页岩气井生产分析和速率预测综合全面的概述。在该工作中,我们将页岩气井理想化为一个矩形双孔介质系统,气体从基质岩块流入到裂缝且储层不随着裂缝延展(如图2的概念模型)。该模型忽略了包括体积压裂(SRV)在内的影响,其他作者认为大部分低渗页岩气井在合理的时间内不会发生体积压裂。此外,图2所示的概念模型假设了一个均质的完井——Amborse等(2011)和Nobakht等(2011a)讨论了非均质储层完井的预测。

    在本次工作中,该模型的解决方案首先由EI-Banbi(1998)提出来。人们普遍认为在页岩气藏中占主导地位的瞬时流动状态是从基质到裂缝的线性流。同时,也可能出现一个与水力压裂线性流动相关的线性流动周期,但是通常认为这个阶段持续时间很短,或者被水力压裂清理以及表皮效应所掩盖,而很少可用于分析。本项工作中,我们假设瞬时线性流(从基质到裂缝)之后是边界控制流,该流态与受表皮效应(见等式7)影响的线性流体模型存在早期偏差。压裂段之间的不渗透边界结构导致了边界控制流产生。由Wattenbarger等(1998)首先将早期线性到边界控制流体的假设引入到致密气的应用中,并且该假设被广泛应用于文献和页岩气行业的解析模型。

     

     

    图2  从线性流到边界流的解的概念模型

    2.3.1 瞬时线性流的速率预测

    EI-Banbi(1998)提出通过恒定速率和恒定流体压力来描述瞬时线性流的公式。本项工作中采用恒定流体压力的条件,这也是本文其他部分的重点——该边界条件最接近大部分产生达到最大水位降低值的页岩气井的流动条件。Samandarli等人(2011)采用不同的流体压力迭代方法,对页岩气生产进行分析建模,但是他们表明在大部分情况下采用恒定流体压力的假设就可以了。

    与常用于表征简单横向双翼压裂的裂缝半长(Xf)相比,相关储层面积(Acm)能更好的表示完井措施和增产措施效果以及生成复杂裂缝的能力。因此,在这一分析中,采用相关的储层(气藏)面积(Acm)取代裂缝半长(Xf)。许多业内专家相信由于页岩气藏超低的基质渗透率,复杂压裂对于页岩气的商业生产至关重要。

    无因次时间,tD,Acm,相关储层面积(Acm)依据公式1在恒定压力条件下定义。

                               (1)

    无因次速率,qD,Acm,由无因次时间定义:

                                           (2)

    基于储层特性的无因次速率表达式,如果可获得关于KmAcm估算值,通过公式(3)可确定气体流速。采用不稳定产量分析或者其他的模拟技术可估算KmAcmKm也可以通过实验室技术单独确定。

                                 (3)

    Ibrahim和Wattenbarger(2006)认为线性流的性能受水位下降程度的影响,同时提出水位下降量修正因子(fcp)。此次工作中采用的修正因子(fcp)由公式4给出。

                                (4)

    此处,

     

    Nobakht等人2011a和Nobakht等人(2011b)通过分析中采用校正时间(本次工作未采用)提出一种更严格的校正水位下降量的方法。

    将水位下降量修正因子应用到公式3得出公式5:

                           (5)

    除了水位下降量的修正,这些公式经过进一步修改可直接应用于页岩气井。与致密气井相比,大部分页岩气井在时间曲线的平方根中表现出的较大截距(在致密气井中曲线通常穿过原点),而在流量和时间双对数曲线上页岩气井则呈现出的一半斜率的偏差。多名作者最初认为是裂缝的有限导流能力造成了这种偏差,但是Bello(2009)和Bello和Wattenbarger(2009,2010)认为这种偏差可以通过采用表面效应来更好的解释。Bello(2009)、Bello和Wattenbarger(2009)在恒定流量和恒定流体压力条件下完成了大量的受表皮效应(skin effect)影响的线性流分析,且推导出了恒定流体压力条件下的解析解。在他们的分析中,将表皮效应作为一个常量。Bello(2009)和Bello和Wattenbarger(2009)证明恒定流量情况下表皮是附加量,而恒定流体压力情况下表皮的作用是非线性的。由Bello和Wattenbarger(2009)提出的解析式可以使用下面的近似代数方程:

                    (6)

    从方程(6)可以看出,当tD(t)值大时,包含表皮的项就会变小。

    Nobakht等人(2012)研究了巴内特、马塞勒斯和蒙特利的大量页岩气井(这些气井在相对恒定的流压下产量不断降低),同时得出结论:通常这些页岩气井更多表现出恒定流量的情况而不是恒定流压的情况。作者假设这种意想不到的表现可能是由于Bello(2009)以及Bello和Wattenbarger(2009)提出的表皮模型太过理想化,因此无法代表野外条件。通过假设恒定的表皮效应,模型不能说明由压裂清理、压力敏感地层、变化的压裂导流能力、变化的井底流压、压力相关的流体性质、变化的井筒流体梯度、液体加载等导致的表皮改变。作为这项工作的结果,作者提出了一个可应用于公式(2)的替代表皮修正项:

                       (7)

    包括水位最低量和表皮的影响,公式(1)、(5)、(7)能够利用预测的气体流量,作为时间的函数,在线性流区域可对KmAcm给出独立的估测。

    2.3.2 边界控制流的流量预测

    上面描述的方法适用于有效的储层边界相互接触,边界控制流形成之前。基于图2所示的几何图形,边界控制流紧随着瞬时线性流的末期出现。当外部SRV的影响较为显著时,这一观点较为保守。Clarkson和Beierle(2011)认为如果遇到了其他的瞬时流区,则应采用多重分区的方法,此外,如果多级压裂井需要进行非均质性储层的完井(heterogeneous completion),早期线性流之后不会立刻发生真实边界控制流,且需要更复杂“混合”预测技术。如同下面叙述的,我们选择采用更为保守预测程序,假设线性流之后紧随边界控制流。

    利用公式8计算达到线性流的拟稳态时间(或者是瞬时线性流的结束时间):

                           (8)

    正如图2中看到Ye是压裂到储层边界的距离,计算公式如下:

                           (9)

    多名作者已经提出了页岩气井拟稳态线性流的预测方法。包括Fraim和Wattenbarger(1987),Palacio和Blasingame(1993),Doublet等(1994),Agarwal等(1999)和Mattar和Anderson(2005)认为可采用物质平衡类模拟程序预测边界控制流。Clarkson和Pedersen(2010)将这种方法应用于致密油研究,同时本文也将采用这种方法。公式(10)给出采用物质平衡方法预测边界控制流的生产速度:

                  (10)

    此处qpssi-Linear是边界控制流初始的页岩气流体速度,Pri)pss是边界控制流初始的平均储层压力,且Pwfi)pss边界控制流体初始时井筒流体压力。通过物质平衡计算平均储层实际气体拟压力。对于含有大量吸附气的页岩气开采(application),一般使用Clarkson和McGovern(2005)提出的MBE方法。而在以游离气为主的情况下,则使用定容气藏的常规MBE方法。物质平衡计算需要地质储量和气体特性(比如天然气压缩因子),这两者都是由关键PVT输入量和状态公式(EOS)确定的。

    (a)

    收入总额

    (b)

    收入总额

    扣减

    使用费

    扣减

    使用费

    扣减

    运营成本

    扣减

    运营成本

    得出

    税前运营现金收入(OCIBT)

    扣减

    资金成本补助(CCA)

    扣减

    收入税

    扣减

    加拿大开发费用(CDE)

    得出

    税后运营现金收入(OCIAT)

    扣减

    加拿大勘查费用(CEE)

    扣减

    资本支出

    扣减

    加拿大油气物业费(COGPE)

    得出

    税后现金流(CFAT)

    得出

    生产应税所得

    贴现

    税后贴现现金流(DCFAT)

    生产税率

       

    得出

    应付税款

       

    扣减

    免税额度

       

    得出

    应付净所得税

    图3  现金流分析:(a)现金流;(b)收入税(加拿大税制)

    结合El-Banbi(1998)改进的瞬时线性流的无因次公式和边界控制流的物质平衡模拟方法,可以开发一种综合的预测方法:

    1)        获取Acm(或者Xf)和Km(来源于微地震和/或RTA模拟/已有生产数据或者其他估计)的独立估算值。

    2)        使用公式(1)和(7)作为时间函数计算tD,AcmqD,Acm

    3)        线性流部分的数据利用公式(5)作为时间函数计算qg

    4)        指定排放区(来源FMB模拟/已有的生产数据或者其他估算)。

    5)        使用公式(8)和(9)计算tPSS-LinearYe

    6)        确定

    7)        采用公式(10)通过废弃量(边界控制流)从tPSS-Linear预测产量。

    上面描述的解析模型是假设模型(最小变化)区块内的体积平均值参数是恒量,并从认为是不确定的参数的概率分布中选择一个值。每一次蒙特卡罗迭代将选择不同的值,导致不同的流量预测和不同的主要经济指标值。在许多参数高异质性水平的情况下,存在明显的不确定性,这种不确定性反映在关键输出参数的显著变化。

    2.4 经济模块

    将经济模块与速率预测集成来计算与生产相关的现金流。因为通常行业采用名义美元计算实际(通常的)现金流和名义(现行的)现金流,虽然采用实际的盈利指数计算项目的最低预期资本回收率,且通过不同的通货膨胀率来比较项目。采用图3中的业务流程计算现金流和收入税(加拿大税收制度)。

    该模块中的天然气价格的确定实行了价格操纵,而非价格预测。采用价格操纵表明了项目十分稳定(不论是单独而言还是相较于其他项目),并且不再需要预测极不稳定的天然气价格,该模块中也设置了以价格预测为基础引导经济的选项。

    方法中建立了多个实际盈利能力的指标,包括净现值(NPV)、内部收益率(IRR)和投资收益率(ROI),用来比较项目和公司设定的最低预期资本回收率,同时可给项目进行排序。

    2.5 蒙特卡罗模拟的一体化

    本次工作将蒙特卡罗模拟整合到方法开发中。采用@RISKTM(Palisade Corporation,2010)对关键PVT和储层属性(原始参数)进行概率分布和模拟操作。概率分布的输入变量根据不同项目的数据数量和质量而变化。Clarkson和McGovern(2005),Haskett和Brown(2005)和Harding(2008)认为对数正态分布最能代表PVT、储层和经济特性,因此本文使用了这种分布类型。这些概率分布拟合按P10(低)、P50(中)和P90(高)不同的值输入各个不确定变量。这些输入值可能来自勘探/远景数据、个人经验、模拟数据等。缩减所有输入变量的分布保证每个实现只选择合理的数值(缩减分布将选择少量接近无穷大的数值,从而影响输出变量)。

    上面讨论了@RISKTM输出变量定义的关键经济参数,以及气体速率和累积天然气产量。由于每个输出变量允许量化与项目相关的不确定性,可对其生成一个概率分布,以便做出与远景选取和开发有关的明智决策。

    通过在x轴上找到相应的最低预期资本回收率时的位置,向上垂直移动至曲线处,然后再水平投影到y轴,这样可以从累积概率分布计算出超过设定最低预期资本回收率的概率。用1减去y轴上求出的值,得出超过最低预期资本回收率的概率。这个方法在本文中将作为范例进行演示。

    在这一应用中(如在孔隙度和渗透率之间),采用了拉丁超立方体抽样,如果有必要的话,还可合并相关性(如孔隙度与渗透率)。典型的多相(气+水)页岩气/致密气应用的主要参数如表2.3所示。在某些情况下,参数的依赖关系可使用行业普遍接受的经验模型进行解释,而在其他情况下会使用来自现场数据或者估算得到的基于方向的相关性(如较高的正相关关系)。例如,与压力有关的渗透率(绝对的渗透率比值)使用Yilmaz等人(1991)的方法可与储层压力和岩石力学特性关联。相反,束缚水饱和度与孔隙度密切正相关。可能的参数关系如表2所示。

    蒙特卡罗模拟运用了一个类似于Clarkson和McGovern(2005)使用的煤层气气藏远景分析的方法。

    表2  基本参数、可能的相关性和参数关系

    基本参数

    可能的相关性

    关系

    有效厚度/英尺

    孔隙度/%

    粒径,有机质

    适用于某些情况下和正相关情况的实证模型

    初始含水饱和度/%

    孔隙度

    高度正相关

    束缚水饱和度/%

    孔隙度

    高度正相关

    基质渗透率/毫达西,初始状态

    孔隙度,有机物

    适用于某些情况下和正相关情况的实证模型

    基质渗透率/毫达西,初始比

    储层压力,力学性能

    野外/岩心数据经验曲线

    相对渗透率

    含水饱和度,束缚水饱和度

    野外/岩心数据经验曲线

    初始储层压力/磅/平方英寸

    深度,渗透率(超压)

    气压梯度

    储层温度/℉

    深度

    温度梯度

    天然气比重

    朗缪尔体积/标准立方英尺/吨

    容积密度

    来自岩心/岩屑的线性关系

    朗缪尔压力/磅/平方英寸

    体积密度/克/立方厘米

    流泄区/英亩

    含气量/标准立方英尺/吨

    TOC

    正相关

    井眼半径/英尺

    表面

    增产效果

    高度正相关

    压裂总半径/英尺

    剪切模量(+),渗透率(-),有效厚度(-),井眼半径/英尺

    变化—见括号中相关方向

    井底流压

    井眼长度

    高度正相关

    3 该方法应用于远景勘探

    本文中开发的方法广泛应用于SG远景将其分成区块进行分析的目的,以确定是否适合作为一个试点项目。由于SG试点和开发项目成本高,且其详细分析需要大量数据,页岩气远景勘探至关重要。

    对于远景勘探应用而言,其方法的选择以当前远景数据和模拟数据相结合为基础。理想情况下,对于关键PVT和储层参数情况良好的估计,作为空间坐标的函数可用于远景勘探。如果事实并非如此,可以对模拟气藏或者其他数据源进行估算以获取数据,同时分析该方法带来的不确定性。

    假定整个远景区PVT和其他储层特性不变,输入数据可用于生成主要储层特性图。关键生产指标图如OGIP和基质渗透率乘以可以开发的净投入(千米/小时),可用于区块的选择。区块的选择基于区域类似的关键生产指标的值。对页岩气储层而言,压裂的指标,如压裂指数或脆性也可能用于区块选择,同时许多作者表明建立复杂裂缝网的能力对于页岩气商业开采至关重要。

    选择区块后,开始进行蒙特卡罗模拟,按照P10、P50、P90的概率预测和可以开发累积产气的区块,且结合使用关键经济指标的分析来确定区块能否适合一个试点项目。其他因素比如公司的经验,企业和商业策略,可用的资源和基础设施等都将纳入评估,以便为公司以及股东们确定哪些区域可以作为最佳试点选项作出明智的决策。

    远景勘探方法工作流程见图4所示。

    4 采用两段页岩开发模型的样本示例

    为了进一步说明该方法的应用,对加拿大西部的某处致密砂岩/页岩(假定没有吸附气体)远景区的两段进行了分析。在之前的研究中,PetrelTM开发的远景地质模型采用可用的岩石物性、储层和生产数据。图5所示研究区域内4口井的三维孔隙度模型和孔隙度相关的钻/录/测井记录。在该区域,存在两处可获益的产气水平井段(井段3和井段4)。

     

    输入数据

    关键储层属性的填图属性

    PVT,其他储层和水力压裂属性

    生产数据

    经济投入

    区块选择

    根据OGIP或者其他关键属性确定区块

    蒙特卡罗模拟

    模拟输出

    P10、P50、P90的概率预测和累积产气量

    水力压裂运行情况

    经济参数

    可行的商业区块标志

    其他

     

     

    图4  远景勘探方法的工作流程

     

     

    图5  三维孔隙度模型和孔隙度相关的测井

    模型开发期间这个开发区拥有11口垂直井,2口倾斜井和4口水平井。最初钻完成垂直井,紧随其后的是开始于2008年的水平井。Clarkson和Beierle(2011)在该区选择一系列井进行不稳定产量试井(RTA)。模型开发中使用的水平井的总结显示在下面表3中,同时在图6中(在下面描述)该区域的天然气原始地质储量(OGIP)图上显示了井的近似轨迹。

    表3  研究区水平井概况

    井名

    井向

    进入层位

    完井方式

    1号井

    水平

    井段4

    尾管注水泥

    2号井

    水平

    井段3

    自膨胀封隔器

    3号井

    水平

    井段4

    自膨胀封隔器

    4号井

    水平

    井段4

    自膨胀封隔器

    所做的分析主要集中在大部分是水平井的井段4。为了简化分析,采用孔隙度下限为4%,通过Excel加权平均井段4层位,将PetrelTM多层模型转换成一个单层模型。这一平均化过程是为了完成对基质的孔隙度、初始含水饱和度和渗透率的处理。利用孔隙度下限值还可以计算总有效收益和毛净收益(有效收益假设包括所有孔隙度下限值以上的层)。图7a和图8a显示了OGIP和Km-h属性图。

    模型采用的网格大小如表4所示。在整个开发过程中假设为常量的PVT、储层和生产参数如表5所示。

    表4  网格属性

    网格属性

    数值

    网格尺寸

    135×129

    区块长度,X/英尺

    49.76

    区块长度,Y/英尺

    49.76

    网格区块面积/Ac

    0.057

    对于这种情况,人们认为井筒流动压力(pwf)为常量1750磅/平方英寸,接近开发区水平井最初的井筒流动压力。随着时间的推移井筒流动压力降低,后期模型中压力驱动力低于开发井,模拟气率并不乐观。这种情况下,在可获取日常生产和流动压力期间内,平均两个收益井的流动压力大约是1550磅/平方英寸,因此到开发后期之前,这种假设的影响并不很明显。在实际勘探中,该地区还没有投入生产,由于我们不需要将可用的生产数据与模型匹配,而是采用实际的流动压力估计值尝试得到一个准确的潜在生产能力估计值,所以这种假设的影响不是一个值得关注的问题。

    表5  PVT常数、储层和生产投入参数

    参数

    PVT参数

     

    气体比重

    0.648

    N2/%

    0.46

    CO2/%

    0.2

    H2S/%

    0.0

    温度/℉

    166.5

    Cw/磅/平方英寸-1

    2.9×10-6

    Cr/磅/平方英寸-1

    5.6×10-6

    VL/标准立方英尺/吨

    N/A

    PL/磅/平方英寸

    N/A

    储层参数

     

    Pi/磅/平方英寸

    3500

    排放面积/Ac

    80

    生产参数

     

    Pwf/磅/平方英寸

    1750

    rw/英尺

    0.3

    3个区块中假设关键属性的变化情况如表6所示。各属性的数值是每个区块的各个网格值的算术平均数。由于基质渗透率是蒙特卡罗输入量,且利用基质渗透率值可计算总压裂半径(虽然也可使用压裂分析模型在每次迭代时作为基质渗透率函数计算总压裂半径),故给出了一个基质渗透率值以显示区块之间总值的变化情况。

    表6  储层变量和水力压裂输入参数

    参数

    区块1

    区块2

    区块3

    储层参数

         

    有效厚度/英尺

    102

    74

    58

    孔隙度/%

    7.1

    6.5

    6.0

    Sw/%

    18

    15

    16

    Km/毫达西

    0.0084

    0.0079

    0.0077

    水力压裂参数

         

    剪切模量/磅/平方英寸

    2×106

    2×106

    2×106

    总压裂半径/英尺

    1432

    1477

    1489

     

     

    图6  研究区地质储量图呈现近似水平井轨迹

    4.1 区块选择

    利用从PetrelTM多层模型开发的单层模型,其单层等量地质储量如图7a所示。根据类似颜色为代表的区域具有类似地质特征和岩石物理性质,通过视觉观察可选择区块。虽然已知气藏具有高度的横向非均质性,可以看到关键的地质和岩石物理性质明显凸出部分。该图形显示了更复杂的异质性模式的情况,需要更多的区块并且可能有必要用区块代表具有相似属性的不连续块段。图7b显示基于天然气原始地质储量选择的区块远景区。在计算天然气原始地质储量时,虽然该远景区吸附气体量很容易被包含其中,但还是假设其可以忽略不计。

     

     

    图7  地质储量图:(a)地质储量;(b)选区

    从图7b可以看出选取的三个区块中,区块1具有最高的天然气原始地质储量(红色和橙色),区块2具有的地质储量(光和暗绿色)次之,区块3具有的地质储量(紫色和蓝色)最低。从这幅图中可以推断出区块1将有最理想的属性,因此可能具有最高的产量,而区块3产气物性最不理想,因此可能具有最不理想产气量。如同气藏地质储量图(图7)一样,如果绘制Km-h图我们也可以分辨出三个相似的区块。此次应用区块选区采用的天然气原始地质储量图和Km-h图作为代表资源的程度/密度和储层特性的两个要素,这是工业上常用的评估致密砂岩和页岩远景好坏的关键因素。区块选区的属性根据不同项目而变化,取决于驱动特定资源类型远景的关键要素。

    对于这种情况,假设简单的水平双翼压裂(如所使用的压裂模型所假定的)就足够了,因为微地震数据对同一区域的补充水平压裂井的解译说明复杂程度较低,如果不是水平情况,则进行压裂(图9)。采用水平和垂直观察井用以观察,同时采用双阵列处理会产生一个好的数据集。一般情况下,各个阶段仅出现一个水力压裂裂缝。水力压裂裂缝通常选择北东-南西方向,与加拿大西部沉积盆地(WCSB)部分最大水平应力方向一致。

     

     

    图8  Km-h图:(a)Km-h;(b)选区

    通过比较图6与图7b和8b可以看出在开发区所有水平井部分或全部在区块1范围内。因为这个原因,剩余的分析还将在区块1中开展。对区块1区域的水平井的预测情况而言稍微乐观,因为这些水平井水平延伸超出区块1区域进入地质储量和Km-h更低的区域(该区水平井采用恒定的流体压力与(Pwf)i相比将获得相反的影响)。

     

     

    图9  根据微地震数据解译的研究区内水平井水力压裂裂缝几何图形

    4.2 经济分析

    分析假设只有天然气价格是变量,而所有其他经济参数都保持常量。表7列出了其他主要经济参数的值(基于Magyar和Jordan的估算(2009))和表8介绍了主要的专利权使用费、税和贴现参数。

    在本文的分析中,净现值(NPV)作为重要的收益经济指标且最低资本回报率为0。

    分析远景的工作流程图如图4。

    表7  资本和运营成本参数

    参数

    土地成本

     

    租金/美元/亩

    2500

    代理费/美元/亩

    50

    单井成本

     

    钻井/百万美元

    1.5

    完井/模拟/百万美元

    2

    配套设施/管道/百万美元

    0.35

    储层表征

     

    地震/百万美元

    0

    测井/百万美元

    0

    提取岩心/百万美元

    0

    其他/百万美元

    0

    运营成本

     

    固定成本/美元/月

    5800

    可变成本/美元/千标准立方英尺

    1.25

    表8  使用费、税收和折现率

    经济参数

    费率

    使用费率

    20%

    税率

    30%

    实际贴现率

    15%

    名义贴现率

    18.45%

    通货膨胀率

    3%

    4.3 蒙特卡罗模拟

    在区块选择之后,本文进行了蒙特卡罗模拟研究。蒙特卡罗模拟中,基质渗透率(km)和页岩气价格不断变化,而所有其他的PVT、储层参数和经济参数保持不变。为了更好地进行说明,我们选择了将“不确定”的输入变量的数量显著限制在基本控制远景的油藏性能(储层渗透率)和经济情况(天然气价格)。基于P10、P50和P90值按照对数正态分布模拟参数。在大多数的勘探情况下,许多参数都是不确定的,可以通过这些参数的概率分布(见表2)来定义。对于需要使用概率分布进行定义的一些关键参数,可通过评估给定区块内重大变化的属性图来直接确定,或用更严格的统计技术,如采用区块内部数值计算变异系数(Cv)。由于基质渗透率是基质流动的主要控制要素,以及未来商品价格造成的天然气价格的高度不确定,针对这种情况,我们选择基于视觉观察的基质渗透率。

    基质渗透率按照P10、P50和P90的值计算如下。通常情况下,可以通过岩石物理模型中的参数值拟合分布来生成概率分布,但是因为我们处理的是远景的早期评估,因此我们采用了替代的方法,即最大限度提高模型获取的不确定性来解释其他早期参数估算无法获取的变化性。如果需要,对其他不确定参数也可以使用相似的方法。

    P10——区块1中比第十百分位值的基质渗透率低20%

    P50——区块1中的基质渗透率值居中间数

    P90——区块1中比基质渗透率的九十百分位值高20%

    表9中定义了2个输入变量的分布。将模型内部不确定参数合并关联(见表2)也很重要。虽然孔隙度和渗透率之间的相关性被加入到原始岩石物理模型(幂律相关),并且压裂半径与剪切系数(正相关)、基质渗透率(负相关),净收益(负相关)和压裂模型井眼半径(负相关)相关,但是出于演示的目的,本文对这一方法进行了简化,使蒙特卡罗模拟中的主要变量之间没有相关性。由于压裂半径取决于基质渗透率,压裂模型必须在每次迭代时重新计算。气体流量,累积产气量和净现值被定义为@RISKTM输出变量。

    本文进行了5000次蒙特卡罗迭代,以确保蒙特卡罗输入变量充分覆盖样本空间。要求覆盖足够的样品空间,是为了确保每个模拟输入相同参数运行时,能得出同样的结论。出于演示的目的,用上述方法获得的迭代数并不是最优化。但是,通过将无限大(非常大)的样本输出分布与减少样本数量的输出分布比较,同时寻找要求充分重复“已知”输出分布的最小值,可以获得优化的迭代数。当进行多个模拟时,优化处理可用于减少处理时间和容量。

    4.4 结果

    图10显示了区块1中单口气井的确定产气量和累积产气量预测。这个“确定性”的基质渗透率的值来自于表9所示输入分布的斯旺森平均值(SM),假设这个值代表区块收益的平均水平(静态平均Km=0.0095毫达西)。虽然Bickel等人(2011)指出了斯旺森平均值(SM)的缺点,但它仍然被广泛地用于工业,因此在这种情况下还将使用。此外,斯旺森平均值在输入分布的平均值的5%范围内(使用@RISKTM计算),因此认为在这个例子中的平均值是准确的。另外,可以使用另一个估计的平均值(即分布平均值、区块值的算术平均值等)。图10a显示的产气速率与时间半对数图以及累积气体的产生与时间的笛卡尔曲线,而图10b显示了产气速率和时间的对数分布图。

     

     

    图10  开发模型情况下的确定速率预测:(a)产气速率和时间、累积产气量和时间的半对数;(b)产气速率和时间的对数关系

    图11显示了产气速率与时间的半对数图,图11b显示一个产气速率与时间的对数图和图11c显示预测(约14年)最初5000天累积产气与时间的笛卡尔曲线。

    通过比较图10和图11,可以再次看到确定性预测与P50概率预测相比,具有更大的IP,持续的生产速度和累积产气量,表明确定性预测是比中位数情况稍微乐观,并且明显远超过P10的情况。这些结果再次支持使用概率分析取代非常规应用的确定性分析。

     

      

    图11  开发模型情况中概率速率预测:(a)产气速度和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    随后,P10、P50和P90产量预测与区块1内水平井可获取的生产数据进行对比,以测试开发方法的稳健性和准确性。在这个比较中,由于完井的复杂性,只有井3和井4可用,而井1表现不佳,且井2在此次分析区块外部。井3的产量被缩减了30天,以便使该井产量自然下降的初始时间与概率预测的一致(指修正井3)。生产的前430天的对比曲线如图12所示。

    如图12所示,两口井的生产数据(修正井3和井4)普遍落在P10和P90之间(使用@RISKTM生成的预测)。除了生产的前20天和第300天左右时的大约20天两个时间段(模型没有指出的操作问题导致的结果)外,约80%的数据点如预期处在P10和P90预测之间。初步预测产量可能更高,因为它不考虑压裂清理干扰、启动效应等,该模型增加了表皮效应来提高与IP的匹配程度。但是,在真正的勘探情况下表皮效应的大小无从得知,这是因为无法获取产气远景区域的数据且需要将其作为不确定的输入量以最大限度地提高模型的准确性。

     

     

    图12  3号井和4号井生产数据和概率速率预测的对比:(a)产气速率和时间的半对数关系;(b)产气速率和时间的对数关系;(c)累积产气量和时间

    虽然这不是一个令人满意的统计样本,只有一个关键属性(Km)被认为是不确定的,但结果令人鼓舞。图13显示了净现值的增加的累积概率分布,直方图和回归系数托那多图。图13a再次显示超过最低预期资本回收率概率计算的累积概率分布图。

    从图13a可以看出这个模拟平均净现值为53万美元,可能超过最低预期资本回收率的50%。然后,可将平均净现值和超过最低预期资本回收率的概率与相同远景的其他区块,以及与其他潜在远景的区块进行比较,从而确定哪些远景区域可提供最好的经济成功机会。这一分析显示了积极的NPV平均值和超过最低预期资本回收率的适度概率。基于这样的分析,可以得出结论:区块1的样品远景对于试点项目是极好的备选。这一分析支持了该地区的开发,但是这一测试中所采用的天然气价格网格假设对其结果影响极大。图13C中托那多图表明天然气价格对净现值带来的影响最大,基质渗透率给净现值带来的影响其次(区块1中最小的基质渗透率变化的结果)。这表明假设较高的气体价格(比如该区水平井钻探时期的气体价格)将提高远景的可取性。从图13b直方图可以看出模拟中大部分的净现值在300万美元和350万美元之间,众数等于-1.5万美元,相当于平均数53万美元左右。

     

     

    图13  开发模型应用NPV法得出的经济结果:(a)累积概率分布;(b)柱状图;(c)回归系数的龙卷风图

    此分析程序可在在开发区的其他2个区块内完成,以协助选择最适合公司的试点项目的位置。2号和3号区块的填图属性的直观观察(图7b和8b)表明,这些地区情况没有区块1理想,因此在本次分析所使用的气体价格假设中可能不适合作为试点项目。

    5 结论

    在本文中,开发了一种方法理论和基于excel的方法以协助页岩气和致密砂岩气藏的勘探。这个方法包含了来自不同来源的映射属性、一个用于估算水力压裂半径的简单的压裂模型、目前应用于页岩气井开采的速率预测技术、计算关键盈利能力指标的经济模块以及解释非常规资源中内在的风险和不确定性的蒙特卡罗模拟。本文所描述的方法和工具可被工业界用于评估远景区域内的各个区块和选择适合试点项目的地区。该方法较为严谨,以岩石物理、地质和现在产业应用的分析储层模型为基础,且通过重建现有实例的油藏动态来证明其准确性。由于不需要建立复杂的数值模型和详细的开发方案(所需数据是在开发早期通常无法获取),这种方法既简单又高效。

    感谢代金友副教授对本文提出的宝贵意见。本文受中国地质调查“地学情报综合研究与产品研发”(121201015000150002)项目支持。

    资料来源:Williams-Kovacs J. D., Clarkson C. R. A new tool for prospect evaluation in shale gas reservoirs. Journal of Natural Gas Science and Engineering,2014,18(5):90-103.

    一种用于页岩气藏远景评价的新方法

    2016年3月23日,应侯增谦研究员邀请,舒德干院士来到中国地质科学院地质研究所国土资源部地层与古生物重点实验室、中国地质调查局古生物协同研究中心进行交流访问,并做了题为“寒武纪大爆发和进化论”的精彩学术报告

    舒德干院士是我国著名的地质学家、古生物学家,国家自然科学一等奖、长江学者成就一等奖、陕西省科学技术最高成就奖的获得者。他主持翻译了《物种起源》,并撰写了“物种起源导读”和“进化论十大猜想”,受到广大读者的欢迎。舒德干院士在早期生命研究上取得系统性突破成果,在《自然》、《科学》发表论文十余篇,他发现的昆明鱼目代表着人类及整个脊椎动物大家族的始祖。他创建了一个古生物学的新门类——古虫动物门,提出了后口动物亚界演化成型和脊椎动物实证起源假说,并提出了三幕式寒武纪大爆发理论。

    在2个小时的报告中,舒德干院士引用了大量古生物化石图片、进化论图表,用逻辑严谨、通俗易懂的语言,将抽象深奥的达尔文进化论、三幕式寒武纪大爆发理论形象生动地展示给大家。他展示了在科隆岛(原名加拉帕克斯群岛)考察的视频和照片资料,介绍了达尔文当年如何根据该岛观察到的生物现象,得出生物物种可变、自然选择的生物进化论思想。报告内容包含了丰富的地质学和古生物学知识,同时充满了哲学思辨和人文精神。舒德干院士风趣幽默的讲述,引起现场的阵阵欢笑。本次报告不但使人视野得以开拓、思想受到启迪,同时给人以美的享受和熏陶。

    来自中国地质调查局、中国地质科学院、中国地质科学院地质研究所、中国地质科学院矿产资源研究所等多家单位的50余名专家学者和研究生参加了报告会。报告会由国土资源部地层与古生物重点实验室主任、中国地质调查局古生物协同研究中心秘书长、中国地质科学院地质研究所地层与古生物研究室主任纪占胜研究员主持,中国地质调查局古生物协同研究中心主任、中国地质科学院地质研究所所长侯增谦研究员致欢迎辞。报告会结束时,舒德干院士向纪占胜研究员赠送了他主持翻译的《物种起源》,借此表达对地质所老一辈地层古生物学家取得的丰硕成果的敬意,对青年地层古生物学工作者的殷切勉励,同时还将他亲手拍摄的科隆岛的照片和印有进化论知识的图片赠送给与会者。

    报告会之后,舒德干院士来到国土资源部地层与古生物重点实验室、中国地质调查局古生物协同研究中心,参观了科普宣传廊,听取了唐烽副主任关于实验室和协同研究中心建设情况的汇报,并同侯增谦所长及纪占胜主任就下一步贯彻落实国土资源部和中国地质调查局的有关精神,建强实验室和协同研究中心,就如何实现地层古生物学基础研究、地层古生物学人才成长和区域地质调查工作机密结合、相互促进展开了深入的讨论,进一步明确了实验室和协同研究中心近期的工作和未来发展方向。

     

    侯增谦所长致辞欢迎舒院士来所讲学


     

    舒院士赠送《物种起源》并勉励青年地层古生物学工作者加强学习


     

    舒院士向与会者赠送他亲手拍摄的照片和印有进化论知识的卡片


     

    舒院士到实验室和协同研究中心考察并指导建设工作


    舒德干院士应邀来地质所开展学术交流

    近日,地调局勘探技术所所属聚力公司申请的2项发明专利获得国家知识产权局授权并收到其颁发的专利证书,这2项专利名称和专利号为“一种隧道掘进可变径多头轮廓成形设备”(ZL201510136315.3)和“一种多头输出齿轮皮带减速箱”(ZL201510136381.0)。

    发明专利“一种隧道掘进可变径多头轮廓成形设备”,属于山岭隧道掘进领域的施工设备,针对矿山法超欠挖情况较为严重,且在城市地下施工时,通常禁止使用钻爆方法。本发明包括多个钻进单元、活动展翼、回转减速箱、连杆机构、回转支撑组件、三角连接体、变幅机构、倾角油缸、涨紧机构和底盘,本发明的活动展翼能够开合,多组钻进单元均布在活动展翼上,能够同时进行多头钻进,且开合的活动展翼能够适应不同形状的隧道轮廓,适应性较大。本发明能准确打出隧道轮廓的外形,解决了超欠挖,且成本较掘进机大大降低。

    发明专利“一种多头输出齿轮皮带减速箱”,主要提供一种结构简单、成本低、效率高的多头输出齿轮皮带减速箱,本发明一个动力源输入,多个动力源输出,可以同时带动多个工作单元进行回转,转速转向均相同,同时设置两级减速,一旦工作单元发生卡嵌,皮带轮打滑,其他工作单元仍可正常工作。

    1

    2

    勘探技术所所属聚力公司2项发明专利获国家知识产权局...
      近期,由中国地调局南京中心负责实施的“长江三角洲地区地下水污染调查评价”计划项目,获得了两项国家专利,分别为一项实用新型专利和一项软件著作权。

      实用新型专利为:可变式压力控制定深地下水采样器,专利号为:ZL 2014 2 0514 106.9;该型专利使用压力传感器进行控制,具有自动进样、稳定流、深度可调、无负压、无二次混合污染和实时监控的优点,同时该实用新型本身是闭合采样器。

      软件著作权为:长江三角洲地区地下水污染调查评价信息系统V1.0,登记号:2014SR127256;该系统结合长江三角洲地区地下水污染调查需要,提供了该区域地下水数据存储、查询、分析评价等完整的信息系统功能。


    长江三角洲地区地下水污染调查评价项目获两项国家专...