
Special Geological Samples Mo Isotope Analysis Chemical Pretreatment Method Study

Abstract: Mo isotopic analysis is widely used in geology, and it can be used to trace Mo global cycle, ancient ocean redox conditions, mineralization process, astrophysical evolution process, etc. The MC-ICP-MS analysis of Mo isotope ratio requires separation and purification of samples before analysis, to enrich Mo and remove Zr, Ru, Fe, Mn, etc. Interfering elements. Some special geological samples (such as calcareous mudstone, calcareous shale containing large amount of pyrite), if using the traditional anion exchange resin column method, need to be washed with cation exchange resin many times to separate Fe, the steps are complicated and Mo recovery rate will decrease; and if using the traditional anion exchange resin column method, using 1mol/L HF-0.5mol/L HCl medium will produce more CaF2 precipitates that affect the separation and purification effect. For this kind of special geological samples, this experiment used the same anion resin column (AG1-X8, 100~200 mesh) for two elutions, the first time used 6mol/L HCl, the second time used 1mol/L HCl, 0.5mol/L HCl, 6mol/L HCl, and 1mol/L HCl. The results showed that the Mo recovery rate was >96%, and the removal effect of interfering elements was good, especially Ru removal rate was nearly 100%, which was improved by about 12% compared to the traditional methods. The results of experiments on real samples showed that the Mo recovery rate and removal of interfering elements met the requirements, and the δ98/95 Mo measured values were consistent with the published literature. The improved anion exchange resin single-column two-elution method is applicable to Fe, Ca content-high special samples, reduces analysis costs, and is applicable to most geological samples.

Keywords: Mo isotope; ion exchange resin method; chemical pretreatment; high Fe, high Ca geological samples; MC-ICP-MS

Key Point:
1. Improved Mo isotope analysis separation and purification methods are applicable to high Fe, high Ca special geological samples, and also applicable to most ordinary geological samples.
2. The experiment used a type of resin (AG1-X8), reducing analysis costs and minimizing work volume.
3. Ru removal rate is nearly 100%, which is higher than the traditional method by about 12%.

Citation: O628; O657.63

Reference Code: A
标元素和去除干扰元素,使干扰元素含量达到可以忽略的范围，降低基质效应,提高质谱分析的准确度。仪器分析现在常用的是多接收电感耦合等离子体质谱法(MC – ICP – MS), MC – ICP – MS相对于传统的热电离质谱(TIMS),在保证精确度的前提下,有电离范围大、分馏行为稳定等优点,大大扩大了可测试元素的范围。40

在 Mo同位素的分析测试中，目前文献报道的化学前处理方法主要有阴阳离子交换树脂双柱法14,18,41–46和阴离子交换树脂单柱法47–50。在实际操作中,即使对相同的目标元素,不同类型的地质样品由于基质不同通常需要不同的前处理方法。随着 Mo同位素研究领域的不断拓展和深入,需对更多不同类型的地质样品进行化学预处理。随着 Mo同位素研究领域的不断拓展和深入,需对更多不同类型的地质样品进行化学预处理。随着 Mo同位素研究领域的不断拓展和深入,需对更多不同类型的地质样品进行化学预处理。

1.1 标准溶液和主要试剂

Mo标准溶液为 JMC (Stock #35758, Lot #013989C,浓度:1000 ±3 μg/mL)。Mo标准工作液:取 Mo标准溶液 2mL配成 100mL 5%的硝酸溶液(浓度:20 μg/mL)。

Ru标准溶液为 JMC (Stock #35767, Lot #013564SS,浓度:1000 ±3 μg/mL)。Ru标准工作液:取 Ru标准溶液 2mL配成 100mL20%的盐酸溶液(浓度:20 μg/mL)。

阴离子交换树脂: DowexAG1-X8 (100~200目)。离子交换柱规格:内径 0.6cm,长 20cm,材料为聚四氟乙烯。盐酸、硝酸和氢氟酸均为亚沸二次蒸馏,实验用水为超纯水。

1.2 样品及相关处理

Mo工作液的配制过程中,黄铁矿保证样品中较高的 Fe含量,沉积物保证较高的 Ca含量。在条件实验中,分离纯化的最后一步需分多次接收样品,测试每份淋洗液的 Mo浓度,得到不同酸介质和淋洗液体积的 Mo元素回收率。所以,在样品中加入 Mo标准工作液是为了确保每份淋洗液的 Mo浓度都不低于仪器检出限。基于先前的方法及实验结果,本次实验预期是想提高 Ru的去除率,且一般地质样品中 Ru含量较低,所以加入 Ru标准工作液提高样品中 Ru含量。

Mo工作液的配制过程为:称取 0.3g 黄铁矿、1.0g水系沉积物国家标准物质 GBW07303 和 1.0g水系沉积物国家标准物质 GBW07305,放入 50mL聚四氟乙烯烧杯中,加入 20mL 50% 王水,再加入 2mL Mo标准工作液和 2mL Ru标准工作液。置于电热板(120℃)上加热,样品溶解后离心取上清液,蒸干酸液,配成 15mL 6mol/L 盐酸溶液。
样品的化学前处理工作在中国科学院地球化学研究所矿床地球化学国家重点实验室的超净实验室完成，室内洁净度为1000级，超净工作台内为100级。

1.4 化学分离与纯化

取2份Mo标准工作液，每份5mL，先后按表1中的方法进行分离纯化，其中方法2是在方法1的基础上的进一步优化。两种方法都是使用5mL AG1-X8树脂进行树脂柱填充。方法1（使用盐酸、硝酸收集Mo）：在样品引入前分别用3mol/L硝酸、超纯水、1mol/L盐酸洗涤，然后用6mol/L盐酸洗涤，用30mL1mol/L盐酸和30mL3mol/L硝酸接收样品；将收集的样品蒸干配成5mL1mol/L氢氟酸-0.1mol/L盐酸的溶液；用超纯水、0.1mol/L盐酸洗涤树脂柱。用1mol/L氢氟酸-0.1mol/L盐酸平衡树脂，样品引入后用1mol/L氢氟酸-0.1mol/L盐酸和6mol/L盐酸洗涤，最后用30mL1mol/L盐酸和30mL3mol/L硝酸接收样品。

方法2（使用盐酸收集Mo）：使用40mL1mol/L盐酸接收样品，收集Mo的过程简化，也简化了样品引入前的洗涤过程。

表1 Mo的分离纯化操作流程
Table 1 Elution sequence of the two-step single-column separation for Mo

<table>
<thead>
<tr>
<th>步骤</th>
<th>材料和试剂</th>
<th>用量(mL)</th>
<th>操作步骤详细说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>装树脂</td>
<td>AG1-X8树脂</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>3mol/L硝酸</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>水</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>1mol/L盐酸</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>平衡</td>
<td>6mol/L盐酸</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>样品引入</td>
<td>样品（介质6mol/L盐酸）</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>6mol/L盐酸</td>
<td>10+10+10</td>
<td>-</td>
</tr>
<tr>
<td>收集Mo</td>
<td>1mol/L盐酸</td>
<td>30</td>
<td>将这60mL溶液收集后分析相关元素含量</td>
</tr>
<tr>
<td>收集Mo</td>
<td>3mol/L硝酸</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>水</td>
<td>10+10+10</td>
<td>为第二次过柱做准备</td>
</tr>
<tr>
<td>洗涤</td>
<td>0.1mol/L盐酸</td>
<td>10</td>
<td>为第二次过柱做准备</td>
</tr>
<tr>
<td>平衡</td>
<td>1mol/L氢氟酸-0.1mol/L盐酸</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>样品引入</td>
<td>样品（介质1mol/L氢氟酸-0.1mol/L盐酸）</td>
<td>5</td>
<td>第二次过柱</td>
</tr>
<tr>
<td>洗涤</td>
<td>1mol/L氢氟酸-0.1mol/L盐酸</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>6mol/L盐酸</td>
<td>10+10</td>
<td>-</td>
</tr>
<tr>
<td>收集Mo</td>
<td>1mol/L盐酸</td>
<td>30</td>
<td>每5mL收集为一件样品，共6件样品，分析每件样品的相关元素含量</td>
</tr>
<tr>
<td>收集Mo</td>
<td>3mol/L硝酸</td>
<td>30</td>
<td>每5mL收集为一件样品，共6件样品，分析每件样品的相关元素含量</td>
</tr>
</tbody>
</table>

方法2（使用盐酸收集Mo）

<table>
<thead>
<tr>
<th>步骤</th>
<th>材料和试剂</th>
<th>用量(mL)</th>
<th>操作步骤详细说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>装树脂</td>
<td>AG1-X8树脂</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>水</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>1mol/L盐酸</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>平衡</td>
<td>6mol/L盐酸</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>样品引入</td>
<td>样品（介质6mol/L盐酸）</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>6mol/L盐酸</td>
<td>10+10+10</td>
<td>-</td>
</tr>
<tr>
<td>收集Mo</td>
<td>1mol/L盐酸</td>
<td>40</td>
<td>将这40mL溶液收集后分析相关元素含量</td>
</tr>
<tr>
<td>洗涤</td>
<td>水</td>
<td>10+10+10</td>
<td>为第二次过柱做准备</td>
</tr>
<tr>
<td>洗涤</td>
<td>0.1mol/L盐酸</td>
<td>10</td>
<td>为第二次过柱做准备</td>
</tr>
<tr>
<td>平衡</td>
<td>1mol/L氢氟酸-0.1mol/L盐酸</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>样品引入</td>
<td>样品（介质1mol/L氢氟酸-0.1mol/L盐酸）</td>
<td>5</td>
<td>第二次过柱</td>
</tr>
<tr>
<td>洗涤</td>
<td>1mol/L氢氟酸-0.1mol/L盐酸</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>洗涤</td>
<td>6mol/L盐酸</td>
<td>10+10</td>
<td>-</td>
</tr>
<tr>
<td>收集Mo</td>
<td>1mol/L盐酸</td>
<td>40</td>
<td>每5mL收集为一件样品，共8件样品，分析每件样品的相关元素含量</td>
</tr>
</tbody>
</table>

注：“-”表示淋洗的酸液中主要为基质元素，作为废液处理。
2 结果与讨论

2.1 方法1的实验思路及主要元素分离纯化效果

Mo – ICP – MS 测试同位素组成的过程中，主要干扰有同质异位素干扰、双电荷离子干扰以及基质效应。Mo 有 7 个稳定同位素，分别为: 92 Mo（14.84%）、94 Mo（9.25%）、95 Mo（15.92%）、96 Mo（16.68%）、97 Mo（5.55%）、98 Mo（24.13%）和 100 Mo（9.63%）。Mo 同位素试验过程中主要的干扰元素为 Zr、Ru、Fe 和 Mn 以及其他基质元素（与 Ar 结合形成多原子的干扰离子），各类潜在的干扰离子总结见表 2。

针对 Fe 含量特别高且含 Ca 的特殊地质样品，阴阳离子交换树脂双柱法 [49] 在阴离子交换树脂这一点去除了 Fe 以外的大部分基质元素，而要去除高含量的 Fe，需多次过阳离子交换树脂，操作步骤较繁琐且 Mo 回收率也会有所降低；阴离子交换树脂单柱法 [48] 使用 1mol/L 氢氟酸 +0.5mol/L 盐酸对去除 Fe 有很好的效果，适用于 Ca 含量极低的样品（如黑色页岩），但由于直接使用 1mol/L 氢氟酸 -0.5mol/L 盐酸上样和洗脱，对于 Ca 含量较高的样品，会产生大量 CaF2 沉淀从而影响分离纯化效果。针对这些 Fe 含量特别高且含 Ca 的特殊地质样品，已有的分离纯化方法均有一定不足，还有改进和完善的空间。本研究将对这两种方法进行取长补短和优化组合，得到一种针对该类特殊地质样品的分离纯化方法，使用单一阴离子树脂柱 (AG1 – X8, 100 – 200 目) 对样品先后进行两次不同酸介质的洗涤，第一次使用 6mol/L 盐酸，去除 Ca、Zr 等大部分基质元素，第二次使用 1mol/L 氢氟酸 -0.1mol/L 盐酸和 6mol/L 盐酸，去除 Fe 和其他少量残留的元素。

按表 1 中方法 1 (使用盐酸、硝酸收集 Mo) 的实验操作步骤的结果见表 3 和图 1a。第一次经阴离子交换树脂淋洗后，Mo、Zr、Ru、Fe、Mn 的回收率分别为 97.6%、93.6%、12.2%、98.2%、0.42%。Ru 的去除效果较差，Fe 则几乎没有被去除。第二次经阴离子交换树脂淋洗后，Mo、Zr、Ru、Fe、Mn 的总回收率分别为 96.7%、13.4%、0.022%（其中，盐酸收集液中 Mo、Zr、Ru、Fe、Mn 的回收率分别为 93.9%、0.165%、0.020%；硝酸收集液中 Mo、Zr、Ru、Fe、Mn 的回收率分别为 2.78%、0.117%、0.020%）。

2.2 酸介质的影响

在 1mol/L 氢氟酸与低浓度盐酸的介质中，Mo(VI) 在阴离子树脂与介质中的分配系数 [当达到吸附平衡时每千克干树脂中吸附的 Mo(VI) 总量与 1000mL 平衡液中 Mo(VI) 总量的比值] 与盐酸的浓度相关，分配系数随着盐酸的浓度变小而增大 [51]。李津等 [48] 用 1mol/L 氢氟酸 -0.5mol/L 盐酸介质取得了较好的效果，Mo 回收率达到 99.3% ～101.7%。本次实验中使用 1mol/L 氢氟酸 -0.1mol/L 盐酸介质也取得了较好的 Mo 回收率 (总和回收率 96.7%，单次回收率 99.1%)，这表明盐酸与氢氟酸的混合酸介质，对去除一些基质元素有很好的效果，例如 U，且在一定范围内盐酸的浓度越低 Mo(VI) 在阴离子树脂与介质中的分配系数越大，但当盐酸浓度低于阈值后，其浓度变化对 Mo 回收率的影响是可以忽略的。

在第二次阴离子交换树脂淋洗过程中，硝酸收集液中 Mo 的回收率为 2.78%，但 Ru 的回收率为 11.7%；而盐酸收集液中 Mo 的回收率为 93.9%，Ru 的回收率为 1.65%。Ru 去除效果不太理想的主要原因是使用了硝酸收集 Mo，在硝酸介质中 Ru 易与树脂固定相分离而被淋洗下来。

2.3 分离纯化方法的优化

根据 Wen 等 [52] 的报道，阴离子交换树脂会对 Mo 同位素产生较大分馏，当经过两次阴离子交换树脂后的 Mo 回收率达到 91% 以上，则由阴离子交换树脂导致的 Mo 同位素分馏可以忽略。所以方法 1 使用
表 3 通过离子交换树脂后的洗涤(收集)液的分析结果(方法 1)

<table>
<thead>
<tr>
<th>项目</th>
<th>Mo (μg)</th>
<th>Zr (μg)</th>
<th>Ru (μg)</th>
<th>Fe (μg)</th>
<th>Mn (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>初始样品</td>
<td>32.9</td>
<td>6.83</td>
<td>11.4</td>
<td>50700</td>
<td>364</td>
</tr>
<tr>
<td>60mL Mo 收集液（第一次过柱）</td>
<td>32.1</td>
<td>0.252</td>
<td>1.39</td>
<td>49800</td>
<td>1.54</td>
</tr>
<tr>
<td>第一次过柱的回收率(%)</td>
<td>97.6</td>
<td>3.69</td>
<td>12.2</td>
<td>98.2</td>
<td>0.42</td>
</tr>
<tr>
<td>样品引入 + 洗涤液（第二次过柱）</td>
<td>0.0626</td>
<td>5.75</td>
<td>0.424</td>
<td>49800</td>
<td>1.54</td>
</tr>
<tr>
<td>Mo 收集液①</td>
<td>0.0194</td>
<td><0.0005</td>
<td>0.0875</td>
<td><0.0005</td>
<td>0.0502</td>
</tr>
<tr>
<td>Mo 收集液②</td>
<td>3.41</td>
<td><0.0005</td>
<td>0.0182</td>
<td><0.0005</td>
<td>0.137</td>
</tr>
<tr>
<td>Mo 收集液③</td>
<td>19.6</td>
<td><0.0005</td>
<td>0.0235</td>
<td><0.0005</td>
<td>0.124</td>
</tr>
<tr>
<td>Mo 收集液④</td>
<td>6.34</td>
<td><0.0005</td>
<td>0.0203</td>
<td><0.0005</td>
<td>0.132</td>
</tr>
<tr>
<td>Mo 收集液⑤</td>
<td>1.20</td>
<td><0.0005</td>
<td>0.0213</td>
<td><0.0005</td>
<td>0.141</td>
</tr>
<tr>
<td>Mo 收集液⑥</td>
<td>0.357</td>
<td><0.0005</td>
<td>0.0176</td>
<td><0.0005</td>
<td>0.151</td>
</tr>
<tr>
<td>盐酸收集液的总量</td>
<td>30.9</td>
<td>–</td>
<td>0.188</td>
<td>–</td>
<td>0.735</td>
</tr>
<tr>
<td>盐酸收集液的回收率(相对初始样品, %)</td>
<td>93.9</td>
<td>0</td>
<td>1.65</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>Mo 收集液⑦</td>
<td>0.163</td>
<td><0.0005</td>
<td>0.0227</td>
<td><0.0005</td>
<td>0.0774</td>
</tr>
<tr>
<td>Mo 收集液⑧</td>
<td>0.540</td>
<td><0.0005</td>
<td>0.242</td>
<td><0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑨</td>
<td>0.108</td>
<td><0.0005</td>
<td>0.367</td>
<td><0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑩</td>
<td>0.0527</td>
<td><0.0005</td>
<td>0.313</td>
<td><0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑪</td>
<td>0.0321</td>
<td><0.0005</td>
<td>0.231</td>
<td><0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑫</td>
<td>0.0174</td>
<td><0.0005</td>
<td>0.158</td>
<td><0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>硝酸收集液的总量</td>
<td>0.913</td>
<td>–</td>
<td>1.33</td>
<td>–</td>
<td>0.0774</td>
</tr>
<tr>
<td>硝酸收集液的回收率(相对初始样品, %)</td>
<td>2.78</td>
<td>0</td>
<td>11.7</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>总回收率(相对初始样品, %)</td>
<td>96.7</td>
<td>0</td>
<td>13.4</td>
<td>0</td>
<td>0.22</td>
</tr>
</tbody>
</table>

注：Mo 收集液①~ Mo 收集液⑫为第二次过柱中依次收集的 5mL 1mol/L 盐酸收集液，分 6 次收集，共 30mL 1mol/L 盐酸收集液。Mo 收集液①~ Mo 收集液⑫为第二次过柱中依次收集的 5mL 3mol/L 硝酸收集液，分 6 次收集，共 30mL 3mol/L 硝酸收集液。总回收率表示第二次过柱中盐酸收集液与硝酸收集液的总回收率。

用盐酸、硝酸收集 Mo 中阴离子交换树脂第一次淋洗的结果符合 Mo 回收率的要求。实验结果也表明，方法 1 使用硝酸收集 Mo 会产生约 11.7% 的 Ru 残留，而 Mo 回收率只提高了 2.78%；使用 30mL 盐酸收集 Mo 只会产生约 1.65% 的 Ru 残留，Mo 回收率为 93.9%（总和回收率 93.9%，单次回收率 96.3%）。考虑到先用盐酸再用硝酸收集 Mo 的方法中，硝酸淋洗的 Mo 含量有限，但带入了较多的干扰元素 Ru，后续实验将硝酸收集 Mo 的步骤去掉，通过增加盐酸收集液的用量来提高 Mo 回收率，详细操作步骤见表 1 中方法 2（使用盐酸收集 Mo）。实验结果见表 4、图 1b 和图 2。

表 4 通过离子交换树脂后的洗涤(收集)液的分析结果(方法 2)

<table>
<thead>
<tr>
<th>项目</th>
<th>Mo (μg)</th>
<th>Zr (μg)</th>
<th>Ru (μg)</th>
<th>Fe (μg)</th>
<th>Mn (μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>初始样品</td>
<td>33.0</td>
<td>7.15</td>
<td>10.5</td>
<td>50600</td>
<td>357</td>
</tr>
<tr>
<td>40mL Mo 收集液（第一次过柱）</td>
<td>32.1</td>
<td>0.281</td>
<td>0.0295</td>
<td>50300</td>
<td>0.230</td>
</tr>
<tr>
<td>第一次过柱的回收率(%)</td>
<td>97.3</td>
<td>3.93</td>
<td>0.281</td>
<td>99.4</td>
<td>0.064</td>
</tr>
<tr>
<td>样品引入 + 洗涤液（第二次过柱）</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mo 收集液①</td>
<td>0.0043</td>
<td>0.0005</td>
<td><0.0005</td>
<td>0.359</td>
<td>0.0013</td>
</tr>
<tr>
<td>Mo 收集液②</td>
<td>3.98</td>
<td>0.0027</td>
<td><0.0005</td>
<td>0.263</td>
<td><0.0005</td>
</tr>
<tr>
<td>Mo 收集液③</td>
<td>25.1</td>
<td>0.0077</td>
<td><0.0005</td>
<td>0.0551</td>
<td><0.0005</td>
</tr>
<tr>
<td>Mo 收集液④</td>
<td>2.46</td>
<td>0.0011</td>
<td><0.0005</td>
<td>0.265</td>
<td><0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑤</td>
<td>0.231</td>
<td>0.0007</td>
<td><0.0005</td>
<td>0.114</td>
<td>0.0157</td>
</tr>
<tr>
<td>Mo 收集液⑥</td>
<td>0.0917</td>
<td><0.0005</td>
<td><0.0005</td>
<td>0.118</td>
<td><0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑦</td>
<td>0.0262</td>
<td><0.0005</td>
<td><0.0005</td>
<td>0.118</td>
<td><0.0005</td>
</tr>
<tr>
<td>Mo 收集液⑧</td>
<td>0.0165</td>
<td><0.0005</td>
<td><0.0005</td>
<td>0.049</td>
<td>0.0012</td>
</tr>
<tr>
<td>收集液的总量</td>
<td>31.9</td>
<td>0.0127</td>
<td>0</td>
<td>1.34</td>
<td>0.0182</td>
</tr>
<tr>
<td>总回收率(相对初始样品, %)</td>
<td>96.7</td>
<td>0.178</td>
<td>0</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>

注：Mo 收集液①~ Mo 收集液⑧为第二次过柱中依次收集的 5mL 1mol/L 盐酸收集液，分 6 次收集，共 30mL 1mol/L 盐酸收集液。Mo 收集液①~ Mo 收集液⑧为第二次过柱中依次收集的 5mL 3mol/L 硝酸收集液，分 6 次收集，共 30mL 3mol/L 硝酸收集液。总回收率表示第二次过柱中盐酸收集液的总回收率。
图 1 (a) 方法 1 的 Mo 元素淋洗曲线; (b) 方法 2 的 Mo 元素淋洗曲线

Fig. 1 (a) Elution curve of Mo in Method 1; (b) elution curve of Mo in Method 2

从表 4 中可知，优化后的方法 Mo、Zr、Ru、Fe、Mn 的总回收率分别为 96.7%、0.178%、0.003%、0.003%。Mo 的回收率高，Zr、Ru、Fe、Mn 等干扰元素的去除效果好。从图 2 中可知，工作液经过预处理纯化，分离之后，除 Nb、Ba、Li、U 等几个元素还有少量残留外（这几个元素不干扰 Mo 同位素的测定），其他元素去除效果良好。图 2 为实际地质样品应用改进后的阴离子交换树脂单柱 - 二次淋洗法分离纯化后，用 MC-ICP-MS 对样品 Mo 同位素组成进行分析测试（用双稀释剂法校正质量分馏）的结果。比较不同性质的各样品 δ^{98/95} Mo 测定值与文献报道值，碳质页岩样品的测定值为 -0.21‰ ±0.08‰，文献报道值分别为 -0.22‰ ±0.12‰ 和 -0.22‰ ±0.13‰；夹方解石脉的碳质页岩的测定值为 1.65‰ ±0.10‰，文献报道值分别为 1.63‰ ±0.12‰ 和 1.63‰ ±0.11‰；白云岩样品的测定值为 1.30‰ ±0.12‰，文献报道值为 1.29‰ ±0.14‰；水系沉积物 GBW07303 的测定值为 -0.35‰ ±0.10‰，文献报道值为 -0.38‰ ±0.16‰。可知本次实验的 δ^{98/95} Mo 测定值与文献报道值是相符的，数值的变化范围在误差范围内。
图 3 本研究与文献 [44] 的实际样品预处理分离纯化效果

Fig.3 Outcome of pretreatment for the geological samples of this research and Reference [44]

3 结论

随着 Mo 同位素研究的发展和深入，迫切需要开发适用于更多性质特殊的地质样品且较简便、节约人力物力的化学前处理方法。目前应用质谱分析地质样品的 Mo 同位素组成的方法主要有阴阳离子交换树脂双柱法和阴离子交换树脂单柱法，本研究对这两种方法进行取长补短和优化组合，得到一种针对 Fe 含量特别高且含 Ca 的特殊地质样品的分离纯化方法，改进后的阴离子交换树脂单柱 - 二次淋洗法（使用盐酸收集 Mo）被本项目组推荐的方法。

4 参考文献

Research on the Chemical Pretreatment for Mo Isotope Analysis of Special Geological Samples

WEN Jing1,2, ZHANG Yu-xu1,*, WEN Han-jie1,2, ZHU Chuan-wen1, FAN Hai-feng1

(1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China)

HIGHLIGHTS

(1) The separation and purification method for Mo isotope analysis was improved. The method can be used for the special geological samples with high Fe and Ca contents, as well as most common geological samples.

(2) Using one resin (AG1−X8) can reduce analytical cost and workload.

(3) The removal rate of Ru for the improved method was 12% higher than the previous methods, up to 100%.
ABSTRACT

BACKGROUND: Mo isotopes have been widely used in the field of geosciences. They can be used to trace the global cycle of Mo, paleoocean redox conditions, mineralization processes, and astronomical evolution. Before the analysis of Mo isotope by multi-collector inductivity coupled plasma-mass spectrometry (MC-ICP-MS), the samples must be pretreated to enrich Mo and remove the interference elements (Zr, Ru, Fe and Mn). According to the traditional anion – cation exchange resin double – column method, it is necessary to use a cation – exchange resin multiple times to separate Fe. The steps are more complicated and the Mo recovery will be reduced. According to the traditional anion-exchange resin single – column method, 1mol/L hydrofluoric acid – 0.5mol/L hydrochloric acid medium will produce more CaF₂ precipitation and affect the separation and purification results.

OBJECTIVES: To develop a new method for managing Ca – bearing geological samples with high Fe content before Mo isotope analysis.

METHODS: For such special geological samples, the same anionic resin column (AG1 -X8, 100 - 200 mesh) was used to rinse the sample twice, the first time using 6mol/L hydrochloric acid, and the second time using 1mol/L hydrofluoric acid – 0.1mol/L hydrochloric acid and 6mol/L hydrochloric acid.

RESULTS: Results showed that Mo recovery was better than 96%, and the removal of the interference elements was good, especially the Ru removal rate, which was higher than the previous methods by 12%, up to 100%. The results of experiments on actual samples also showed that the recovery of Mo and the removal of interfering elements meet the requirements, and the measured values of δ⁹⁸/⁹⁵Mo were consistent with those reported in the literature.

CONCLUSIONS: The improved anion exchange resin single – column elution method is suitable for special samples with high Fe and Ca content, which reduces the analysis cost and is applicable to most geological samples.

KEY WORDS: Mo isotopes; ion exchange chromatography; chemical pretreatment; special geological sample; MC-ICP-MS