中国地质调查局页岩气调查技术培训班

页岩气分析测试技术方法

汪双清

国家地质实验测试中心

对象、目的与内容——页岩气的基本特征

对象、目的与内容——页岩气评价的关键地质要素

二、有机地球

化学分析

有机地球化学分析——总有机碳含量测定

GB/T 19145-2003 沉积岩中总有机碳的测定 Determination of total organic carbon in sedimentary rock

技术关键: 1) 酸化处理操作 2) 标样使用

最小测量光阑直径为1um,其它仪器一般4-20um。

有机地球化学分析——干酪根显微组分分析

SY/T 5125-2014 透射光-荧光干酪根显微组分鉴定及类型划分方法

干酪根类型指数: T=(腐泥组百分含量*100+壳质组百分含量*50-镜质组百分含量*75-惰质组百分含量*100)/100

问题: 特殊样品分析 ——对于高过成熟样品、强烈 风化样品而言,其显微组分的光学性 质不典型,发生腐殖组失荧光化。如 何判识、划分?

照片: 33-35

34、透射光

全貌。以腐殖无定形为主

33、透射光 镜质体

35、蓝光激发荧光

腐殖无定形基本无荧光(矿物呈浅黄色)

有机地球化学分析——干酪根元素分析

GB/T 19143-2003 岩石有机质中碳、氢、氧元素分析方法 Analytical method of element for Carbon,Hydrogen and Oxygen in rock organics

vario micro 微量元素分析仪(CHNS-O)

干酪根元素分析方法原理

关键点: 干酪根样品的制备质量

GB/T 18602-2012 岩石热解分析

Rock pyrolysis analysis

OGE油气评价工作站

改进型岩石热解分析仪

RE6 "Classic 3" 型生油岩评价仪

重要的岩石热解参数衍生指标

(1) 产烃潜量(生油势) (mg/g)

 $PG = S_0 + S_1 + S_2$

(2) 有效碳PC(%)

 $PC = 0.083 \times (S_0 + S_1 + S_2)$

(3) 产率指数PI

$$PI = \frac{S_0 + S_1}{S_0 + S_1 + S_2}$$

(4) 总有机碳TOC(%) $Toc = PC + \frac{S_4}{10}$

(5) 降解潜率D(%)

$$D = \frac{PC}{Toc} \times 100\%$$

(6) 氢指数 *I*_H (mg/g, 烃/TOC)

$$I_{\rm H} = \frac{S_2}{Toc} \times 100$$

(7) 氧指数 I_0 (mg/g, CO₂/TOC) $I_0 = \frac{S_3}{Toc} \times 100$ (8) 烃指数 I_{10} (mg/g, 烃/TOC)

5) 烇指数
$$I_{HC}$$
 (mg/g, 烇/IOC)
$$I_{HC} = \frac{S_0 + S_1}{Toc} \times 100$$

(9) 类型指数TI

$$TI = \frac{S_2}{S_3}$$

三、页岩含气

性分析

页岩含气性分析——测定含气量的方法

页岩含气性分析——含气量测定的理论依据

单分子层吸附的朗格缪尔(Langmuir)方程:

$q=k p q_m/(1+k p)$

式中: k—Langmuir常数,与固、气的性质及温度有关;

q—单位体积/质量吸附剂的平衡吸附量;

p—被吸附气体分压;

q_m—单位体积/质量吸附剂的单层饱和吸附量。 适用范围:低、中压力范围的等温平衡吸附

假定条件:

- ① 吸附剂表面性质均一;
- ② 单层吸附;
- ③ 吸附是动态的,达到吸附平衡时,吸附速度等于脱附速度;
- ④ 气体分子在固体表面的凝结速度正比于该组分的气相分压;
- ⑤ 吸附在固体表面的气体分子之间无作用力。

Irving Langmuir (美国物理化学家, 1881~1957)。1932年诺贝尔化学奖获得者。

等温吸附法测得的是岩石的最大可能吸附能力

重力法页岩气煤层气等温高压吸附仪 SH-ISO-01

页岩含气性分析——含气量测定恒温解析法

SY/T 6940-2013《页岩含气量测定方法》

《页岩 含气量测定 恒温解析法》(中国地质调查局油气资源调查中心、国土资源部 油气资源战略研究中心、国家地质试验测试中心、中国地质大学(北京)) 理想吸附气的解吸模式

热模拟制备样品的实测解析曲线

实际岩心样品的实测解析曲线

损失气恢复方法

解析时间, min^{0.5}

要点:只能用恒温解析阶段的早期数据。

影响解析测试结果的关键性因素

1.解析温度: 必须在岩心样品的地层温度下 解析,并尽可能控温精确(<±1.5℃)。 2. 检测灵敏度: 应该不低于0.05mL/min. 3. 数据采集频率: 解析早期最好 1 次/min 以

残余气测试

只能通过粉碎岩心的方式测试! 强烈建议采用密闭碎样解析罐进行 测试。

解析测试方法与设备

需要研究解决的问题: 1) 当前的损失时间计算方法的 合理性有待研究: 2) 测试方法的不确定度有待测 定: 3) 需要建立测试质量控制的方 法与标准。

页岩含气性分析——气体组成分析

 GB/T 27894.5-2012 天然气在一定不确定度下用气相色谱法测定组成第5
部分:实验验室和在线工艺系统中用三根色谱柱测定氮、二氧化碳和C₁至 C₅及C₊₆的烃类

Natural gas. Determination of composition with defined uncertainty by gas chromatography. Part 5: Determination of nitrogen, carbon dioxide and C_1 to C_5 and C_{+6} hydrocarbons for a laboratory and on-line process application using three columns

GB/T 27894.3-2011 天然气在一定不确定度下用气相色谱法测定组成第3部分:用两根填充柱测定氢、氦、氧、氮、二氧化碳和直至C₈的烃类
Natrual gas. Determination of composition with defined uncertainty by gas chromatography. Part 3: Determination of hydrogen, helium, oxygen, nitrogen, carbon dioxide and hydrocarbons up to C₈ using two packed columns

仪器: MAT253

单体烃稳定同位素分析原理

关键点: 1) 待测成分的浓度(>1%) 2) 色谱分离的效果 (峰高分离度>90%)

四、页岩岩石

学分析

页岩岩石学分析——常见分析手段

X射线衍射光谱仪(X-Ray 岩石矿物组成分析 Diffraction, XRD) X射线荧光光谱仪(X-Ray 岩石元素组成分析 Fluorescence, XRF) 扫描电子显微镜(Scanning Electron Microscope, SEM) 原子力显微镜(Atomic Force 岩石微区表面结构观 察与成分定性分析 Microscope, AFM) 扫描隧道电子显微镜(Scanning Tunneling Microscope, STM) 透射电子显微镜(Transmission 岩石微区内部结构观 察与成分定性分析 Electron Microscopy, TEM) 电子探针X射线显微分析仪 岩石微区表面 (Electron Probe X-ray 成分定量分析 Microanalyser, EPMA)

X射线荧光光谱(XRF)分析

元素的原子受到高能辐射激发而引起内层电子的跃 迁,同时发射出具有一定特殊性波长的X射线。

根据莫斯莱定律,荧光X射线的波长λ与元素的原子序数Z有关:

 $\lambda = K(Z-S)-2$

式中K和S是常数。

X射线衍射(XRD)分析

X射线的频率/波长范围如下图所示

x射线的波长(006~20nm)和晶体内部原子面间的间距相近,晶体可以作为X射线的空间衍射光栅,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可得晶体结构。

Bragg公式: 2dsinθ = nλ 式中: λ—X射线波长; n—衍射级数; d—晶面距离; θ—衍射半角

X射线衍射仪(XRD)的工作原理

XRD分析结果实例

我国南方地区野外样品全岩分析图

扫描电子显微镜的工作原理

影响扫描电子显微镜性能的关键性因素

• 光学显微镜所能达到的最大分辨率 (d):

$$d \approx \frac{\lambda}{2NA}$$

λ—照射样品光子的波长; NA—光学系统的数值孔径

• 电子波长 (λ_e) 的徳布罗意公式:

$$\lambda_e \approx \frac{h}{\sqrt{2m_0E(1+\frac{E}{2m_0c^2})}}$$

h—普朗克常数; m₀—电子的静质量; E—加速后电子的能量

扫描电镜分析实例

扫描电镜下的晶间孔隙与溶蚀孔

场发射扫描电子显微镜的结构与性能

二次电子图像(SEI)分辨率1.5 nm 背散射电子图像(BEI)分辨率3.0 nm 电子背散射衍射(EBSD)空间分辨率: 0.5 μm X射线能谱仪(EDS)分辨率128ev,分析范围⁵B~⁹²U

场发射式电子枪工作原理

SE detector二次电子探测器: 观察形貌 BSE detector 背散射电子探测器: 观察构成

EDS能谱探测器:能力色散成分分析 WDS波谱探测器:波谱色散成分分析 EBSD探测器: 组构分析

透射扫描电子显微镜的结构与性能

Electron gun 由于电子的德布罗意波长非常短,透射电子显微 镜的分辨率可以达到0.1~0.2nm, 放大倍数为几万~ 高能量电子束 百万倍。 加速电压80-300kV 标本须制成厚度约50nm的超薄切片。 \mathcal{D} Condensor aperture Specimen port Objective aperture Objective lens Diffraction lens Intermediate aperture Intermediate lens Projector lenses Binoculars Fluorescent screen Image recording system

透射扫描电子显微镜分析图像实例

钢铁中原子尺度上晶格错位 的TEM图像

面心立方奥氏体不锈钢孪晶 结晶衍射图

电子探针X射线显微分析仪

利用聚焦的高能电子束轰击固体表面,使被轰击的 元素激发出特征X射线,通过探测各种元素确定波长的 特征X射线来确定样品中所含有的元素,将被测样品与 标准样品中元素Y的衍射强度进行对比进行定量分析。

除H、He、Li、Be等几 个较轻元素,以及U元素以 后的元素以外都可进行定性 和定量分析。

页岩岩石学分析——页岩三维空间结构分析

纳米CT成像过程

纳米CT性能指标

工件尺寸: 150mm×120mm (高度×直径)

分辨率: 50~500nm (依工件尺寸而异)

油页岩透视显示

油页岩成分分割显示

成分	体积 (nm ³)	体积比例(%)
储油孔	1.58E+12	3.20
页岩	4.32E+13	87.68
矿物质颗粒	4.49E+12	9.12

五、页岩储层 物性分析

页岩储层物性分析——孔隙度与渗透率测试

1、孔隙度测试—— 测试页岩中的孔径分 布

压汞和比表面联合测定微孔结构

将压汞法测得的岩样微孔毛细 管压力曲线换算成气水条件下的毛 细管压力曲线,然后与气体吸附法 测得的岩样微孔毛细管压力曲线相 接,从而可以得到较为完整的毛细 管压力曲线及其孔径分布图。 低温核磁共振技术测孔隙结构

Gibbs - Thomson方程: x=-K_{GT}/ΔT 孔隙中液体的冰点随着孔隙尺寸的缩 小而降低,其降低值与孔径大小成反比。 物体的固态和液态之间的核磁弛豫性 质差别巨大、用核磁共振技术监测多孔材 料中液体含量随温度的变化,将温度换算 为孔径后、液体含量即为孔径从小到大的 累积孔隙度、通过微分可以得到样品的积 分孔径分布。

核磁共振的孔径分布的测量范围为 2nm~500nm。结合核磁共振弛豫法,可对 500nm以上孔隙进行分析。

页岩储层物性分析——孔隙度与渗透率测试

2、渗透率测试——达西定律 (Darcy's Law) 反映水在岩土孔隙中渗流规律的实验定律:

$$Q = K \cdot A \cdot \frac{h}{L}$$

式中:Q—单位时间渗流量; A—过水断面面积; h—总水头损失; L—渗流路径长度; K——渗透系数。

- 对于一般流体而言,K与其粘度有关。
- 单相流体通过岩心的渗流规律,只有在压力梯度小,流速较低时才符合 达西定律,压力梯度超过极限时,就不再服从达西定律,而是服从非线 性渗流规律。

渗透率(Permeability)

当单相流体不与岩石起任何物理和化学反应,且流体的流动符合达西直线渗滤定律时:

$$\mathbf{Q} = \mathbf{K} \frac{\Delta \mathbf{P} \cdot \mathbf{A}}{\boldsymbol{\mu} \cdot \mathbf{L}}$$

式中: Q——单位时间内流体通过岩石的流量, cm³/s; A——液体通过岩石的截面积, cm²; μ——液体的粘度, Pa·s; L——岩石的长度, cm; ΔP——液体通过岩石前后的压差, MPa;

定义:

粘度为 1 mPa·s 的液体在 0.1 MPa 压力差作用下,通过截面积为 1 cm², 长度为 1 cm 的岩心时,液体的流量为 1 cm³/s 时,其渗透率为 1 μm² (mD)。

脉冲渗透率测试方法

一个小的压力脉冲作用于容器V₁,当介 质在脉冲压力驱动下进入容器V₂时,样品的 渗透率便可以由V₁的压力随时间的衰减特性 来确定。

$$\mathbf{K} = 2\mathbf{P}_c Q_c \frac{\mathbf{\mu} \cdot \mathbf{L}}{\mathbf{A} \left(P_1^2 - P_2^2 \right)}$$

(杨明松,西南石油学院学报,2001,23 (1):46-48)

数据处理方法

脉冲渗透率测试的特点

- 非稳态法压力脉冲衰减测量技术,测量超低渗岩石样品;
- 测量范围宽,一般0.00001~10md;
- 测试稳定时间短,速度快,测量准确;
- 测试压差小,可以减少滑脱和非达西流的影响。

PDP-200型压力脉冲超低渗透率仪 压力脉冲衰减法,超低渗透率,0.00001~0.1md

CMS-300型在线覆压孔隙度渗透率仪

页岩储层物性分析——页岩敏感性实验

储层敏感性:储集层岩石的物性参数(孔隙度和渗透率)随环境条件 (温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。 敏感指数:在条件参数变化一定数值时,岩石物性减小的百分数

$$\mathrm{SI_p}^{k} = \frac{\mathrm{K_i} - \mathrm{K}}{\mathrm{K_i}} \times 100\%$$

上标表示岩石物性参数,用下标表示条件参数。

SCMS-B2型高温高压岩心 多参数测量仪

储层敏感性测试的内容

酸敏评价实验——了解酸化液与储层岩石的配伍性,即反映它是改善地层还是伤害地层,了解其对地层的改善程度或伤害程度。

碱敏评价实验——了解岩心渗透率随流体pH值变化而变化的现象,找出使渗透率明显下降的临界pH值,即渗透率变化率20%时所对应的pH值。

盐敏评价实验——了解岩心渗透率随流体矿化度变化而变化的现象,找到储集层 敏感的临界盐度,即渗透率变化率20%时所对应的矿化度。

水敏评价实验——评价外来流体对储层矿物引起的膨胀、分散、运移导致储层渗透率下降的现象及其程度。一般通过粘土膨胀实验来测定阳离子交换量,膨胀性粘土矿物含量越高,其阳离子交换容量越大;也可以通过测定岩心渗透率随流体注入量而变化的曲线来测定。

速敏评价实验——了解岩心渗透率随流体速度变化而变化的现象,确定临界流量,即渗透率变化率20%时所对应的流速。

应力敏感评价实验——了解岩心渗透率随应力变化而变化的现象,确定岩石的临界应力,即渗透率变化率20%时所对应的净应力。

储层敏感性测试方法

SY/T 5358-2010 储层敏感性流动实验评价方法 Formation Damage by Flow Test

条件指标

酸敏:酸液的累计注入倍数;碱敏:注入液pH值;盐敏:注入水的矿化度;水敏:盐水的累计注入倍数;速敏:注入液流速;应力敏感:应力大小

た。反治力学

页岩力学性质分析——杨氏模量(Young's modulus)

设有一截面为 S,长度为 l 的均匀棒状(或线状)材料,受力 F 压 缩(拉伸)时,缩短(伸长)了δ,其单位面积截面所受到的拉力S/F 称为胁强,而单位长度的压缩(伸长)量δ/l 称为胁变。

根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与 它所受的胁强成正比:

$$\frac{F}{S} = E \frac{\delta}{l} \quad \text{if } E = \frac{F/S}{\delta/l} = \frac{\sigma}{\varepsilon}$$

式中:—正向应力(tensile stress); ε—正向应变(tensile strain); E—杨氏模量。

E取决于固体材料的性质,反应材料形变和 内应力之间的关系,即单位面积承受力能力,N/m²。

页岩力学性质分析——泊松比(Poisson ratio)

页岩力学性质分析——测试方法

- 杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
- 泊松比的大小标志了材料的变形性能,泊松比值越大,越 易发生形变。
- 测量方法:

方式: 动态法、静态法

- 手段: 机械力学法、光学法、声学法、电法等
- 原理: 拉伸法、扭曲法、弯曲法、振动法、内耗法等
- 检测: 电阻应变片、差动变压器(LVDT)、

光栅编码器,等

杨氏模量与泊松比测试方法——电阻应变法

在试样中部截面上,沿正反两侧分别对称地布有 一对轴向电阻应变仪片R和一对横向电阻应变片R'。试 样受拉时轴向应变片R的电阻变化为ΔR,相应的轴向 应变为e;与此同时,横向电阻应变片R'因试样收缩而 产生的电阻变化为ΔR', ^{纵1、横1} R₁, R₁' ^{R3}₃

则:

$$\mu = \frac{|e'|}{|e|}$$

页岩力学性质测试设备

泥页岩化学-力学行为研究仪

请指正!